

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-3, Issue-11, November 2016

 80 www.ijeas.org

�
Abstract² In this paper, by introducing a case study on

development of a first-SHUVRQ�VKRRWHU�JDPH�³%LRVLV´�SOD\DEOH�LQ�

both iOS and Android platforms, we present guidelines for

developing one-source multi-platform mobile games using

cocos2d-x game engine. This paper also describes the

³5HVRXUFH0DNHU´� LPSOHPHQWHG� WR� VKDUH� DQG� PDQDJH� JDPH�

assets efficiently in our multi-targeted development environment

and the level engine by using which game planners can easily

apply their designs to game levels. We expect that the presented

guidelines will help game developers reduce the time and cost for

development in the mobile game ecosystem, the life-cycle of

which is very short.

Index Terms²cocos2d-x, mobile game, multi-platform

I. INTRODUCTION

Recently, as the mobile platforms including smart phones
have achieved popular success, the size of the mobile game
market is also rapidly increasing [1]. As the market grows,
more and more types of smart devices are emerging. Even on
platforms that support the same operating system, many
various types of devices with different screen resolutions are
being announced.

Therefore, it is inevitable that the cost required to develop a
game for various platforms and display types as described
above is greatly increased. In addition, it is difficult to invest
a great deal of money, because the lifecycle of mobile games
is very short compared to PC and console games.

Due to the above reasons, many game engines have recently
been released that can develop games for multi-platform at
low cost. Multi-platform mobile game engines allow you to
run a developed game on a variety of platforms without any
porting process, they are gaining great popularity not only for
major development companies but also for indie developers
with relatively low budgets.

In this paper, we present the case study of developing a
first-person shooter game called "Biosis" (see Fig. 1) that can
be run on both iOS and Android operating systems, and
suggest guidelines for efficient development that we have
experienced.

The composition of this paper is as follows. Chapter II
describes the mobile game engines for multi-platform, which
are widely used. In Chapter III, we introduce the Cocos2d-x
used in this study and explain how to develop one-source
multi-platform games efficiently using this engine. In
Chapter IV, we explain an introduction to Biosis, a one-sous
multi-platform game developed in this study, and description

 Jinseok Seo, Division of Digital Contents Technology, Dong-eui

University, Busan, Korea
Hun Choi, Department of Electronic Engineering, Dong-eui University,

Busan, Korea

This Work was supported by Dong-eui University Foundation Grant

(2012)

of "ResourceMaker", a tool developed for efficient game
resource sharing and management. This chapter also
describes the level engine implemented to reflect the game
designers¶�intention freely. Finally, Chapter V concludes the
paper.

Fig. 1: Title Screen of Biosis

II. MOBILE GAME ENGINES FOR MULTI-PLATFORM

Just before the popularization of mobile devices mainly
based on smartphones, PDAs (Personal Digital Assistance)
and Portable Multimedia Players (PMP) complemented the
lack of functions of mobile. Because there were a variety of
platforms and devices during this period, efforts were made to
provide a cross-platform game development environment for
PMP to save developerV¶�HIIRUW.

As smartphones become very popular, many
multi-platform game engines have been released. Some
well-known examples are Unity [3], ShiVa [4], Corona SDK
[5], Marmalade [6] and Cocos2d-x [7].

Unity3D is one of the most popular game engines in recent
years. Unity was originally developed for 3D games, but
recently it has also begun supporting 2D games. The biggest
advantage of Unity is that the development environment is
very comprehensive, so even the intermediate developers can
easily develop high-quality mobile games. On the other hand,
it is estimated that it works a little heavier than other game
engines, and the lower level control is a little inconvenient.
However, considering the recent increase in 3D game share in
the mobile game market and the speed of improvement of
GPU performance of mobile devices, Unity, which is a
relatively inexpensive 3D game engine, is expected to become

A Case Study on One-Source Multi-Platform Mobile
Game Development Using Cocos2d-x

Jinseok Seo, Hun Choi

A Case Study on Development of a One-Source Multi-Platform Mobile Game using Cocos2d-x

 81 www.ijeas.org

the best 3D mobile game engine for small or medium-sized
development companies or Indie developers.

Although ShiVa3D is not as widely used as Unity3D,
ShiVa3D, which can be regarded as almost similar in function
and convenience, has received much attention in recent years.
Compared to Unity3D, there is a lack of user forums and
documentation, but it is a little cheaper and is a great tool for
developers who are accustomed to the Lua language.

Corona SDK is also a commercially successful game
engine that can be developed in Lua language. Corona SDK
was developed with OpenGL, OpenAL, Box2D, and Lua.
Although it does not provide a convenient integrated
development environment like Unity or ShiVa, it is used by
many developers because of optimized performance.

Unity, ShiVa and Corona SDK described above use a
method that executes a user-written script language (for Unity,
the intermediate code compiled from C# language) in a
pre-developed player engine. In recent years, this type of
game engine has been widely used on most platforms,
including PCs. This is because, as described in the
well-known ³90-10 rule (90 percent of the program execution
time runs only 10 percent of the code)´, implementing only
minimal performance-sensitive parts in native code and
implementing the rest using scripting languages does not
affect the overall software performance. However, using this
method has the disadvantage that it is inconvenient to
implement the optimized algorithm only by developers or add
customized functionalities to game engines.

Marmalade is a standard C++ language based game engine
without the above drawbacks. It is very easy to optimize
performance because it is implemented with 100 percent
native code. Thanks to Marmalade's optimized performance,
there are many commercially successful games developed
uVLQJ� WKLV�JDPH�HQJLQH��VXFK�DV�³Cut the Rope,´ ³Plants vs
Zombies,´ ³Call of Duty,´ ³Need for Speed,´ and so on. If
you are developing using only native code without the support
of scripting languages, it is difficult to test or debug on the fly
while the game is running. However, in the case of mobile
games, the compiled code is not executed directly in the
development environment, but is executed remotely in
emulators or devices, the advantage of a dynamic scripting
language is not great.

With the game engines, we've just described, you should
pay for all your games to be released to stores or run directly
on devices. Especially, Marmalade and Corona SDK can be a
burden for indie developers and students who are learning to
make games, because they are required to pay annually. In
addition, all the above game engines cannot offer developers
complete freedom because the source code is not available.

Cocos2d-x, a game engine used in this study, is a
completely free engine, unlike the ones mentioned above, and
the source code is open. Therefore, developers can not only
modify released HQJLQH¶V� code directly, but also add new
functionalities freely. Of course, besides Cocos2d-x, there
are more free game engines with open source code, including
CuvicVR 3D Engine [8], IwGame Engine [9], jumpcore [10]
and Mao [11]. However, nowadays it is hard to find an engine
that has all the elements (audio, physics engine, particles,
various font rendering, GUI, various types of maps, etc.)
necessary to develop games as much as Cocos2d-x. A more
detailed description of Cocos2d-x will be given in Chapter III,
and the game engines described so far are summarized in
Table I.

. Table I: Comparison Table of Multi-Platform Mobile

Game Engines

Game

Engine
2D/3D Price

Open

Source
Language

Unity 2D/3D
Free(personal)
$125/m(pro)

X C#

Shiva 3D
$200(basic)
$1,000(adv.)

X Lua

Marmalade 2D/3D
$149/y(basic)
$1,499/y(pro)

X C++

Corona
SDK

2D/3D
Free(basic),

$79/y
$199/y

X Lua

Cocos2d-
X

2D Free O C++

Unreal 3D
Free,

5% of grs. rev.
O

C++
Blueprint

III. DEVELOPMENT OF ONE-SOURCE MULTI-PLATFORM

GAMES USING COCOS2D-X

A. Introduction to Cocos2d-x

Cocos2d was originally developed as a game engine for a
variety of desktop operating systems, including Windows,
Mac OS, and Linux. Most of the functions for 2D games,
such as scene flow and transition, easy and fast sprite
processing, various actions, and tile map, are available by
very intuitive APIs. At that time, the Python language was
adopted, and the games could be developed quickly and easily
without compilation process.

However, Cocos2d did not get much attention until smart
phones started to gain popularity and Cocos2d for iPhone was
developed. Cocos2d for iPhone was released as an engine to
develop games for iPhone after Apple launched iPhone and
start the App Store service. The basic engine architecture was
adopted from Cocos2d, but the language was based on
Objective-C. After several years of improvement, it became a
more complete 2D game engine. Thanks to its completeness,
the popularity has increased in recent years, so it is called by
the name Cocos2d instead of Cocos2d for iPhone.

The biggest disadvantage of Cocos2d for iPhone was that it
could only support games for the iPhone. The Cocos2d-x
game engine has emerged because of this problem.
Cocos2d-x also adopts the engine architecture of Cocos2d for
iPhone, but since it is based on the standard C ++ language, it
could be ported to various development environments and
mobile platforms including Android. In addition, for the
Android platform, JNI (Java Native Interface) and Android
NDK (Native Development Kit) can be used in developing
games.

B. Sharing Source Code and Resources

Although it depends on your target platform and
development environment, Ccoos2d-x is easy to use for most

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-3, Issue-11, November 2016

 82 www.ijeas.org

development environments and operating systems. However,
games for Android can be developed in any development
environment, but those for iOS can only be developed in Mac
OS. Therefore, we should build a development environment
on Mac OS, in order to develop games for both platforms in
one source code.

The most common development tools for developing
Cocos2d-x games on Mac OS are Xcode and Eclipse.
Depending on the developer's preferences and preferences, it
may be more convenient to choose Xcode as your main
development environment, considering the editing
capabilities, auto-completion, and debugging of C ++ code.

Even if you use Xcode as your main development
environment, you need to create a separate project for the
Android platform to build the binary package for Android. In
order to efficiently share source code and resources between
the two projects, it is necessary to refer to the source code and
the resources of other projects in one project.

The following is a sequence of steps for creating projects
and sharing source code and resources for both iOS and
Android projects.

1. Creating an Android project: Run the script

³FUHDWH-android-SURMHFW�VK´ in the folder where
Cocos2d-x is installed to create the project.

2. Creating an Xcode project: Run the script
³install-templates-xcode.sh´ in the folder where
Cocos2d-x is installed to copy template files for
Cocos2d-x to an Xcode project. After running Xcode,
create a new project with the same name you set in step
A.

3. Removing source code and resources for Android

SURMHFW�� 'HOHWH� WKH� ³Classes´ folder and the
³5HVRXUFHV´ folder from the project folder created in
step A.

4. Setting for sharing source code and resources: In the

Android project folder, create a symbolic link to the
³Classes´ and ³Resources´ folders in the Xcode
project.

Once you have completed the four steps above, even if the

source code and resource files are changed or added in Xcode,
the main development environment, the binary package for
the Android platform will be applied only when you compile
again.

C. Debugging

The main development environment, Xcode, provides a
very easy to use debugging environment compared to Eclipse,
and with the help of the tool called Instruments, we can detect
memory leaks very intuitively. In addition, the iOS simulator
works very fast, allowing testing and debugging several times
faster than running directly on the device.

Most of the time, when debugging is completed perfectly in
Xcode and iOS Simulator, it works well on iOS devices and
Android devices. However, because of the diversity of
mobile devices, excessive resource usage can cause problems
on certain Android devices, so you should perform validation
on your Android device at the main milestone point.

Debugging on an Android device can use the

³CCMessageBox´ function to pop up a message box directly
on the device, but it is much more convenient to error and
warning messages using the ³__android_log_write´ function,
because of the nature of the game software operating in an
infinite loop. The Android system also allows logging to be
broken down into different stages according to priorities, and
filtering is also possible. You can use the "adb logcat"
command for log filtering and error dumping.

D. Various Aspect Ratios and Resolution Issues

Various Android devices have their own screen sizes,
screen aspect ratios and resolutions. In addition, recently,
iOS has been releasing new products with varying ratios and
resolutions as well.

The best method to support all these various display
devices is to prepare graphics image files that matches the
resolutions and ratios of all the devices you want to support.
However, this method also has the disadvantage that the size
of the final binary package becomes too large, and the game
logic is also very complicated for supporting various aspect
ratios and resolutions.

In order to solve the above problem, our study used a
method of fixing the aspect ratio and preparing only two or
three sets of graphics images for different resolution devices.
The aspect ratio can be fixed by using the
³setDesignResolutionSize´ member function provided by the
³CCEGLView´ class of Cocos2d-x API. A ³CCEGLview´
object is obtained by the ³getOpenGLView´ function of the
³CCDirector,´ a singleton object.

You should pass the horizontal and vertical resolutions as
the first and the second arguments of this function, and pass
the option flag as the third argument. Since the resolution
information transmitted by this function is not an absolute
resolution, it usually plays a role of fixing the aspect ratio
based on the one having the maximum resolution among the
devices to be supported. The third argument is usually the
value of ³kResolutionAll.´ This value allows the device to
create black space on the edges of the screen without
truncating the rendered image if the aspect ratio does not
match the device¶s screen aspect ratio. The reason for using
this value is that clipping the rendered image may
occasionally drops the important graphical user interface.

The aspect ratio and resolution issue originally has separate
solutions for each of Android SDK, iOS SDK, and
Cocos2d-x. However, it is often the case that the solutions are
changed again each time a new SDK version or a new device
is released.

Although this problem is expected to be solved in a near
future, this study decided to use a method that is not
dependent on a specific SDK. We created a desired subfolder
for each resolution under the Resources folder, and then put
images with the same name but different resolutions into each
folder. Then we specified the desired subfolder for each
resolution with the ³setResourceDirectory´ function, which is
the member function of the ³CCFileUtils´ class¶� singleton
object.

IV. BIOSIS DEVELOPMENT CASE

A. Introduction to Biosis

³Biosis,´ a game developed in this study, is a touch-based
first-person shooter, and target platforms are iOS and
Android. Most smartphones do not have hardware buttons for

A Case Study on Development of a One-Source Multi-Platform Mobile Game using Cocos2d-x

 83 www.ijeas.org

applications, so game players use software buttons to move
their character and to fire weapons. Users can play games by
touching the rendered image button in the corner of the screen
with a finger. Because of this unintuitive interface approach,
first-person shooter games are less popular than other game
genres on smartphones.

In this game, we have devised a system that does not use the
traditional interface method like above, but can attack objects
such as monsters directly by touches or gestures. By using
this attacking system, players can throw various weapons
(grenades, rockets, bullets of shotgun, lasers, etc.) directly to
targets. The levels consist of a total of 18 stages, of which
four levels spawn bosses (see Fig. 2).

Fig. 2: %RVV�³*DUJR\OH´�RI�%LRVLV

The player uses various weapons to attack the monsters (9

types in total). The player's life is set to the maximum value at
the beginning of each level, and when the enemy attack
reduces the life value to less than 0, the game ends. A variety
of special weapon attacks using gestures consume SOD\HU¶V�
energy, and we must wait for the energy to be replenished
again to continue using special weapons.

B. Resource Management Tool: ResourceMaker

One of the most time-consuming aspects of game
development process is managing various game resources.
Some of the game resources are composed of files such as
graphic images, background sounds, and sound effects, and
some are composed of data such as strings, monster
information, and weapon information. A resource consisting
of a file is usually used by passing the path and the name
directly as a parameter of a specific function in source code.
A resource composed of data may be written in a specific
sFULSW�ODQJXDJH�RU�D�GDWD�ILOH�RI�D�GHYHORSHU¶V�format.

In Biosis, we developed a resource management tool,
³ResourceMaker,´ to store all information about resources in
a single ³SOLVW´�(property list) file. The ³SOLVW´�file is a data
structure that is originally supported by Objective-C, the main
development language of Mac OS and iOS. It can manipulate
data such as arrays, dictionary (maps), strings, and numbers in
a hierarchical structure. Cocos2d-x is a C ++ language, but it
also supports ³SOLVW´� files in C ++ for compatibility with
Cocos2d for iPhone.

Fig. 3: An Example of ³SOLVW´�file used in Biosis

To use the plist, we firstly place resource files, such as

graphic images, background sounds, and sound effects, in
their own subfolders (³image´, ³bgm´, ³sfx´) under the
project¶V ³Resources´ folder. Then, ³ResourceMaker´
automatically navigates to the project's subfolders and stores
the resourFHV¶�LQIRUPDWLRQ in a ³SOLVW´�file as a dictionary data
structure. For example, if you have a ³background_1.png´
file in the ³image´ folder, the key in the dictionary will be the
string ³IFN_background_1_png´ and the value will be the
path and filename of the actual resource file, suFK�DV�³image /
background_1.png.´ If you need a multi-lingual version, you
should create subfolders under the ³image´ folder such as
³eng´ or ³kor´ to save the file, then the ³SOLVW´� file would
contain each resource in its own separated dictionary data
structure.

When the making of the ³SOLVW´� file is completed,
³ResourceMaker´ creates the ³'HILQHV�K´ header file. In this
file, ³�define´ macros defines the strings, which used as key
values in the dictionary data structure, as constant values.
Defining these key values as constant values can reduce
typing errors when coding a program and prevent access to
the wrong resource at compile time. In game programming,
source code directly accesses many of resource files as literals
that represent file paths and names. Even if there is a typo in
the literal that indicates the path and name of a resource file in
source code, there would occur no error at compile time, but it
could be a big problem because there is a high probability of
error when accessing the resource with wrong path and file
name at runtime.

Resources composed of data, such as strings, monster
information, and weapon information, are usually created in a
spreadsheet program such as Microsoft's Excel or Apple's
Numbers. Spreadsheet programs are easy to use by game
designers who have no knowledge of computer programming,
so their intentions can be applied freely without the help of
programmers. Data written in a spreadsheet can be saved as a
comma-separated values (csv) file, which the
³ResourceMaker´ program interprets and adds dictionary
data to the ³SOLVW´� file. In addition, the ³ResourceMaker´
automatically creates ³#define´ macro statements in the

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-3, Issue-11, November 2016

 84 www.ijeas.org

"Defines.h" header file. The monster information written in
the spreadsheet includes life, armor, attack damage, attack
range, speed, weight, and reward, and the weapon information
is about consumed energy, attack power, attack range, and
cool time (the time from the last firing to the next firing).

C. Level Engine

For multi-level games like Biosis, designing each level
takes a lot of planning work. The level data consists of game
events such as the appearance of monsters (including name,
position, etc.), dialogues, various power ups (such as health
packs, weapons, and items), and changes of background
music. Each game event occurs only when certain conditions
are met. Examples of conditions include ³after a certain
amount of time has elapsed´ or ³when all monsters have
disappeared´.

In Biosis, all game events are also written in a spreadsheet.
The written events data is integrated into the ³plist´ file by
³ResourceMaker.´ Then, the integrated game events data is
processed in turn in the main loop of the level engine.

By using the level engine that is implemented as described
above, there is no need to change the source code even if a
new level is added or an existing level design is changed. This
means that game designers can freely design various levels
without the help of a programmers.

V. CONCLUSION

In this paper, we presented a development example of a
PRELOH� JDPH� FDOOHG� ³Biosis´ and proposed guidelines for
developing one-source multi-platform mobile games using
the Cocos2d-x engine. The developed game worked perfectly
on both the iOS and Android platforms, without any porting
process. In addition, we introduced methods and tools to
facilitate resource management and share them among
multiple platforms, and added an introduction to the level
engine to allow game designers to freely design game levels
without the help of programmers.

The proposed guidelines are expected to help reduce time
and costs for small and indie game developers in the current
mobile game ecosystem which has very short life-cycle.

ACKNOWLEDGMENT

This Work was supported by Dong-eui University
Foundation Grant (2012).

REFERENCES

[1] K. Jeong��³Future Direction of Mobile Game Market according to the
Advance of Mobile Device Capability�´ Journal of Digital Contents
Society, Vol 11, No. 4, pp. 495-501, Dec. 2010.

[2] Ya-Ri Lee, Jung-6RRN� .LP�� ³&URVV Platform Game Development
(QYLURQPHQW�IRU�303�´�-RXUQDO�RI�'LJLWDO�&RQWHQWV�6RFLHW\��9RO����1R��

3, pp. 377-383, Sept. 2007.
[3] Unity - Game Engine, ³http://unity3d.com´
[4] ShiVa3D - Game engine with development tools, ³http://www.

VWRQHWULS�FRP´
[5] Develop Cross Platform Mobile Apps and Games | Corona Labs,

³KWWS���ZZZ�FRURQDODEV�FRP´
[6] Mobile Application Development, iPhone & Android App

Development - Marmalade, ³http://www.madewithmarmalade.com´
[7] Cocos2d-x | Cross Platform Open Source 2D Game Engine,

³KWWS���ZZZ�FRFos2d-[�RUJ´
[8] &XYLF95��'�(QJLQH��³KWWS���ZZZ�FXELFYU�RUJ´
[9] ,Z*DPH� (QJLQH� _� 'U0RS�� ³KWWS���ZZZ�GUPRS�FRP�LQGH[�SKS�

iwgame-HQJLQH´

[10] MXPSFRUH��³KWWSV���ELWEXFNHW�RUJ�UXQKHOOR�MXPSFRUH�ZLNL�+RPH´
[11] Moai | The mobile platform for pro game developers,

³KWWS���JHWPRDL�FRP´

Jinseok Seo received the M.S. and Ph.D. degrees in Computer Science
and Engineering from Postech, Korea, in 2000 and 2005, respectively. Since
2005, he joined the division of digital contents technology, Dong-eui
University, Busan, Korea. His main research interests are artificial
intelligence for computer games, game engines, virtual reality, and
augmented reality.

 Hun Choi received the M.S. and the Ph.D. degrees in electronics from
Chungbuk National University, Korea, in 2001 and 2006, respectively. From
2006 to 2008, he was Post Doc. at KRISS, KOREA. Since 2008, He joined
the division of Electronic engineering, Dong-eui University, Busan, Korea.
His research interests include adaptive signal processing, measurement
signal processing and communication system.

