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 
Abstract—This paper generalizes Entwistle’s complex 

map as ( ) : ( ) ( , )f z z z c c R
       , constructs a set 

of generalized Julia sets(J sets) by using the escape time. 

Adopting the experimental mathematics method of 

combining the analytic function with computer aided 

drawing, this paper researches on the structure 

topological inflexibility and the discontinuity evolution 

law of the generalized J sets. The researches as below: ①
generalized J sets have   fold rotation symmetry and 

its center is the origin when   is integer;②the different 

choices of angle lead to the different evolution of 

generalized J sets. 

 
Index Terms—generalized Julia sets; complex plane; escape 

time algorithm; 

 

I. INTRODUCTION 

  In recent 20 years, scholars have made deep researches on 
the M-J sets generated from the complex map 

( 2)z z c
    [1-2]. Based on these, Lakhtakia[3] and 

Gujar[4,5] have explored the structure of the generalized M-J 

sets for R ; Glynn[6] has discovered symmetrical 

evolution of generalized M sets when angle [ , )    ; 

Dhurandhar[7] et al have discussed fractal structures of J sets 
when 0  ; Author has explored the structure topological 
inflexibility and the discontinuity evolution law of 
generalized M sets[8]; Sasmor[9] has analysed fission evolution 
law of generalized M-J sets when angle [ , )     and   

is rational number; Romera et al have explored the nesting 
relationship of “petal” of generalized M sets at 
“Misiurewicz”[10,11]; Geum[12] and Author[13] have researched 
the structure and distributing of the periodicity “petal” and 
topological law of periodicity orbits of the generalized M 
sets.Expand or transform the complex map: Lakhtakia has 
researched on the switched processes of J sets[14]; Michelitsch 
has researched the J sets constructed by a simple non-analytic 
complex map[15];  
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Shirriff has presented the methods of combination M sets; 
Chen[17] et al have expanded the complex map as 

( )w
z z c w R   . Wang X Y[18,19] et al has 

generalized the work of Michelitsch[15] and Shririff[16], has 
studied combination generalized M sets with real 
exponential map and structure of generalized J sets of 
non-analytic complex map. In addition, Entwistle has 
studied the structure of generalized J sets of compound 

complex map. 2 2( )z z c c    This paper generalizes 

the complex map as ( ) ( , )z z c c R
       , 

researches the fractal structures of generalized J sets and 
discontinuity evolution law, and compute the Hausdorff 
distance of two generalized J sets. 
 

II. THEORY AND METHODS 

For ( ) ( )f z z c R
    , if   satisfies ( )f   , 

then   is called fixed point of f . If there is the minimum 

positive integer p  and p  satisfies ( )p
f   , we say 

that   is p-periodicity point of f . If complex differential 

quotient ( ) '( )p
f   , and 1  , then we call the point 

  is repelling. From the famous Montel theorem, we know 

that f
J  which is the generalized J sets of f  is the closure 

consisting of exclusive periodic points [21]. If 0c  , then 

( )f z z
  and ( )

k

k
f z z

 , and the points which satisfy 

( )p
f    are 

2
exp( ) : 0 1 1

1
p

p

iq
q

 


      
. 

If let 1  ,then these points satisfy 

( ) '( ) 1p p
f z   . So these points are repelling and 

f
J  is the unit circle 1z  .It is obvious that when 

k  , if 1z  , then ( )k
f z   or 0; If 

1z  , ( )k
f z   or 0; But if 1z  , ( )k

f z  is always 

on f
J . When iterated, f

J  is the bondary of the point sets 

which converge to 0 and   separately. It is certain that f
J  

is not fractal in such special case. If c  is the small complex 

number, then ( )f z z c
  . It is easy to make out that if 

z  is also small, then ( )k
f z   or  , where   is the 

fixed point near by the origin. But if z  is a great number, then 

( )k
f z   or  . Now it appears that f

J  is the fractal 
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curve, though 
f

J  is the boundary of two different kinds of 

sets. 

Definition 1  If : ( 1)f z z c
     is the complex 

map on the Riemann globe Ĉ , 
f

F  represents the set of the 

complex quantity z  whose trajectory is limited, i.e., 

 
1

{ : ( ) }k

f
k

F z C f z is limited



    

then the sets are called filled generalized J sets corresponding 

to the complex map f , which denoted by 
f

J , i.e., 

f f
J F   

The iteration should begin with the critical point of f  if 

the generalized Mandelbrot sets is constructed from the 

complex map : ( )f z z c R
    . When 1  , the 

critical point of f  is  . If we let 0z   , then 

1 2, ,...z c z c c
   . So in order to avoid overflow, the 

initial iterating point is chosen as 0z c . But what should be 

noticeable is that if c  is chosen as the initial point when 

[0,1] , the images obtained are not the real M sets. The 

reason is that f  does not have any critical points when 

1  , so there is no point in discussing the trajectory of the 

critical point; when 0 1  , the critical point is  , the 
parameter c  is not on the trajectory of  ; therefore, the 
resulting image of the iteration from c  as the initial point are 
not the M sets actually. 
 

III. EXPERIMENT AND RESULT 

3.1.     and     

Fig.1 shows the typical generalized J sets for integer value 

of  ,   and complex constant 0.5 0.5c i   generated 

by compound complex map. The generalized J sets for 

   and    resemble a flower consisting of   

major petals, and chaos region is embedded in the stable 

region; when     or    , the generalized J sets 

resemble   secondary planets encircling the origin, and 

chaos region is embedded in the stable region. When 

    and    , the generalized J sets have   

near-circular shapes inside, while have    outside. 

Theorem 1 If the generalized J sets are generated by the 

complex map : ( )f z z c c
    ( , )R   , then  

2

( ) ( )
j

i
k k

f z f ze


 (1 ;0 1)k N j      . 

Proof  

  ∵
2 2

( ) [( ) ]
j j

i i

f ze ze c c  
 

  

(2 )[ ] ( )i j
z e c c z c c          ( )f z  

Suppose 
2

( ) ( )
j

i
k k

f z f ze


  is tenable. 

As well as∵
2 2

1 1( ) [ ( )] [ ( )]
j j

i i
k k k

f ze f f ze f f z
  

 
 

1( )k
f z

  

So according to Eq.(1), we can know that this proposition is 
tenable. Theorem ! states that the generalized J sets for 
    have   fold rotation symmetry and its center is 

origin. 
The fractal structures of the generalized J sets for positive 

integer values of   can be explained as following,  
f

J  is 

the closure composed of repelling periodic points of the 

complex map f , the poins on major petals tend towards the 

fixed point   approaching the origin after one iterate; As 

f
F  has rotating symmetric structure and its center is the 

origin, let us suppose the center of major petal 1z  get to the 

origin after one iterate, i.e., 1
1( ) 0f z  . 1L  indicates the 

major petal. 
Theorem 2. when   , the generalized J sets generated 

by complex map : ( ) ( , )f z z c c R
        have 

  major petals 1L , and the polar coordinate of center of 

major petals c is 
1 1

( ( ) )c c     . 

Prove: suppose the center of 1L  is 1z , so 1
1( ) 0f z  , 

1( ) 0z c c    , so  

                         
1 1

1 ( ( ) )z c c      .           (1) 

When   , we can know that from (1), there are   major 

petals and the angle of the centers of any two 1L  is 2  , 

the proposition is tenable. When   ,    and 

0.5 0.5c i  , we can extract 1z  from (1), and 1z  

increases with   increasing, tend towards to 1 at end. 
Compared with Fig.1(a)~1(h), Theorem 2. goes  along with 
generalized J sets, consequently proves the proposition. 

Fig.1 shows that there are small petals on major petals, and 
there are smaller petals on small petals,…, such overlapping 
embedment structure appears on different levels. The centers 
of the biggest petal on major petal reaches the center of major 
petal reaches the center of major petal after one iterate, and 
then reach the origin after another iterate. The rest may be 

deduced by analogy, if 1L  represents major petal, then 

certain small petal whose center kz  satisfies 

( ) 0(2 )k

k
f z k N    can be represented as k

L . 



                                                                                

International Journal of Engineering and Applied Sciences (IJEAS) 

 ISSN: 2394-3661, Volume-2, Issue-8, August 2015  

                                                                                              99                                                                      www.ijeas.org 

 

     

(a)  = 2,  = 2                  (b)  = 2,  = 4 

         

              (c)  = 3,  = 2               (d)  = 3,  = 4 

       
(e)  = 2,  = 2             (f)  = 3,  = 2    

    
(g)  = 2,  = 3            (h)  = 3,  = 3    

Fig.1  The generalized Julia sets of  and  are integer. 

According to f : ( )z c c   ( , )     , we get 

its converse map f
1:

1 1

(( ) )z z c c     

( , )     , so k
L  can be represented as  

                   ∴  
1 1 1

1

Lk

k

f f f
  




( )次

1{L }= 1 1 1

( 2)k

f f f
  

 次

2{L }.     2 

f
1  has   complex roots, and the number of 1

L  is , so 

the number of k
L  after f

1  iterate k1 times is 1k k  . 

Lk
z  , 

1 1( ) Lk
f z

  . If suppose the center of k
L  is 

kz , and the center of Lk-1 is 1kz  , then 1
1( )

k k
f z z  . 

Considering L2 first, the center of L1 is image of the center 2z  

of 2
L , according to Theorem 2, we can get 

1 1

1 ( ( ) )z c c      , so 
1 1

2( ) ( ( ) )z c c c c         . We can get that: 
1 11 1

2 ((( ( ) ) ) )z c c c c         

Equally, the center coordinate of L3 is  
                       

1 1 11 1 1

3 ((((( ( ) ) ) ) ) )z c c c c c c               (3) 

The rest may be deduced by analogy, therefore, from 

theoretical view, when N  , the generalized J sets for 

positive integer values of   and   have infinite 

overlapping embedment self-similar geometry structure. 
Theorem 3. when    ,   , the generalized J sets 

generated by complex map : ( ) ( , )f z z c c R
        have 

  near-circular shapes inside the near-round which center is 

origin, and radius is 
1

R . 

Proof: for 0 、 0  , if 1x  , therefore 

1( )f x R . According to Theorem 1. and the structure of 

the generalized J sets for    、    , we can 

consider that any point of the   near-circular satisfies 
1( )f z R . Suppose i

z z e 
，

i
c c e

 , so  

1( ) ( )i i i
f z z e c e c e       .                                                 

0 、 1z  and 0.707c  , z c
  . 

According to 4, 1( )f z z 
. 1( )f z R ，  

z R 
. So we can deduce 

                                        
1

z R  .                         5 

Compute square of  the module of (4), has 
                      

2 2 21( ) 2 cos( )f z z z c c       .   6 

According to (6), we know that z  is function of . Based on 

(5), z  is represented 

                               
1

[1 ( )]z R    .                     7 

( ) 1   . Substituting Eq.(7) into Eq.(6), Based on 
21 2( )f z R  and take a first-order approximation, we get 

that 

        ( ) cos( )
c

R
     


.                  8 

Obviously, the error of this near-round also has   fold 

rotation symmetry, and the maximum of error appears when 
2k 


 


( k  is integer, and 0 1k   ). 

In the process of prove of Theorem 3. we don’t restrict the 
minus integer of  , so the conclusion of Theorem 3. is 
suitable to situation of   is minus decimal fraction. 
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Fig.1(i)~1(p) shows that there are small petals on major 
petals, and there are smaller petals on small petals,…, such 
overlapping embedment structure appears on different levels. 

Any point z  in this near-round satisfies 1( )f z R , if it is 

represented as B1. then certain secondary planet whose any 

point z satisfies ( )k
f z R  and 1( )k

f z R
  , so can be 

represented as Bk.  

According to Eq.(2), f
1  has   complex roots, and 

the number of B1 is , so the number of Bk after f
1  iterate 

k1 times is 1k k  . From theoretical view, when 

N  , the generalized J sets for negative integer values of 

  and   have infinite overlapping embedment self-similar 

geometry structure. 

3.2        or        

The generalized J sets of      and      are 

similar to an asymmetric flower consisting of   major petals 

and an embryonic petal. With the increase of  , the 

embryonic petal increases in size and develops into a new 
major petal.(Fig.2(a)~2(d),Fig.2(e)~2(h)). The generalized J 
sets of     （ ） and     （ ） consist of   major 

satellite structures and an embryonic satellite structure 
increases in size and develops into a new major satellite 
structure with the increasing of   from 0 to 

1(Fig.2(e)~2(l),Fig.2(m)~2(p)). 

DeMoivre’s theorem is used to calculate z
  and 

( )z c  , for instance 

( ) (cos sin )z c z c i   
         9 

This involves the choice of the principal range of the 

phase angel  . The authors choose four types as follows: 
0 2,32 2,  and 2 32. When 

   , the use of Eq.(9) will not be affected because 

               
cos( ) cos( 2 )

sin( ) sin( 2 )

 
  

  
  

.       10 

But when     （ ）, Eq.(10) is not valid. So the 

different choice of the principal range for   will give rise to 
different evolutions of the generalized J sets. Besides, when 
using Eq.(10), if the argument   goes beyond the above 

the four ranges above, the argument   will be adjusted by 

adding or subtracting the integer times of 2 , which results 
in the discontinuity and collapse of the generalized J sets and 

appears the embryonic petal. The argument   lies in 
following ranges: 0 2,32 2,  and 2 
32. This lead to the appearance of the embryonic petal, but 
only appears at the positive real axis, the positive imaginary 
axis, the negative real axis or the negative imaginary axis 

where the argument   is not continuous. 
Aside, according to Theorem 1. the generalized J sets also 

have   fold rotation symmetry(Fig.3). But according to 

(10): when   is constant, the different choice of angle  , 

the value of ( )z c   is also different, so this will lead to 

the different evolvement of generalized J sets.(Fig.3(a)~3(d), 
Fig.3(e)~3(h)). 

      
(a)  = 3.5,  = 2, 0 2    (b)  = 3.5,  = 2, 32 2     

     
  (c)  = 3.5,  = 2,    (d)  = 3.5,  = 2, 2 32 

      
(e)  = 3.5,  = 2, 02   (f)  =3.5,  = 2, 32 2 

     
(g)  = 3.5,  = 2,     (h)  = 3.5,  = 2, 2 32 

Fig.2  the generalized Julia sets of  = +， =  

       
(a)  = 3,  = 3.5, 0 2    (b)  = 3,  = 3.5, 32 2 
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   (c)  = 3,  = 3.5,     (d)  = 3,  = 3.5, 2 32 
 

       
(e)  =3,  = -3.5, 0 2  (f)  =3,  = -3.5, 32 2 

     
  (g)  =3,  = -3.5,    (h)  =3,  = -3.5, 2 32 

Fig.3  the generalized Julia sets of  = ， = + 

 

IV. CONCLUSION 

This paper generalizes Entwistle’s complex map as 
( ) ( , )z z c c R

       , constructs a set of generalized 

Julia sets(J sets)by using  the escape time. Adopting the 
experimental mathematics method of combining the analytic 
function with computer aided drawing, this paper researches 
on the structure topological inflexibility and the discontinuity 
evolution law of the generalized J sets. The researches as 
below: ①generalized J sets have   fold rotation symmetry 
and its center is the origin when   is integer;②the different 
choices of argument lead to the different evolution of 
generalized J sets. 
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