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Abstract² In this paper we find bounds for the number of 

zeros of a polynomial with certain conditions on its 

coefficients .The results thus obtained generalize many results 

known already. 
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I. INTRODUCTION 

  Cauchy found a bound for all the zeros of a polynomial and 
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: 

Theorem A.   All the zeros of the polynomial 
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The bound given by the above theorem depends on all the 

coefficients of the polynomial. A lot of such results is 

available in the literature [1-4] .In this connection   Shah and 

Liman [4] proved the following results: 

Theorem B. If  ¦
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Then P(z) does not vanish in 1�z . 

Theorem C. If  ¦
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then P(z)  has all its zeros  in 1�z . 

Mezerji and Bidkham [2] generalized Theorems B and C by 

proving 

Theorem D. Let  ¦
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where }1,......,2,1{ � PA , then P(z) has exactly P  

zeros in Rz � . 

II. MAIN RESULTS 

In this paper we prove the following result: 

Theorem 1. Let   
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 be a complex polynomial of degree n. If for some 1tR , 
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then P(z) has exactly p  zeros in Rz � . 

Remark 1. For R=1 and p=n, Theorem 1 reduces to Theorem 

C. 

    For p=1, R=1, Theorem 1 reduces to the following result: 

Corollary 1. Let   
n
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10 aaa n �� . Then P(z) has exactly 1 zero in 1�z .  

   For p=n-1, we get the following result from Theorem 1: 

Corollary 2. Let   
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complex polynomial of degree n. If for some 1tR , 
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then P(z) has exactly n-1 zeros in Rz � . 

   

  For  R=1, Cor.2 gives the following result: 

Corollary 3. Let   
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complex polynomial of degree n. If  
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then P(z) has exactly n-1 zeros in 1�z . 

III. PROOF OF THEOREM1 
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 have the same number of zeros in  Rz � . 

Since 
p

z has p zeros there, it follows that P(z) has exactly p 

zeros in Rz � . That proves the result. 
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