Zeros of Polynomials

M. H. Gulzar

Abstract- In this paper we find bounds for the number of zeros of a polynomial with certain conditions on its coefficients .The results thus obtained generalize many results known already.

Mathematics Subject Classification (2010):

Index Terms—Bound, Coefficient, Polynomial, Zeros.

I. INTRODUCTION

Cauchy found a bound for all the zeros of a polynomial and proved the following result known as Cauchy's Theorem [1,3]

Theorem A. All the zeros of the polynomial

$$P(z) = \sum_{j=0}^{n} a_{j} z^{j}$$
 of degree n lie in the circle $|z| < 1 + M$,

where
$$M = \max_{0 \le j \le n-1} \left| \frac{a_j}{a_n} \right|$$
.

The bound given by the above theorem depends on all the coefficients of the polynomial. A lot of such results is available in the literature [1-4] .In this connection Shah and Liman [4] proved the following results:

Theorem B. If $P(z) = \sum_{j=0}^{n} a_j z^j$ is a complex polynomial

satisfying

$$\sum_{j=1}^{n} \left| a_{j} \right| < \left| a_{0} \right|,$$

Then P(z) does not vanish in |z| < 1.

Theorem C. If $P(z) = \sum_{j=0}^{\infty} a_j z^j$ is a complex polynomial

satisfying

$$\sum_{j=0}^{n-1} \left| a_j \right| < \left| a_n \right|,$$

then P(z) has all its zeros in |z| < 1.

Mezerji and Bidkham [2] generalized Theorems B and C by

Theorem D. Let $P(z) = a_0 + \sum_{j=0}^{n} a_j z^j$ be a complex

polynomial of degree n. If for some $R \ge 1$,

$$R^{n-\mu} \sum_{i=0, i\neq j\notin A}^{n} \left| a_i \right| < \left| a_k \right|,$$

M. H. Gulzar, Post Graduate Department of Mathematics, University of Kashmir, Srinagar J&K, India 190006

where $A = \{1, 2, \dots, \mu - 1\}$, then P(z) has exactly μ zeros in |z| < R.

II. MAIN RESULTS

In this paper we prove the following result:

Theorem 1. Let

$$P(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^p + a_n z^n, 1 \le p \le n - 1$$

be a complex polynomial of degree n. If for some $R \ge 1$,

$$R^{n-p} \sum_{i=0, i\neq p}^{n} \left| a_i \right| < \left| a_p \right|,$$

then P(z) has exactly p zeros in |z| < R.

Remark 1. For R=1 and p=n, Theorem 1 reduces to Theorem

For p=1, R=1, Theorem 1 reduces to the following result:

Corollary 1. Let
$$P(z) = a_0 + a_1 z + a_n z^n$$
 such that

$$|a_0| + |a_n| < |a_1|$$
. Then P(z) has exactly 1 zero in $|z| < 1$.

For p=n-1, we get the following result from Theorem 1:

Corollary 2. Let

 $P(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_{n-1} z^{n-1} + a_n z^n$ be a complex polynomial of degree n. If for some $R \ge 1$,

$$R \sum_{j=0, i \neq n-1}^{n} |a_{i}| < |a_{n-1}|,$$

then P(z) has exactly n-1 zeros in |z| < R.

For R=1, Cor.2 gives the following result:

 $P(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_{n-1} z^{n-1} + a_n z^n$ be a complex polynomial of degree n. If

$$\sum_{i=0}^{n} |a_{i}| < |a_{n-1}|,$$

then P(z) has exactly n-1 zeros in |z| < 1.

III. PROOF OF THEOREM1

Let

$$g(z) = \frac{1}{a_n} \sum_{j=0, j \neq p}^{n} a_j z^j$$
.

Then for |z| = R, $R \ge 1$,

$$|g(z)| \le \frac{1}{|a_p|} \sum_{j=0, j \ne p}^{n} |a_j| |z|^{j}$$

Zeros of Polynomials

$$\begin{split} &= \frac{1}{\left|a_{p}\right|} \sum_{j=0, j \neq p}^{n} \left|a_{j}\right| R^{j} \\ &\leq \frac{1}{\left|a_{p}\right|} . R^{n} \sum_{j=0, j \neq p}^{n} \left|a_{j}\right| \\ &\leq R^{p} \\ &= \left|z\right|^{p} \\ &= \left|z^{p}\right| \end{split}$$

Hence, by Rouche's Theorem z^p and g(z)+

$$z^p = \frac{P(z)}{a_p}$$
 have the same number of zeros in $|z| < R$.

Since z^p has p zeros there, it follows that P(z) has exactly p zeros in |z| < R. That proves the result.

REFERENCES

- [1]M. Marden, Geometry of Polynomials, Mathematical Surveys Number 3, Amer. Math.. Soc. Providence, RI, (1966).ac
- [2] H.A.S. Mezerji and M.Bidkham, Cauchy Type Results Concerning Location of Zeros of Polynomials, Acta Mathematica, Universtatis Comenian
- [3] Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press, New York (2002).
- [4] W.M.Shah and A. Liman, On Bounds for the Zeros of Polynomials, Anal.Theory Appl 20(1), 2004, 16-27.