
                                                                                

International Journal of Engineering and Applied Sciences (IJEAS) 

ISSN: 2394-3661, Volume-2, Issue-5, May 2015   

 

                                                                                              81                                                                     www.ijeas.org 

 

 
Abstract— We develop a model to account for the recently 

observed phase jump of electrons in Josephson Junction, in a 

magnetic field, as the electrons cross the junction. We suggest 

that electrons are trapped in the potential formed by a kink 

anti-kink pair. When the electron escapes from this potential 

well it suffers a potential jump as it crosses the junction. 

Electrons at lower depths suffer greater potential jumps. The 

potential jumps were evaluated by using the Lax pair for the 

Sine Gordon equation and then using Gelfand-Levitan equation 

on the bound states formed by the kink-anti kink pair. 

 
Index Terms— Josephson Junction, Phase jumps, Gelfand  

Levitan equation, Solitons . 

 

I. INTRODUCTION 

Josephson junction has been studied by a number of authors 

[1-4]. Further Solitons in Josephson junctions has been both 

predicted [5, 7] and found experimentally [5, 6]. Josephson 

Junctions are described by Sine Gordon equation which has 

kink Soliton solutions. These Solitons tunnel through the 

Josephson junction barrier A detailed numerical analysis of 

Josephson tunnel junctions has been done by Lomdahl, 

Soerensen and Christiansen [7]. They find comprehensive 

numerical evidence of Solitons in both long and intermediate 

junctions. Charge Soliton Solutions have been found by Ziv 

Herman, Eshel Ben-Jacob and Gerd Schon [8] for serially 

coupled Josephson junctions. T. Doderer et. al [9] have 

experimentally stimulated Solitons in Josephson junctions 

and studied their dynamics. They find that the junction 

properties are accurately described by the perturbed Sine 

Gordon equation. 

Recently [11] have found spectacular series of phase 

jumps in electrons passing through a Josephson junction in a 

magnetic field. We propose that these jumps occur due to 

electrons escaping from a potential well  formed by a kink 

anti kink pair and crossing the Josephson junction. We first 

solve the Sine Gordon equation in the long wavelength limit 

following the technique first outlined by Sakaguchi and 

Malomed [10] in their classic paper. Via this technique we 

find the Green’s function in the long wave length limit. This 
agrees very well with Greens functions computed intuitively 

with approximate Green’s functions of electrons in 
Josephson junctions. This therefore establishes that the 

approach adopted here is indeed correct. Thereafter one 

computes the bound states of the kink anti kink pair. 

Thereafter one uses the fact that bound states decay. In other 

words the electron escapes from the kink anti kink potential.  
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The Gelfand-Levitan equation is applied to this process to 

obtain the phase jumps. 

 

II. SOLUTION OF THE SINE GORDON EQUATION IN 

ASYMPTOTIC LIMIT  

The Sine –Gordon equation is 
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Assume a travelling wave solution  
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On substituting above we get 
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The solution of (25) must be of the form 
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We now derive the conservation equation corresponding 

to(21). Using 
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Using the asymptotic expansion of 
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In the   space the eigen value equation is 
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Since we are interested in the asymptotic limit, we take 

the t =0 solution of (17) as the effective potential in (22). 

The equation to solve is  
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Taking the inverse transform 
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The Green’s function is 
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Eqn. (23) is the Green’s function of an electron in a 
Josephson junction. The above result could have been 

derived intuitively by noting that the wave function of an 

electron in a Josephson junction is ( ) k
r e

    

The Green’s function may now be written as  
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Thus the result derived in (23) is in agreement with (24) 

derived from basic physical considerations. 

 

 

III. LAX OPERATERS 

The Lax operators [] for the Sine Gordon equation are 
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Let ( , )k t be a soliton solution of the Sine Gordon 

equation.  Since the Soliton is a localized solution we must 

have 
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Now the time evolution of ( , )k t is given by  
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Assuming the operator B is time independent we obtain 
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where u is the kink solution of the Sine Gordon equation. 

Using  (37) – (39) we obtain 
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IV. BOUND STATES OF THE KINK-ANTIKINK 

 

Kink and anti kink form a potential well which can be 

approximated by a harmonic oscillator type of well. Such a 

well will have bound states. Let ( ,0)
n

x be the bound state 

. Now the bound state wave function satisfies the boundary 

conditions 
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where (0)
n

R and (0)
n

T are normalization constants. The 

time evolution of the bound state wave function is given by 
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This simple result tells us that the bound state decays 

exponentially in time – a fact that has been verified via 

numerous experiments. 
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V. GELFAND-LEVITAN EQUATION 

 

In the inverse scattering method the Gelfand-Levitan 

equation is used to determine the scattering potential V(x,t) 

for all x,t. The scattering potential satisfies  
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the system via the inequality. The Gelfand-Levitan equation 
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To solve (38) we take ( ,0) 0R k  and the bound state 

energy as
2

K . We then obtain 
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Since we know that a bound state has an exponential decay 

we can write 
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 Expanding the numerator one obtains 
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Note that 3h has been defined in (28). Each term in causes a 

phase jump. Phase jumps in the electron wave functions 

have recently been observed [11]. 

VI. CONCLUSION 

We have solved the Sine Gordon equation in the long 

wavelength approximation using the methods of Sakaguchi 

and Malomed [10]. The Greens function so obtained is found 

to agree with results obtained on the basis of wave functions 

of electrons in a Josephson junction. Now the Sine Gordon 

equation admits both kink and anti-kink solutions. A kink and 

anti-kink can form a potential well analogus to harmonic 

oscillator potential. An electron can get trapped in suc a well. 

We use the Gelfand –Levitan equation to find the amplitude 

for the electron to tunnel form kink-anti kink potential to a 

free state. The solution shows that there is phase jump in the 

wave function of the electrons as they tunnel through the 

junction. This phase jump has recently been observed. 
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