Complex of Lascoux in Partition $(6,6,3)$

Haytham Razooki Hassan, Mays Majid Mohammed

Abstract- In this paper, the complex of Lascoux in the case of partition $(6,6,3)$ has been studied by using diagrams, divided power of the place polarization $\partial_{i j}^{(k)}$,Capelli identities and the idea of mapping cone.

Index Terms- Divided power algebra, Resolution of Weyl module, Place polarization, Mapping Cone

I. Introduction

Let R be the commutative ring with $1, \mathrm{~F}$ be a free module and $D_{s} F$ be the divided power of degree s. Another type of maps are used in Buchsbaum whose images define schur and Weyl modules which send an element $a \otimes b$ of $D_{p+k} \otimes D_{q-k}$ to $\sum a_{p} \otimes a_{k}^{\prime} b$, where $\sum a_{p} \otimes a_{k}^{\prime}$ is the component of the diagonal of a in $D_{p} \otimes D_{k}$, the generalization of this map to ones, where there more factors were called in the 'box map'.

The complex of characteristic zero is studied in [3],[4] and [5] in the partition $(2,2,2),(3,3,3)$ and $(4,4,3)$, using this modified and the letter place methods [3] , In this paper we study the complex of Lasoux in the case of partition $(6,6,3)$ as a diagram by using the idea of the mapping Cone [6] , and the map $\partial_{i j}^{(k)}$ which means the $k^{t h}$ divided power of the place polarization $\partial_{i j}$ where j must be less than I with it's Caplli identities [1], specificly in this work we used only the following identities
$\partial_{32}^{(l)} \partial_{21}^{(k)}=\sum_{\alpha \geq 0} \partial_{21}^{(k-\alpha)} \partial_{32}^{(l-\alpha)} \partial_{31}^{(\alpha)}$
$\partial_{21}^{(k)} \partial_{32}^{(l)}=\sum_{\alpha \geq 0}(-1)^{\alpha} \partial_{32}^{(l-k)} \partial_{21}^{(k-\alpha)} \partial_{31}^{(\alpha)}$
(1.2)
$\partial_{21}^{(1)} \circ \partial_{31}^{(1)}=\partial_{31}^{(1)} \circ \partial_{21}^{(1)}$
$\partial_{32}^{(1)} \circ \partial_{31}^{(1)}=\partial_{31}^{(1)} \circ \partial_{32}^{(1)}$
Where $\partial_{i j}$ is the place polarization from place j to place i.

II. THE TERMS OF LASCOUX COMPLEX IN THE CASE OF PARTITION $(6,6,3)$

The terms of the lascoux complex are obtained from the determinantal expansion of the Jocobi-trudi matrix of the
partition. The positions of the terms of the complex are determined by the length of the permutation to which they

Haytham R. Hassan, PhD . in mathematics from roma university. Asst.prof . Department of Math science , Al-Mustansiriyah University / Science College, Baghdad, Iraq , Mobile No. 009647711491460

Mays M. Mohammed, Master student,Department of Math science, Al-Mustansiriyah University / Science College , Baghdad, Iraq ,Mobile NO. 009647714187543.
correspond [2],[3]. Now in the 6,6,3), we have the following matrix: $\lambda=$ (case of the partition
$\left[\begin{array}{lll}D_{6} & D_{5} & D_{1} \\ D_{7} & D_{6} & D_{2} \\ D_{8} & D_{7} & D_{3}\end{array}\right]$
Then the Lascoux complex has the correspondence between it's terms as follows:
$D_{6} F \otimes D_{6} F \otimes D_{2} F \leftrightarrow$ identity
$D_{5} F \otimes D_{7} F \otimes D_{3} F \leftrightarrow(12)$
$D_{6} F \otimes D_{2} F \otimes D_{7} F \leftrightarrow$ (23)
$D_{5} F \otimes D_{2} F \otimes D_{8} F \leftrightarrow(123)$
$D_{1} F \otimes D_{7} F \otimes D_{7} \mathrm{~F} \leftrightarrow(132)$
So, the complex of Lascoux in the case of the partition $\lambda=(6,6,3)$ has the form:-

$$
\begin{array}{lll}
D_{8} F Q D_{5} F \otimes D_{2} F & D_{7} F \otimes D_{5} F Q D_{3} F & \\
D_{8} F \otimes D_{6} F \otimes D_{1} F \rightarrow \quad \oplus \quad \rightarrow & \rightarrow D_{6} F \otimes D_{6} F \otimes D_{8} F
\end{array}
$$

$$
D_{7} F \otimes D_{7} F \otimes D_{1} F \quad D_{6} F \otimes D_{7} F \otimes D_{2} F
$$

III. THE COMPLEX OF LASCOUX AS A DIAGRAM

Consider the following diagram :

So, if we define
$S_{1}: D_{8} F \otimes D_{6} F \otimes D_{1} F \rightarrow D_{8} F \otimes D_{5} F \otimes D_{2} F$
as, $S_{1}(V)=\partial_{32}(V) \quad$ where; $V \in D_{8} F \otimes D_{6} F \otimes D_{1} F$
$b_{1}: D_{8} F \otimes D_{6} F \otimes D_{1} F \rightarrow D_{7} F \otimes D_{7} F \otimes D_{1} F$
as, $b_{1}(V)=\partial_{21}(V) \quad$ where $V \in D_{8} F \otimes D_{6} F \otimes D_{1} F$
$b_{2}: D_{8} F \otimes D_{5} F \otimes D_{2} F \rightarrow D_{6} F \otimes D_{7} F \otimes D_{2} F$
as, $b_{2}(V)=\partial_{21}^{(2)}(V) \quad$ where $V \in D_{8} F \otimes D_{5} F \otimes D_{2} F$
Now, we have to define the following map which makes the diagram M commutative:
$t_{1}: D_{7} F \otimes D_{7} F \otimes D_{1} F \rightarrow D_{6} F \otimes D_{7} F \otimes D_{2} F$
So we have:
$t_{1} \circ b_{1}=b_{2} \circ S_{1}$
Which implies that
$t_{1} \circ \partial_{21}=\partial_{21}^{(2)} \circ \partial_{22}$
Now we use Capelli identities from
$\begin{aligned} \partial_{21}^{(2)} \circ \partial_{a 2} & =\partial_{a 2} \circ \partial_{21}^{(2)}-\partial_{a 1} \circ \partial_{21} \\ & =\left(\frac{1}{2} \partial_{a 2} \circ \partial_{21}-\partial_{a 1}\right) \circ \partial_{21}\end{aligned}$
Thus, $t_{1}=\frac{1}{2} \partial_{a 2} \circ \partial_{21}-\partial_{a 1}$
On the other hand, if we define
$t_{2}: D_{6} F \otimes D_{7} F \otimes D_{2} F \rightarrow D_{6} F \otimes D_{6} F \otimes D_{3} F$ $t_{2}(v)=\partial_{a 2}(v) \quad$ where; $v \in D_{6} F \otimes D_{7} F \otimes D_{2} F$ and $b_{3}: D_{7} F \otimes D_{5} F \otimes D_{3} F \rightarrow D_{6} F \otimes D_{6} F \otimes D_{3} F$
$b_{3}(v)=\partial_{21}(v) \quad$ where; $v \in D_{7} F \otimes D_{5} F \otimes D_{3} F$

Now we need to define S_{2} to make the diagram N commute:
$S_{2}: D_{8} F \otimes D_{5} F \otimes D_{2} F \rightarrow D_{7} F \otimes D_{5} F \otimes D_{2} F$
Such that $b_{3} \circ S_{2}=b_{a} \circ S_{2} \quad$ i.e. $\partial_{21} \circ S_{2}=\partial_{a 2} \circ \partial_{21}^{(2)}$ Again by using Caplli identities we get $\partial_{22} \circ \partial_{21}^{(2)}=\partial_{21}^{(2)} \circ \partial_{32}+\partial_{21} \circ \partial_{31}$

$$
=\partial_{21}\left(\frac{1}{2} \partial_{21} \circ \partial_{a 2}+\partial_{a 1}\right)
$$

Then $S_{2}=\frac{1}{2} \partial_{21} \circ \partial_{a 2}+\partial_{31}$
Now consider the following diagram :

$D_{7} F \otimes D_{7} F \otimes D_{1} F \xrightarrow{t_{1}} D_{6} F \otimes D_{7} F \otimes D_{2} F \xrightarrow{t_{2}} D_{6} F \otimes D_{6} F \otimes D_{3} F$

Define z: $D_{7} F \otimes D_{7} F \otimes D_{1} F \rightarrow D_{7} F \otimes D_{5} F \otimes D_{3} F$ $B y z(v)=\partial_{a 2}^{(2)} \quad$ where $\quad v \in D_{7} F \otimes D_{7} F \otimes D_{1} F$.

Proposition 3.1:- The diagram H is commutative.
Proof :- To prove H is commutative, we need to prove $S_{2} \circ S_{1}=z \circ b_{1}$
$S_{2} \circ S_{1}=\left(\frac{1}{2} \partial_{21} \circ \partial_{a 2}+\partial_{a 1}\right) \circ \partial_{a 2}$

$$
\begin{aligned}
& =\partial_{21} \circ \partial_{32}^{(2)}+\partial_{a 2} \circ \partial_{a 1} \\
& =\partial_{32}^{(2)} \circ \partial_{21}-\partial_{a 2} \circ \partial_{a 1}+\partial_{32} \circ \partial_{a 1} \\
& =\partial_{32} \circ \partial_{21} \\
& =z \circ \partial_{21} .
\end{aligned}
$$

- Proposition 3.2:- The diagram G is commutative

Proof :-

$$
\begin{aligned}
t_{2} \circ t_{1} & =\left(\frac{1}{2} \partial_{21} \circ \partial_{a 2}+\partial_{a 1}\right) \circ \partial_{a 2} \\
& =\partial_{21} \partial_{32}^{(2)}+\partial_{a 2} \partial_{a 1} \\
& =\partial_{a 2}^{(2)} \circ \partial_{21}-\partial_{a 2} \circ \partial_{a 1}+\partial_{a 2} \circ \partial_{a 1} \\
& =\partial_{a 2} \circ \partial_{21} \\
& =z \circ \partial_{21} .
\end{aligned}
$$

Finally by using the mapping Cone we can define the maps σ_{1}, σ_{2} and σ_{a} where:

$\sigma_{3}: D_{8} F \otimes D_{6} F \otimes D_{1} F \rightarrow$	$D_{8} F \otimes D_{5} F \otimes D_{2} F$
	$D_{7} F \otimes D_{7} F \otimes D_{1} F$
$D_{7} F \otimes D_{5} F \otimes D_{3} F$	$D_{8} F \otimes D_{5} F \otimes D_{2} F$
$\sigma_{2}:$	$\oplus \oplus$
$D_{7} F \otimes D_{7} F \otimes D_{1} F$	$D_{6} F \otimes D_{7} F \otimes D_{2} F$

and

$$
\sigma_{1}: \begin{gathered}
D_{7} F \otimes D_{5} F \otimes D_{3} F \\
D_{6} F \otimes D_{7} F \otimes D_{2} F
\end{gathered} \rightarrow D_{6} F \otimes D_{6} F \otimes D_{3} F
$$

$D_{7} F \otimes D_{5} F \otimes D_{3} F$
$0 \rightarrow D_{8} F \otimes D_{6} F \otimes D_{1} F \rightarrow$
$\oplus \quad \rightarrow$
$\oplus \quad \rightarrow D_{6} F \otimes D_{6} F \otimes D_{3} F$
$D_{6} F \otimes D_{7} F \otimes D_{2} F$
$D_{7} F \otimes D_{7} F \otimes D_{1} F$
by
$\bullet \sigma_{a}(x)=\left(s_{1}(x), b_{1}(x)\right) ; \quad \forall x \in D_{9} F \otimes D_{6} F \otimes D_{1} F$
$D_{8} F \otimes D_{5} F \otimes D_{2} F$

- $\quad \sigma_{2}\left(\left(x_{1}, x_{2}\right)\right)=\left(s_{2}\left(x_{1}\right)-z\left(x_{2}\right), b_{1}\left(x_{2}\right)-b_{2}\left(x_{1}\right)\right)$;
$\forall\left(x_{1}, x_{2}\right) \in \quad \oplus$
$D_{7} F \otimes D_{7} F \otimes D_{1} F$
$D_{7} F Q D_{5} F Q D_{3} F$
$\bullet \sigma_{1}\left(\left(x_{1}, x_{2}\right)\right)=\left(b_{2}\left(x_{1}\right)+t_{2}\left(x_{2}\right)\right) ; \quad \forall\left(x_{1}, x_{2}\right) \in$
$D_{6} F \otimes D_{7} F \otimes D_{2} F$
Propsition 3.3:
$D_{8} F \otimes D_{5} F \otimes D_{2}$
F
$D_{7} F \otimes D_{5} F \otimes D_{7} F$
0

$D_{7} F \otimes D_{7} F \otimes D_{1} F \quad D_{6} F \otimes D_{7} F \otimes D_{2} F$
is complex.

Proof:-

Since $\partial_{a 2}^{(1)}$ and $\partial_{21}^{(1)}$ are injective from it is definition (see [1]), then we get σ_{a} is injective.

Now

$$
\begin{aligned}
\sigma_{2} \circ \sigma_{a} & =\sigma_{2}\left(s_{1}(x), b_{1}(x)\right) \\
& =\sigma_{2}\left(\partial_{32}(x), \partial_{21}(x)\right)
\end{aligned}
$$

$=\left(s_{2}\left(\partial_{a 2}(x)\right)-z\left(\partial_{21}(x)\right), t_{1}\left(\partial_{21}(x)\right)-b_{2}\left(\partial_{a 2}(x)\right)\right)$.
Now
$s_{2}\left(\partial_{22}(x)\right)-z\left(\partial_{21}(x)\right)=\left(\frac{1}{2} \partial_{21} \circ \partial_{a 2}+\partial_{a 1}\right) \circ \partial_{22}(x)-\partial_{22}^{(2)} \circ \partial_{21}(x)$
$=\left(\partial_{21} \circ \partial_{32}^{(2)}+\partial_{a 1} \circ \partial_{32}-\partial_{32}^{(2)} \circ \partial_{21}\right)(x)$
$=\left(\partial_{21} \circ \partial_{a 2}^{[2]}+\partial_{a 2} \circ \partial_{a 1}-\partial_{21} \circ \partial_{a 2}^{(2)}-\partial_{a 2} \circ \partial_{a 1}\right)(x)$
$=0$.
$t_{1}\left(\partial_{21}(x)\right)-b_{2}\left(\partial_{22}(x)\right)=\left(\frac{1}{2} \partial_{32} \circ \partial_{21}-\partial_{21}\right) \circ \partial_{21}(x)-\partial_{21}^{(2)} \circ \partial_{32}(x)$
$=\left(\partial_{32} \circ \partial_{21}^{(2)}-\partial_{21} \circ \partial_{a 1}-\partial_{a 2} \circ \partial_{21}^{(2)}+\partial_{21} \circ \partial_{a 1}\right)(x)$
$=0$.
So we get $\left(\sigma_{2} \circ \sigma_{\mathrm{a}}\right)(x)=0$.
and
$\left(\sigma_{1} \circ \sigma_{2}\right)\left(x_{1}, x_{2}\right)=\sigma_{1}\left(s_{2}\left(x_{1}\right)-z\left(x_{2}\right), t_{1}\left(x_{2}\right)-b_{2}\left(x_{1}\right)\right)$
$=\sigma_{1}\left(\left(\frac{1}{2} \partial_{21} \circ \partial_{a 2}+\partial_{a 1}\right)\left(x_{1}\right)-\partial_{a 2}^{(2)}\left(x_{2}\right),\left(\frac{1}{2} \partial_{a 2} \circ \partial_{21}-\right.\right.$
$\left.\left.\partial_{a 1}\right)\left(x_{2}\right)-\partial_{21}^{(2)}\left(x_{1}\right)\right)$
$=\partial_{21}\left(\frac{1}{2} \partial_{21} \partial_{22}+\partial_{a 1}\right)\left(x_{1}\right)-\partial_{21} \circ \partial_{32}^{(2)}\left(x_{2}\right)$
$+\partial_{a 2}\left(\frac{1}{2} \partial_{22} \circ \partial_{21}-\partial_{21}\right)\left(x_{2}\right)-\partial_{22} \circ \partial_{21}^{(2)}\left(x_{1}\right)$
$=\left(\partial_{21}^{[2]} \circ \partial_{a 2}+\partial_{21} \circ \partial_{21}-\partial_{a 2} \circ \partial_{21}^{[2]}\right)\left(x_{1}\right)$
$+\left(\partial_{32}^{[2]} \circ \partial_{21}-\partial_{32} \circ \partial_{31}-\partial_{21} \circ \partial_{32}^{[2]}\right)\left(x_{2}\right)$.
then
$\left(\sigma_{1} \circ \sigma_{2}\right)\left(x_{1}, x_{2}\right)=\left(\partial_{a 2} \circ \partial_{21}^{(2)}-\partial_{21} \circ \partial_{21}+\partial_{21} \circ \partial_{21}-\partial_{a 2} \circ \partial_{21}^{(2)}\right)\left(x_{1}\right)$
$+\left(\partial_{21} \circ \partial_{a 2}^{[2]}+\partial_{a 2} \circ \partial_{a 1}-\partial_{a 2} \circ \partial_{a 1}-\partial_{21} \circ \partial_{a 2}^{[2]}\right)\left(x_{2}\right)=0$.

REFERENCES

[1] Buchsbaum D.A. and Rota G.C.,(2001), Aprroches to resolution of Weyl modules, Adv. In applied Math. 27 ,82-191.
[2] Akin K., Buchsbaum D.A. and Weyman J., (1982), Schur functors and complexes, Adv. Math. 44, 207-278.
[3] Buchsbaum D.A., (1986) A characteristic-free realization of the Giambelli and Jacoby-Trudi determinatal identities, proc. Of K.I.T workshop on Algebra and Topology, Springer - Verlag.
[4] Hatham R.Hassan, (2006),application of the characteristic-free resolution of Weyl Module to the Lascoux resolution in the case (3,3,3).ph. D.thesis, universita di Roma "Tor Vergata".
[5] Haytham R.Hassan, (2012),The Reduction of Resolution of Weyl Module from Characteristic-Free Resolution in case (4,4,3), J. Ibn Al-Haitham for pur and applied science, 25, 341-355.
[6] Rotman J.J., (1979), Introduction to homological algebra, Academic Press, INC.

