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 
Abstract— During osmotic dehydration of food materials, 

water and/or other substances are removed from the material 

with molecular infiltration; shrinkage follows depending on the 

extent of net mass loss. Molecular diffusion is one of the 

generally accepted and necessary tools for finding simple 

predictive models that describe mass transfer across plant 

membranes. The mass transfer resistances across a 

semi-permeable medium were investigated with Fickian 

molecular diffusion model and a combined molecular and 

convective model. The effects of intercellular and 

trans-membrane resistances studied with two-parameter kinetic 

models described the behaviours of solute impregnation and 

dewatering processes of osmotic dehydration.  Predicted depth 

of solute impregnation in an imaginary food matrix was 4.0 mm 

with satisfactory deduction that combined molecular and 

convective model is a better description of the transport models. 

The solutions of the models also revealed that concentration 

gradient across the membranes depends linearly on process 

variables and the influences of membranous resistance were not 

negligible 

 

Index Terms— Diffusion, Inter membranous resistances, 

Impregnation, Osmotic dehydration. 

I. INTRODUCTION 

  Mass transfer is usually predicted through modelling. 

However, common models developed for osmotic 

dehydration of fruits and vegetables make assumptions that 

often deviate far from reality, including large heterogeneity, 

variability and complexity in properties of fruits and 

vegetables. Mathematical models based on mass transfer 

across plant membranes are important tools in finding simple 

predictive models that could be used to describe the concepts 

of osmotic dehydration in food processing. Fick’s second law 
is generally accepted for modelling mass transfer operations 

by diffusion during osmotic dehydration [1].  

 

Two basis of explanation of diffusion reported in literature 

were investigated based on the assumptions that  internal 

resistances to mass transfer was negligible hence, the effect of 

convective mass transfer resulting from concentration 

gradient alone results in linear dependency on process 

variables [2]. The second approach is the two-parameter 

kinetic model consisting of intercellular and trans-membrane 

transport which are configured to offer significant resistances 
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to impregnation dewatering (osmotic dehydration) processes 

[3]. 

 

The premise is based on the influence of inter-cellular and 

intra-membrane resistances to mass transport, but also taking 

into account the mass exchange across the cell membrane 

between inter-cellular and intra-membrane resistances. The 

mass transport within inter-cellular and intra-membrane 

osmotic dehydration paths include diffusion of solute within 

the media and potential gradient due to concentration 

differences that is responsible for hydrostatic pressure 

gradient, whereas across the cell membrane, it includes both 

osmotic and ultra-filtration flow [4].  

 

Some researchers consider that solute penetration occurs in 

extracellular spaces since these compartments are only 

partially selective and there is always some solute diffusion 

into the food [5]. Other workers suggest that water loss is 

greater than solute gain primarily because of differences 

between the diffusion coefficient of water and that of solute in 

the product [6]. Consequently, the diffusion coefficient, 

which is expected to be constant exhibits diverse values 

depending on the operating parameters and media of interest. 

Hence, lists of diffusion coefficient relationships for different 

media were proposed [7]. Each of the relationships needs to 

be tested to find the most suitable diffusivity coefficient for 

evaluating the extent of OD in a particular system. 

 

Therefore, it is imperative to model the change in 

concentration with respect to convective and bulk mass 

transfers during solute and water transport across food 

cellular membrane and the osmotic solution. These developed 

and solved models would be employed in predicting the 

trends of OD with respect to the time of immersion, chemical 

potentials due to concentration gradient and the extent of 

solute impregnation at specified boundary conditions.  

II. THEORETICAL CONSIDERATION  

Using an elemental balance approach for a cubic volume of 

imaginary food structure of unit thickness to represent the 

fruit or vegetable matrix as illustrated in Figure 1. The law of 

conservation of mass was applied to the control volume and 

its effect on the rate of mass transport is described in equation 

1.0 [8]: 
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where M is the total accumulated mass and ‘m’ represents the 

mass in transit. 
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Figure 1:   Elemental volume representation of a unit mass of 

the material matrix. 

 

A. 2.1 Convective Transport Model for Osmotic 

Dehydration 

Assumptions: 

To develop the model considering both molecular 

and convective mass transport, the following assumptions are 

necessary: 

i. No reaction occurs between the osmotic 

solution and the food constituents; 

ii. The molecules of cell organelles and 

nutrients remain non-diffusing outside the 

cell due to inter-molecular and 

intra-membrane resistances; 

iii. Only sugar and water molecules migrate 

between the food material and the 

osmotic solution; 

iv. The solutes and water are perfectly miscible 

without precipitation. 

v. The process is isothermal; 

Therefore in mathematical terms, overall mass transfer, 

equation 1.0 can be expressed in the form of law of 

conservation of materials: 

    onAccumulatiGeneratedOutputInput

     (2.0) 

Applying simplifying assumptions to component material 

balance across a unit portion of material in the x, y, and z 

planes yields equation 3 

( ) ( ) ( )x x x x x y y y y y z z z z zn n y z n n x z n n y x x y z
t
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
     (3) 

Mass velocity per unit volume n   = v  , where  ρ= density 
and ν = velocity

 
If the flow in the y and z directions is negligible, then flow in 

the x-direction is shown in equation 3.0: 

( )x x x x xn n y z x y z
t





      


         

  (4.0) 

Dividing both sides of equation 4  by,  x y z    gives: 5: 

   

x x x x x
n n

x t

 


 
     

   
          (5) 

Taking the limits as xx  :   
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The mass flow rate, ‘nx’ can be expressed in terms 
of the fluid density as product of number of moles and 

molecular mass. Therefore, a differential mass flow rate along 

the x-axis is substituted to obtain equation 7: 

 
tx
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



     (7) 

where MN = Summation of both diffusion  and convective 

flux. Hence, they are inter-dependent and non-linear. Since no 

bulk motion occurs in the system because of the internal and 

external resistances, equation 7 becomes: 

MN = MJ        (8) 

The total mass transferred (flux) is equivalent to molecular 

transport ‘J’ defined by Fick’s first law: 
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Therefore, substituting equations 8 and 9 into equation 7: 
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Rearranging, and noting that ρ is directly proportional to 
concentration, one obtains equation 3.20 [9, 10]: 

2

2

x

CD

t

C








       (11) 

Equation 11 is the unsteady state Fickian’s 2nd
 law of 

diffusion model.  

 

B. 2.2 Explicit Finite Difference Equation 

The (RHS) of equation 11 by finite difference gives 

equation 12: 

     (12) 

The second order finite difference of equation 12 yields 

equation 13: 
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Substituting equations 12 and 13 into equation 10 gives: 
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Arranging equation 14 in terms of concentration difference, 

yields equation 15: 

 
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Define  A=D∆t/∆z,  where D represents the diffusion 

coefficient. 

Using the Wilke-Chang expression of diffusivity correlations 

for binary mixtures [2]. The Diffusivity constant is defined: 
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where MB = molecular weight =of water 18.016 g/mol     

 

 

 

 

   
   

 

 

 

 

Solving equation 15 by stepwise iteration yields equation 17: 
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Collecting like terms and re-arranging: 
n
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n
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n
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n
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1
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       (18) 

Equation 18 is the finite difference (explicit) model 

showing the stepwise concentration variation with respect to 

the time of immersion, and the extent of solute impregnation 

or penetration.  

C. 2.3 Solution to the Model Equations 

The initial and boundary conditions based on the 

range of experimental values of concentration variations in 

the literature are: 

Initial conditions: 

At time, t = 0, concentration, C= 60 
o
Bx, and at time t > 0; 

sucrose concentration  (
o
Bx). 

Boundary conditions: 

At x = 0, C = 60 
o
Bx 

  x = X =20 mm, C = 60 
o
Bx 

   ∆x = step of iteration along X 

Time t ranges from 0 to 105 min, step of iteration ∆t = 5 min   
Diffusivity D = constant from Wilke-Chang expression of 

diffusivity (cm
2
/s) 

At infinite time, the concentration of sugar in the 

fruit is assumed similar to that in the solution, hence, 

dehydration process would be at equilibrium and the media 

become isotonic. The simulation of the model equation with 

MATLAB 2007 explains the concentration profile in the 

medium as a function of both time and the depth of 

penetration using defined initial and boundary conditions. 

D. 2.4 Kinetic Model for Molecular and Convective Mass 

Transport  

The model was developed on the following 

additional assumptions: 

i. The molecular transport depended mainly 

on diffusion while the convective 

transport was dependent on osmotic 

pressure imposed by concentration 

gradient. 

ii.  There was no resistance at the surfaces; and 

iii. Sugar solution films exist as a boundary 

layer with selective permeability thus 

allowing for trans-membrane transport at 

isothermal condition. 

 

 

 

 

Applying these assumptions to the continuity equation from 

first principle in the x-direction, equation 18 so derived is 

upgraded. Convert the mass flux to concentration gradient by 

dividing both sides of equation (7) by molar mass ( Mm ) to 

define the osmotic solution concentration, would yield 

equation 19: 
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where 
xN  is molar flux, and 

AC  is the solute concentration 

gave equation 20: 
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Structural parameters such as sample volume, specific 

dimensions and porosity were closely related to mass transfer 

processes [11]. Therefore introducing the constitutive 

equation of  Fick’s law of diffusion to the molecular transport 
of solute and solvent gives equation 21:  

A
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where diffusion due to molecular transfer is represented by 

{ A
AB

C
D

x


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
}, while the term 

A M
C V  is diffusion due to 

convective transfer (bulk fluid). 
xN  is molar flux, 

AB
D  is 

diffusivity, 
MV  is molar average velocity. 

To determine the extent of molecular 

penetration xN

x




, differentiate both sides of the equation 

3.30 with respect to x and open the bracket to obtain equation 

22:  
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Therefore, simplifying further yields equation 24: 
2
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Substituting equation 24 into equation 20, gives equation 25: 
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Expanding 
A M

C V ; the diffusion due to convective transfer 

(bulk fluid) in equation 24: 
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Therefore substituting equations 25 into 26 gives the time 

dependent concentration profile equation 

27:
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Equation 27 is the model equation describing 

concentration profile in an osmotically dehydrated product as 

a function of time of immersion, the extent of penetration 

which primarily depends on the food structure and the 

concentration of the osmo-active agents. 

E. 2.5 Explicit Finite Difference Model For The Combined 

Mass Transport Equation 

 

Removing the bracket in equation 27 yields equation 28: 
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Introducing finite difference solution approach, to 

simplify equation 28 leads to equation 29: 
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Expanding equation 29 and rearranging it as a function of 

transient concentration yields equation 

30:
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Therefore, equation 31 can be arranged into a linear 

expression represented by equation 32: 

(32) 

 

Equation 32 is the finite difference model, a representation of 

combined molecular and convective mass transport 

within and around an imaginative sample of material 

osmotically treated. 

 

III. SOLUTION APPROACH TO THE TRANSPORT MODEL 

DERIVED  

Flow across the boundary was assumed to agree to Dirichlet 

conditions, as it describes the medium appropriately having 

constant boundary values of variables at any given time. The 

parabolic partial differential equation (P.D.E) with initial 

value problem (IVP) approach was considered [12]:  

(i) Initial Value Condition  

 oC X , t  0.0 
o
Bx

 

 o t=0, Xfor X
 

(ii) Boundary Value Condition 

 oC X , t  60 
o
Bx - an assumed liquid 

concentration of sucrose based on the upper limits used in 

practical applications elsewhere [13]. 

ofor t>0, X 0
 

BxtXC
0 60),(   

for t 0, X=L  
where C represents concentration as a functions of extent of 

penetration distance X for a given time ‘t’, L represents the 
length of the sample while subscript  ‘o’  signifies the  initial 
set point. 

These initial and boundary conditions were applied to solve 

the model equations (18) and (3.38) on MATLAB (2007) 

simulink to explain the kinetics of osmotic dehydration with 

respect to the inter-cellular and intra-membranous resistances 

to mass transport. The 3-D plots were also generated. The 

response of the structural resistances as defined by initial and 

boundary conditions were studied one after the other. Each 

mathematical model was simulated with MATLAB 2007 

(7.5) to generate predictive analysis of the dependent 

variables. An algorithm for the solution is presented.  

 

3.1 The Algorithm For The Simulation Of Derived 

Explicit Finite Difference Model 

1) Define the initial functions. 

2)         Input the Data: Diffusivity coefficient, molar  

velocity time of simulation, initial and final  

concentration of solute, the number of x and t 

sub-intervals. 

3) Compute dx, dt and the coefficients of the equation. 

4) Clear header table and print the first line. 

5) Dimension the arrays to grid size. 

6) Initialize concentration variables. 

7) Set-counter and a repetitive structure for the  

number of grid size.. 

8) Compute concentrations for all the grid points. 

9) Print result for concentration with corresponding  

points on the matrix and simulation time. 

10) Continue loop until the last grid point, then stop. 

11) Plot the concentration profile for the solute  

concentration with space and time. 

13) End program. 

 

IV. RESULTS AND DISCUSSIONS 

4.1 Prediction of the Kinetic Model Equation 

Model equations 18 and 31 derived for both convective and 

combined molecular and convective mass transport systems 

were solved to obtain the concentration profiles in finite 

imaginary samples. Both equations demonstrated that the rate 

of dehydration and impregnation was exponential in nature 

and similar to the model in the form of equation 4.5 [14, 15]. 
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where: Co, and C are respectively, the initial and final 

concentrations; t is time; k is the kinetic rate constant and n is 

a dimensionless coefficient. 

 

Model equations derived from the Fickian law was solved 

numerically and simulated using Matlab programs to explain 

effects of the process variables from the plots.  

 

4.2 THE CONVECTIVE OSMOTIC DEHYDRATION 

MODEL  

 

The solution to the convective osmotic dehydration model 

equation 18 gave the simulation data presented in Table 1. 

The trend of concentration profile established during the OD 

process showed a marked decrease in concentration of the 

processing liquor from 60 to about 58.8 
o
Bx as shown in 

Figure 2.  The plot also revealed that effective osmotic 

dehydration time is less than 120 min.  The extent of solute 

impregnation (depth of penetration) with respect to time is 

presented in the 3D plot Figure. 3. The plot showed that solute 

penetration was linearly degraded around the matrix of the 

imaginary sample because of the potential difference between 

osmotic solution and the sample. It also suggests that the rate 

of solute impregnation may not be the same as the rate of 

osmotic dehydration. In the convective OD model, where 

resistance to mass transfer was assumed negligible 

concentrations are higher in the extracellular volume than in 

the intracellular volume. Hence, the diffusion coefficients 

assumed in the extracellular volume are generally higher than 

those assumed for the intracellular volume [4] 

 

 

ABLE 1.0: Simulated Concentration Data as Functions Depth of Penetration and Time. 

Time (min)         Depth of penetration (mm) 

 
3 6 9 12 15 18 

0.0 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 

5 0.6000 0.0500 0.0500 0.0500 0.0500 0.0500 

15 0.6000 0.0622 0.0500 0.0500 0.0500 0.0500 

20 0.6000 0.0739 0.0503 0.0500 0.0500 0.0500 

25 0.6000 0.0851 0.0508 0.0500 0.0500 0.0500 

30 0.6000 0.0957 0.0515 0.0500 0.0500 0.0500 

35 0.6000 0.1060 0.0525 0.0501 0.0500 0.0500 

40 0.6000 0.1158 0.0536 0.0501 0.0500 0.0500 

45 0.6000 0.1251 0.0549 0.0502 0.0500 0.0500 

50 0.6000 0.1341 0.0564 0.0503 0.0500 0.0500 

55 0.6000 0.1428 0.0580 0.0504 0.0500 0.0500 

60 0.6000 0.1510 0.0597 0.0506 0.0500 0.0500 

65 0.6000 0.1590 0.0615 0.0508 0.0500 0.0500 

70 0.6000 0.1666 0.0634 0.0510 0.0500 0.0500 

75 0.6000 0.1740 0.0655 0.0512 0.0501 0.0500 

80 0.6000 0.1810 0.0676 0.0515 0.0501 0.0500 

85 0.6000 0.1878 0.0697 0.0519 0.0501 0.0500 

90 0.6000 0.1943 0.0719 0.0522 0.0502 0.0500 

95 0.6000 0.2006 0.0742 0.0526 0.0502 0.0500 

100 0.6000 0.2067 0.0766 0.0530 0.0503 0.0500 

105 0.6000 0.2125 0.0789 0.0535 0.0503 0.0500 
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 Figure 2: Concentration Vs Time Profile of Solute 

Impregnation across the Imaginary Sample. 

 
 

 

Figure 3: The Convective Mass Transport Model across a 

Finite Imaginary Sample 

(NB: Colour legend bar indicating the concentration 

variations around the imaginary sample).  

 

4.3 Combined Molecular and Convective Transport 

Model 

When sample was immersed in concentrated osmotic 

solution, solutes in the solution start to diffuse into the sample 

through both intracellular and extracellular spaces The 

solution to the model equation (31) as simulated with 

MATLAB 7.5 program codes generated the spatial 3-D plot 

as functions of sucrose concentration around an imaginary 

sample, time and depth of penetration (solute impregnation) 

using the defined boundary conditions. The contour plots 

from the simulation showing combined transient responses of 

imaginary samples to osmo-impregnation soaking of the 

dehydration system to changes in concentration, time and 

depth of solute impregnation is shown in Figure 4.  

The 3D plot exhibited the profiles of solute impregnation and 

concentrations around the imaginary sample for the combined 

molecular and convective mass transport It provided a 

description of the modified distance pattern of solute 

impregnation, which was observed to be non-linear around 

the sample boundaries. It demonstrated the rapid clogging of 

sample surfaces at the very early stages of the process thus 

limiting the extent of solute impregnation and restricting mass 

transfer across the membrane. The process was rapid at the 

beginning and gradually decreased to a stationary point near 

the surface while the inner matrices were seemingly 

unaffected. Therefore, the assumption that external resistance 

to mass transfer is negligible may not be entirely valid [16].  

The structure of solute concentration across an imaginary 

sample is shown in the distance dependent plot Figure 5. It 

describes the pattern of solute penetration during the first 120 

min. The plot revealed that effective depth of solute 

penetration was less than 4-mm into the sample matrix. This 

result was in agreement with the conclusion of reported 

experimental study of osmotic dehydration of Chestnut slab to 

the effect that penetration of sucrose after 4hr was only 

important for sample zone less than 4mm near the surface 

[13]. Therefore, the structural characteristics of the sample 

would be affected at the exterior nature of each sample. On 

the other hand, the transverse appraisal of the transport model 

(kinetics) across the imaginary sample is simulated (Figure 6).  

There was a drastic reduction in the transfer rate of solute 

from the solution into the sample after the attainment of 

saturation at the periphery to the depth of about 3 mm. This 

can be interpreted on the basis of higher water mass transfer 

coefficients (kw) occurrence which prevailed at the outer 

boundaries of the sample for a short while leading to hindered 

mass transfer. This would suggest that there existed an 

external resistance to mass transport of the solute into and to 

water removal out of the sample which would be in 

consonance with previous findings by [2]. It demonstrated 

that internal features of the sample were not affected. 

However, the upsurge of solute increase at one extreme end 

suggested that major dehydration occurred at the periphery of 

the imaginary sample.  

One implication of these simulation results could be that 

solute concentration did not have a tangible effect in some 

parts of the sample and that solute impregnation only 

occurred at the periphery up to a depth of less than 4.0 mm. 

This possibility lends credence to a phenomenon reported for 

carrot in earlier studies [16, 1]. Hence, during osmotic 

dehydration, the possibility may exist that a superficial layer 

of solute less than 4-mm deep is formed on the sample surface 

in the nature of a boundary layer. Thus, intercellular and 

intra-membrane resistances could have a major negative 

effect on mass transfer, favouring water loss while limiting 

solute deposition and reducing the loss of water-soluble 

solutes [17]. 

 

 
Figure 4: Concentration Profile Contour Plots in Imaginary 

Sample 
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Figure 5: The Combined Molecular and Convective Mass 

Transport Model    

 

 
Figure 6: Distance dependent simulation of solute 

concentration across imaginary sample   

 

 

 

 
Figure 7: Concentration profile in-out simulation across 

imaginary sample matrix  

 

Consequently, if further dehydration is desired, it would 

require the imposition of additional chemical potential which 

would explain why OD cannot produce a shelf-stable product 

but can only serve as a pre-treatment step to further 

processing in achieving more robust preservation in long-term 

storage. Deductively, the extent of dehydration can be said to 

depend more importantly on the residence time of immersion, 

while dehydration rate would depend on differential osmotic 

pressure. Slight differences in concentration profiles of the 

two models Figures 3 and 4 are attributable to postulated 

resistances induced by concentration gradients, thus showing 

the respective effects of molecular and convective mass 

transfer kinetics.  

Solutes would find its way across the intracellular 

and extracellular spaces on the basis of the assumptions of 

negligible resistance. In contrast, the combined effects of 

molecular and convective forces induced higher resistances in 

the path of dehydration. Increase in solute concentration 

across the sample would therefore imply that solute infusion 

from the solution into the surrounding intercellular spaces 

would, in turn, have a corresponding increase in the matrix 

solute concentration resulting in enhanced osmotic pressure 

with time. Consequently, the kinetic model, which 

propounded combined molecular and convective effects, 

provided a better description of the osmotic dehydration 

process. These theoretically deductive arguments have sought 

to provide plausible elucidations of new process behaviour 

and mechanism. The effects of trans-membrane and 

intercellular resistances during osmotic transport were 

affirmed to be relevant at the commencement of the 

dehydration process. However, as soon as 

impregnation-soaking phenomenon advanced to the 4-mm 

point, the overall resistance imposed an equilibrium which 

rendered further dehydration almost impossible. 

V. CONCLUSIONS 

 Mathematical models based on mass transfer kinetics in an 

imaginary sample were developed to describe the osmotic 

dehydration process. The models confirmed that a 

combination of molecular and convective mass transfer 

mechanisms was more effective in representing the influence 

of intercellular and intra-membranous resistance on osmotic 

dehydration especially for descriptive non-linear, modified 

distance mode of impregnation. The depth of solute 

penetration was estimated to be less than 4.0 mm. The effect 

of solute concentration on peripheral water loss and solute 

gain were not linear but exponential as predicted by the 

models investigated. The models developed can be used to 

predict the results of osmotic dehydration under any stated 

conditions of sucrose concentration, temperature, and 

processing residence time. 
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