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Abstract — In this paper a Back-stepping Control technique 

is proposed for command to line-of-sight missile guidance law 

design. In this design, the three-dimensional (3-D) CLOS 

guidance problem is formulated as a tracking problem of a 

time-varying nonlinear system. Simulation results for different 

engagement scenarios illustrate the validity of the proposed 

Backstepping-based Guidance Law. 

 
Index Terms—Command line-of-sight (CLOS), Backstepping 

Control system, missile guidance law.  

 

I. INTRODUCTION 

The Concept of command to line-of-sight (CLOS) 

guidance is to oblige (force) a missile to fly as nearly as 

possible along the instantaneous line-of-sight (LOS) between 

the land tracker and the target. If the missile can continuously 

stay on the LOS, missile will intercept the target. To set 

demanded accelerations for the missile, a guidance controller 

is used at the ground station to take computation of tracker 

information about the missile and target position, angular 

velocity and acceleration of the LOS. These acceleration 

commands can then be transmitted to the missile by a radio 

link. The CLOS guidance has been identify as a low-cost 

guidance concept because it conformance placement of 

avionics on the launch platform, as opposed to mounting on 

the expendable weapons [1], [2]. Theoretically, the 

missile-target model is nonlinear and time-varying. Many 

different guidance laws have been developed over the years, 

and with the advent of highly maneuverable targets, research 

on improved guidance laws is continuing [3]–[5].  

 

In this study, a Backstepping control system is proposed for 

commanding line-of-sight CLOS. The Lyapunov stability 

theorem is used to ensure the stability of the control system. 

Simulations results demonstrate the effectiveness of the 

proposed control. 

 

This paper is organized as follows. Formulation of 

missile-target engagement is described in Section II. The 

design procedures of the proposed Backstepping guidance 

system are constructed in Section III. Simulation results are 

set to confirm the effectiveness of the proposed control 

system in Section IV. Conclusions are drawn in Section V. 
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Table I: Definition of symbols 

Symbol Description 

t  Yaw angle of target 

t  Pitch angle of target. 

m  Yaw angle of missile. 

m  Pitch angle of missile 

mc  Roll angle command. 

t  Azimuth angle of LOS to target. 

t  Elevation angle of LOS to target. 

m  Azimuth angle of LOS to missile 

m  Elevation angle of LOS to missile 

  tm    

  
tm    

g  Gravity acceleration. 

xa  Axial acceleration of missile 

yca  Yaw acceleration command 

zca  Pitch acceleration command. 

yta  Yaw acceleration of target. 

tza  Pitch acceleration of target. 

mR  Missile range from ground tracker. 

tR  Target range from ground tracker. 

II. PROBLEMATIQUE OF THE THREE-DIMENSIONAL CLOS 

GUIDANCE 

The three-dimensional CLOS guidance problem shown in 

Fig. 1 is a well-known guidance model [2], which involves 

guiding the missile along the LOS to the target. The 

three-dimensional CLOS guidance model in [5, 7] will be 

repeated here for convenience. The following description in 

Table 1 will be adopted to derive the dynamic equations of 

missile. 
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Fig. 1. Three-dimensional missile-target engagement diagram. 
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The origin of the inertial frame is located at the ground base. 

The axis ZI is vertical upward and the XI - YI plane is 

horizontal. The origin of the missile body frame is fixed at the 

center of mass of missile, with the XB axis forward along the 

missile centerline. The dynamics of the missile in the inertial 

frame can be represented [2] as described in (1) in the top of 

the page. 

A tracking output is defined in order to convert the CLOS 

guidance problem into a tracking problem. The LOS frame is 

shown in Fig. 2 in which the origin of the three-dimensional 

space is located at the ground base. The XL axis forwards 

along the LOS to the missile, and the YL axis is horizontal to 

the left of the XL - YL plane. Then, the coordinates indicated in 

Fig. 2 represent the missile position in the LOS frame, and 

they are related to   through rotations as follows: 
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The tracking output is defined as
T

zzz ],[ 21 . Since 1z and 

2z cannot be measured directly, these quantities must be 

computed indirectly using the polar position data of the 

missile available from the ground tracker as 
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Fig. 2. Definition of tracking output. 

Note that
2

z represents the distance from the missile to the 

LOS. Therefore, the missile will eventually intercept the 

target if the tracking output 1z is driven to zero. The 

three-dimensional CLOS guidance problem therefore can be 

seen as a tracking problem. Define 
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Using the previous equations, (1), (2), and (4) can be put 

into the following dynamic equations of missile in state-space 

form:  
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where 
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The objective of CLOS guidance control is to find a control 

law to drive the tracking output z to zero. Eq. (5) can be 

rewritten as 
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where )(),,( , xgtxf iji and ix are the i
th

 components of 

)(),,( xgtxf and x respectively. 

III. BACKSTEPPING-BASED GUIDANCE LAW DESIGN 

Assuming that all parameters of the system (6) are known, 

the design of Backstepping control for the guidance law is 

described step-by-step as follows: 

Step 1: Define the tracking error 

     tztzte d 1         (9) 

where  tzd is a desired tracking output, Then the derivative 

of tracking error can be represented as 

     tztzte d
 1         (10) 

The  tz can be viewed as a virtual control in above equation. 

Define the following stabilizing function 

     teKtzt d 11          (11) 

where 
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K and 1k is a positive constant. 

The first Lyapunov function is selected as 

   tetV
2

11 5.0          (12) 

Step 2: Define  

     tztte 2          (13) 

Then the derivative of 1V with respect to time is  

           tetetektetetV 21

2

11111       (14) 

Step 3: The derivative of  te2 is given as 

               tutxGtxFtektztztte d ,,112     (15) 

Step 4: If all dynamics system are known, a Backstepping 

guidance law can be formulated as 

            txFteKtetektztxGu dB ,, 22111

1      (16) 

where 
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Step 5: The second Lyapunov function is defined as 

     tetVtV
2

212 5.0           (17) 

Differentiating (17) and using (14) and (15), it is obtained that 
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Since      0, 212 teteV , it means that  te1 and  te2 are 

bounded. Now define the term: 

          teteVteKteKt 212

2

22

2

11 ,    (19) 

then 

            
t

teteVeeVd
0

212212 ,0,0    (20) 

Since     0,0 212 eeV is bounded and     teteV 212 , is 

non-increasing and bounded, it can be obtained  

  

t

t
d
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Also  t is bounded, so by using Barbalat’s Lemma [8], it 
can be shown that   0lim 


t

t
. This will imply 

that  te1 and  te2 converge to zero as t .Therefore, the 

Backstepping Guidance law formulated in (16) is 

asymptotically stable. The configuration of the proposed 

Backstepping Guidance Law is shown in Fig. 3. 
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Fig. 3. Backstepping Guidance System. 

IV. NUMERICAL SIMULATIONS  

In this section, simulations are performed to illustrate the 

efficiency of the proposed Backstepping guidance law. In 

order to assess the performance characteristics in a 

closed-loop engagement scenario, it is important to specify 

target dynamics. The simplified dynamics of target motion 

can be given in the inertial frame as follows: 
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In this paper, three simulation scenarios are examined to 

justify the effectiveness of the proposed design method. The 

simulation data and parameter data used for simulation are 

summarized in Table II. 

 
 



 

Missile Guidance Law Design via Backstepping Technique 

                                                                                              88                                                                   www.ijeas.org 

Table II. Scenario and parameter data used for simulation 

States  Scenario 1 Scenario 2 Scenario 3 
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Fig. 4. Block diagram representation of estimation algorithm  

for guidance information. 

 

The first and second scenarios describes an anti-aircraft 

scenario. The third one represents an anti-missile scenario. 

Considered a 30g  2/8.9 smg  maneuvering limiter to limit 

the missile’s maneuverability. The pitch and yaw autopilot 

dynamics are selected to be second order linear time-invariant 

systems and the ground tracker to be a simplified differential 

tracking system with damping ratio 0.6 and nature frequency 

6π rad/s as shown in Fig. 4. The estimated values of 

ttt  ,, and t , also the measurement data of  and  , 

are provided by the ground tracker. To evaluate the influence 

of measurement noise, random noises with magnitude 

between ± 0.3 deg are included. m/s
2
 

The Backstepping guidance law presented in (16) is 

simulated for the same engagement scenarios. This study 

adopts the following Backstepping control law:  

            txFteKteteKtztxGu dLB ,, 22111

1     
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The simulation results for scenarios 1, 2, and 3 are depicted 

in Figs.5–7, respectively.  

 
Table III. Miss Distance (m) 

Scenario 1 Scenario 2 Scenario 3 

1.8059 2 .3319 0 .8678 

 

V. CONCLUSION 

In this paper, a Backstepping control method is applied for 

the CLOS guidance law design. Simulation results show that 

the Backstepping guidance law can achieve satisfactory 

performance and smooth missile trajectories for different 

engagement scenarios. In addition, from Table III we can 

notice those small miss distances. 
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(a) Tracking output ( 1z and 2z ) 

 

 

(b) Acceleration command ( yca and zca ) 

 

 
(c) Missile-target trajectory 

 

Fig .5 Engagement scenario 1 with Backstepping guidance law. 

 

(a) Tracking output ( 1z and 2z ) 

 

 

(b) Acceleration command ( yca and zca ) 

 

 
(c) Missile-target trajectory 

 

Fig .6 Engagement scenario 2 with Backstepping guidance law. 
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(a) Tracking output ( 1z and 2z ) 

 

 

(b) Acceleration command ( yca and zca ) 

 

 
(c) Missile-target trajectory 

 

Fig .7 Engagement scenario 3 with Backstepping guidance law. 
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