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 
Abstract— Zero forcing number and positive semidefinite 

zero forcing number are important parameters in studying 

minimum rank problems. Several graphs are proposed, which 

have the same zero forcing number and positive semidefinite 

zero forcing number in this paper. 

 

Index Terms—zero forcing number, positive semidefinite zero 

forcing number, minimum rank. 

 

I. INTRODUCTION 

  Given an n -by- n  Hermitian matrix A , its graph G  

denoted by  A G , is the undirected simple graph on vertices 

corresponding to the row or column indices of A , in which 

there is an edge between i and j if and only if 0
ij

a  , .i j  

For a given graph G its associated matrices set is defined as 

    *| ,G A A G G A A     

The minimum rank of graph G  and the positive semidefinite 

minimum rank of G  are defined as follows, respectively, 

    GAArankGmr  :min)(  
and 

 

                min{ :msr G rank A A G   

                              
}and A is positive semidifinite
.
 

For G the maximum nullity and the maximum positive 
semidefinite nullity are, respectively, 

           max :M G null A A G   

and 
 

                    max{ :M G null A A G    

                                 
}and A is positive semidifinite  

 
Obviously 
             ,mr G M G G   

                           
                      GMGM   

                      ,mr G msr G  

and  
                  

      
    ,msr G M G G 
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Let  ,
G G

G V E  be a simple undirected graph and 

G
W V . The induced subgraph of W is the subgraph 

formed by all the edges in G  between the vertices of W  , 

denoted by  G W . The subgraph induced by G
V W  is 

always denoted by G W . If  W v , denote it by 

G v .  
The zero forcing sets and zero forcing number were 

initially introduced in [1] to provide an lower bound of 

 mr G , and then they were extended to calculate the 

 msr G . Given a coloring of graph G , in which each 

vertex is colored white or black, denote the set of black 

vertices by S . The derived set of S  is the set of black 
vertices obtained by applying color change rule (positive 
semidefinite color change rule) until no more changes occur. 
The zero forcing set (positive semidefinite zero forcing set) is 

a set Z of black vertices whose derived set is G
V . 

 
Given a coloring of G  and we have a black vertices set 

 S V G . Starting from vertices in S , the rules are 

defined as follows: 
 Color change rule: If vertex u  is black and only one of 

its neighbor v  is white, then change the color of v  black. We 
say u  forces v  and write u v . 

 
 Positive semidefinite color change rule: Denote by 

 1 2, , ,
k

W W W , the components of G S . If 

i
v W , u S , and v  is the white neighbor of u  in 

 i
G W S , then change the color of v  to black. We say u  

forces v  and write u v . 
The zero forcing number (positive semidefinite zero 

forcing number ) denote by 
 

    Z G Z G , is defined as the minimum size of all 

zero forcing set (positive semidef-inite zero forcing set). We 
have 

        GofsetforcingzeroaisZZGZ :min  

and 

           min{ :Z G Z Z is a positive semidefinite   

                                         .}zero forcing set of G  

A (positive semidefinite) zero forcing set Z is called a 
minimum (positive semidefinite) zero forcing set if 
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                         GZZGZZ 
. 

Example 1.1. See the Figure 1,  4,3,21 Z  an zero 

forcing set and  4,2,12 Z  is an positive semidefinite zero 

forcing set. Note that 2Z  is also an zero forcing set. 

          
                   Figure 1: Example 1.1 
 
Actually, in order to getting an positive semidefinite zero 

forcing set, we just decompose the graph into several certain 
subgraphs, and on each part using zero forcing rule 
independently. 

Theorem 1.2[1]. For any graph G , 

                   GZGM   and     GZGGmr  . 

 

Theorem 1.3[2]. For any graph G ,  

       GZGM    and  GZGGmsr  . 

Observation 1.4[2]. Since an zero forcing set is a 
positive semidefinite zero forcing set, we have 

                                   GZGZ  . 

For a tree   , it is well known that     ZM   and 

      ZM . Only path nP  among trees satisfies 

   GZGZ  , so for path    GmrGmsr   holds. 

Apart from path, we know the complete graph also satisfies 

the above equation. In Section 2 we give a certain graph G  

such that    GZGZ  , and discuss several graphs which 

have the same minimum rank and positive semidefinite 
minimum rank. 

 

II. MAIN RESULTS 

      A vertex v  is said to be a cut vertex of graph G , if 

vG  is disconnected. The vertex connectivity  Gk  is 

defined as the minimum size of set GW   such that 

WG  is disconnected or a single vertex, and W  is called 
cut set. A maximal connected induced subgraph without a cut 
vertex is called a block. 

 

 
               Figure 2: Graph for Theorem 2.1 (b). 

         Theorem 2.1. Let G  is a simple graph of order n  with 

  1Gk  and only one cut vertex u  which splits G  into 

two components, and denote 21 HHuG  . We have 

   GZGZ   if one of the following conditions holds 

 
 
 
  .2,1,

;

;2,1,

;

21

3






icycleaisHd

pathaisHandcycleaisHc

icycleaisuHb

PGa

i

i 
 

        Proof. (a): It is obvious. 
        (b): See the graph in Figure 2. We prove that every 

positive semidefinite minimum zero forcing set  Z of G  
contains exactly three vertices. For each graph 

uH i  ,(i=1,2) at least two black vertices are needed. So 

                                           3Z . 

On the other side, the set  wvu ,,  is a positive semidefinite 

zero forcing set. We have 

                                          3Z , 

then 

                                           3 GZ . 

By observation, we know  wvu ,,  is also a zero forcing set. 

Consider Observation 1.4.,    GZGZ   holds. 

      (c):See the graph in Figure 3. Label the graphs induced by 

 uH 1 as 21,GG ,respectively.Let set Z be a minimum 

positive semidefinite forcing set of G , 
then 

                                        ZGZ  . 

By Observation 1.4. we have 

                                         GZGZ  . 

 
The remaining is to prove the converse holds, too. We claim 

that Z  is a zero forcing set of G . 

 
             Figure 3: Graph for Theorem 2.1 (c). 
 

Case I: Zu . The two color change rule is same for this 

graph. The vertices in Z  are all on graph 1H  or 2H . If the 

vertices of uG  are all adjacent to vertex u , the set of 
black vertices is not a cut set when applying positive 
semidefinite color change rule. If not, there may be a set 

 41,vv  satisfying uv ~1  and uv ~4  and a path exists 

between them. Replace 1v  by 5v  in Z  and denote the new 

set by 1Z . Do this until no such set exists, then the new set 

1Z  is an zero forcing set of G , and 

                             GZZZ 1 . 
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So 

                                  GZGZ   

holds. 

Case II: If Zu , applying positive semidefinite color 
change rule is the same 
                                  Z(G) ≤ Z+(G). 

As using color change rule in 1G and 2G ,independently.The 

set  1 2Z G Z G  is a zero forcing set of  21 GG .If u  do 

not force any vertices ,easy to know 

                                   GZGZ   

 
If not, denote the maximum zero forcing chain starting from 

u  in 1G  is u  v . The set after replacing u  with 

v  in Z  is a zero forcing set of G . So 

                                  GZGZ   

 
holds. 

In summary,    GZGZ   holds. 

(d): See the graph in Figure 4. We can prove it by similar 
method as (3). 

 
             Figure 4: Graph for Theorem 2.1 (d). 
 

      Theorem 2.2. For a graph G , if    

     GZGZGM   , then    GZGM  . 

Proof. According to 

                      GMGZGZGMGM   , 

the conclusion holds. 2 

Lemma 2.3 [3]. Let G  be a connected graphs with 

blocks mGG ,,1  . Then 

                       



m

i

iGmsrGmsr
1

 

The Cartesian product of two graphs G  and H , denoted 

G □ H , is the graph with vertex set    HVGV   such 

that  vu,  is adjacent to  '' ,vu  if and only if 

(1) 
'

uu    and 
'~ vv , 

or 

(2) 
'

vv    and 
'~ uu . 

Lemma 2.4[4]. For 2s , 
 

                      sPM ( □ sPZP ()2  □ 2)2 P  

and 

                     sPmsr( □ 22)2  sP . 

Lemma 2.5[4]. For 4s , 
 

                  8(CM  □ 82 () CZP  □ 4)2 P  

and 

                 8(Cmsr □ 42)2  sP . 

A graph G  is said to be a superposition of two graphs 1G  

and 2G  if G  is obtained by identifying 1G  and 2G  at a set 

of vertices, keeping all the edges that are present in either 1G  

or 2G . 

Proposition 2.6. Let G  be the superposition at one 

vertex of sP □ 2P  and  tP □ 2P  with 2,2  ts . Then  

      3 GMGZGZ . 

Proof. See Figure 5. According to Lemma 2.3 and 
Lemma 2.4, we have 

                 sPmsrGmsr ( □ tPmsrP ()2  □ )2P    

                              
.4)(2

2222




ts

ts
 

Then             

                

     

.3

)4)(2(1)(2

12






tsts

GmsrtsGM

 

By Theorem 1.3 and Observation 1.4, 
 

                        GZGZGM  3 . 

 

Besides, the set  wvu ,,  is an zero forcing set of G . So 

 

                              3 GZGZ . 

 
Since Theorem 2.2, we know the conclusion holds.  Similarly, 
we can prove the following results are true. 

 

     
Figure 5: superposition of s

P □ 2P  and t
P  □ 2P  on 

vertex u . 
 

Proposition 2.7. Let G be the superposition at one vertex 

of sC  □ 2P and tC  □ 2P with 4,4  ts . Then 

                          7 GMGZGZ . 

Proposition 2.8. Let G be the superposition at one vertex 

of sP  □ 2P and tC  □ 2P with 4,2  ts . Then 

                              5 GMGZGZ . 
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