The Nature Diagnosability of Bubble-sort Star Graphs under the PMC Model and MM* Model

Mujiangshan Wang, Yuqing Lin, Shiying Wang

Abstract

Many multiprocessor systems have interconnection networks as underlying topologies and an interconnection network is usually represented by a graph where nodes represent processors and links represent communication links between processors. No fault set can contain all the neighbors of any fault-free vertex in the system, which is called the nature diagnosability of the system. Diagnosability of a multiprocessor system is one important study topic. As a famous topology structure of interconnection networks, the n-dimensional bubble-sort star graph $B S_{n}$ has many good properties. In this paper, we prove that the nature diagnosability of $B S_{n}$ is $4 n-7$ under the PMC model for $n \geq 4$, the nature diagnosability of $B S_{n}$ is $4 n-7$ under the $\mathbf{M M}^{*}$ model for $n \geq 5$.

Index Terms—Bubble-sort star graph, Diagnosability, Interconnection network.

I. INTRODUCTION

Many multiprocessor systems have interconnection networks (networks for short) as underlying topologies and a network is usually represented by a graph where nodes represent processors and links represent communication links between processors. Some processors may fail in the system, so processor fault identification plays an important role for reliable computing. The first step to deal with faults is to identify the faulty processors from the fault-free ones. The identification process is called the diagnosis of the system. A system G is said to be t-diagnosable if all faulty processors can be identified without replacement, provided that the number of presented faults does not exceed t. The diagnosability $t(G)$ of G is the maximum value of t such that G is t-diagnosable. For a t-diagnosable system, Dahbura and Masson [1] proposed an algorithm with time complex $O\left(n^{2.5}\right)$, which can effectively identify the set of faulty processors. Several diagnosis models (e.g., Preparata, Metze, and Chien's (PMC) model [2], Barsi, Grandoni, and Maestrini's (BGM)model [3], and Maeng and Malek's (MM) model [4] have been proposed to investigate the diagnosability of multiprocessor systems. In particular, two of the proposed models, the PMC model and the MM model, are well known and widely used. In the PMC model, the diagnosis of the system is achieved through two linked processors testing each other. In the MM model, to diagnose a system, a node sends the same task to two of its neighbors, and then compares their responses. For this reason, the MM model is

[^0]also said to be the comparison model. Sengupta and Dahbura [1] proposed a special case of the MM model, called the MM* model, in which each node must test its any pair of adjacent nodes. Numerous studies have been investigated under the PMC model and MM model or MM* model.

In the traditional diagnosis of a multiprocessor system, one generally assumes that any subset of processors may simultaneously fail. If all the neighbors of some node v are faulty simultaneously, it is impossible to determine whether v is faulty or fault-free. As a consequence, the diagnosability of the system is less than its minimum node degree. However, in some large-scale multiprocessor systems, we can safely assume that all neighbors of any node do not fail at the same time. Based on this assumption, in 2005, Lai et al. [5] introduced the restricted diagnosability of the system called the conditional diagnosability. They consider the situation that no fault set can contain all the neighbors of any node in the system. Since the probability that the all neighbors of a fault node fail and create faults is more to the probability that the all neighbors of a fault-free node fail and create faults in the system, we consider the situation that no fault set can contain all the neighbors of any fault-free node in the system, which is called the nature diagnosability of the system. In 2012, Peng et al. [6] proposed a measure for fault diagnosis of the system, namely, the g-good-neighbor diagnosability (which is also called the g-good-neighbor conditional diagnosability), which requires that every fault-free node contains at least g fault-free neighbors. In [6], they studied the g-good-neighbor diagnosability of the n-dimensional hypercube under the PMC model. In [7], Wang and Han studied the g-good-neighbor diagnosability of the n-dimensional hypercube under the MM^{*} model. In 2016, Ren and Wang [8] gave some properties of the g-good-neighbor diagnosability of a multiprocessor system. In 2017, Wang et al. [9] studied that the 2-good-neighbor diagnosability of bubble-sort star graph networks under the PMC model and MM* model. Yuan et al. [10,11] studied that the g-good-neighbor diagnosability of the k-ary n-cube ($k \geq 3$) under the PMC model and MM^{*} model. As a favorable topology structure of interconnection networks, the Cayley graph $C \Gamma_{n}$ generated by the transposition tree Γ_{n} has many good properties. In [12], Wang et al. studied the 2-good-neighbor diagnosability of $C \Gamma_{n}$ under the PMC model and MM^{*} model. In 2016, Zhang et al. [13] proposed a new measure for fault diagnosis of the system, namely, the g-extra diagnosability, which restrains that every fault-free component has at least ($\mathrm{g}+1$) fault-free nodes. In [13], they studied the g-extra diagnosability of the n-dimensional hypercube under the PMC model and MM* model. In 2016, Wang et al. [14] studied that the 2-extra diagnosability of the n-dimensional bubble-sort star graph under the PMC model and MM^{*} model. In [15], Han and Wang studied that the

The Nature Diagnosability of Bubble-sort Star Graphs under the PMC Model and MM* Model

g-extra diagnosability of folded hypercubes. In 2017, Wang and Yang [16] studied the 2-good-neighbor (2-extra) diagnosability of alternating group graph networks under the PMC model and MM* model. In [17], Wang et al. studied the nature diagnosability of $C \Gamma_{n}$ under the PMC model and MM* model and proved that the nature diagnosability of the system is less than or equal to the conditional diagnosability of the system. Therefore, the nature diagnosability of the system is nature and one important study topic. In 2016, Bai and Wang [18] studied the nature diagnosability of Mö bius cubes; Hao and Wang [19] studied the nature diagnosibility of augmented k-ary n-cubes; Jirimutu and Wang [20] studied the nature diagnosability of alternating group graph networks; Ma and Wang [21] studied the nature diagnosability of crossed cubes; Zhao and Wang [22] studied the nature diagnosability of augmented 3-ary n-cubes. The star graph and the bubble-sort graph have been proved to be an important viable candidate for interconnecting a multiprocessor system. The feature of the star graph include low degree of node, small diameter, symmetry, and high degree of fault-tolerance. The diagnosabilities of the star graph under the PMC model and MM model were studied in [23,24]. Lin et al. [25] showed that the conditional diagnosability of the star graph under the comparison diagnosis model is $3 n-7$. In this paper, the nature diagnosability of the n-dimensional bubble-sort star graph $B S_{n}$ under the PMC model and MM* model has been studied. It is proved that the nature diagnosability of $B S_{n}$ is $4 n-7$ under the PMC model for $n \geq 4$, the nature diagnosability of $B S_{n}$ is $4 n-7$ under the MM^{*} model for $n \geq 5$.

II. Preliminaries

In this section, some definitions and notations needed for our discussion, the bubble-sort star graph, the PMC model and MM* model are introduced.

A. Definitions and Notations

A multiprocessor system is modeled as an undirected simple graph $G=(V, E)$, whose vertices (nodes) represent processors and edges (links) represent communication links. Given a nonempty vertex subset V^{\prime} of V, the subgraph induced by V^{\prime} in G, denoted by $G\left[V^{\prime}\right]$, is a graph, whose vertex set is V^{\prime} and the edge set is the set of all the edges of G with both endpoints in V^{\prime}. The degree $d_{G}(v)$ of a vertex v is the number of edges incident with v. We denote by $\delta(G)$ the minimum degrees of vertices of G. For any vertex v, we define the neighborhood $N_{G}(v)$ of v in G to be the set of vertices adjacent to $v . u$ is called a neighbor or a neighbor vertex of v for $u \in N_{G}(v)$. Let $S \subseteq V$. We use $N_{G}(S)$ to denote the set $\cup_{v \in S} N_{G}(v) \backslash S$. For neighborhoods and degrees, we will usually omit the subscript for the graph when no confusion arises. A graph G is said to be k-regular if for any vertex $v, d_{G}(v)=k$. Let G be a connected graph. The connectivity $\kappa(G)$ of a graph G is the minimum number of vertices whose removal results in a disconnected graph or only one vertex left when G is complete. A fault set $F \subseteq V$
is called a nature faulty set if $|N(v) \cap(V \backslash F)| \geq 1$ for every vertex v in $V \backslash F$. A nature cut of G is a nature faulty set F such that $G-F$ is disconnected. The minimum cardinality of nature cuts is said to be the nature connectivity of G, denoted by $\kappa^{*}(G)$. For graph-theoretical terminology and notation not defined here we follow [26].

B. The PMC model and $M M^{*}$ model

For the PMC model and MM* model, we follow [10].
In a system $G=(V, E)$, a faulty set $F \subseteq V$ is called a conditional faulty set if it does not contain all of neighbors of any vertex in G. A system G is conditional t-diagnosable if every two distinct conditional faulty subsets $F_{1}, F_{2} \in V$ with $\left|F_{1}\right| \leq t,\left|F_{2}\right| \leq t$ are distinguishable. The conditional diagnosability $t_{c}(G)$ of G is the maximum number of t such that G is conditional t-diagnosable. By [27], $t_{c}(G) \geq t(G)$.
Theorem 1. ([17]) For a system $G=(V, E), t(G)=t_{0}(G) \leq$ $t_{1}(G) \leq t_{c}(G)$.

In [17], Wang et al. proved that the nature diagnosability of the Bubble-sort graph B_{n} under the PMC model is $2 n-3$ for $n \geq 4$. In [28], Zhou et al. proved the conditional diagnosability of B_{n} is $4 n-11$ for $n \geq 4$ under the PMC model. Therefore, $t_{1}\left(B_{n}\right)<t_{c}\left(B_{n}\right)$ when $n \geq 5$ and $t_{1}\left(B_{n}\right)=$ $t_{c}\left(B_{n}\right)$ when $n=4$.

C. The bubble-sort star graph

The bubble-sort star graph has been known as a famous topology structure of interconnection networks. In this section, its definition and some properties are introduced.

Let $[n]=\{1,2, \cdots, n\}$, and let S_{n} be the symmetric group on [n]. containing all permutations $p=p_{1} p_{2} \cdots p_{n}$ of [n]. It is well known that $\{(1 i): 2 \leq i \leq n\}$ is a generating set for S_{n}. So $\{(1, i): 2 \leq i \leq n\} \cup\{(i, i+1): 2 \leq i \leq n-1\} \quad$ is also a generating set for S_{n}. The n-dimensional bubble-sort star graph $B S_{n}[29,30]$ is the graph with vertex set $V\left(B S_{n}\right)=S_{n}$ in which two vertices u, v are adjacent if and only if $u=v(1, i), 2 \leq i \leq n$, or $u=v(i, i+1), 2 \leq i \leq n-1$. It is easy to see from the definition that $B S_{n}$ is a $(2 n-3)$-regular graph on $n!$ vertices.

Note that $B S_{n}$ is a special Cayley graph. $B S_{n}$ has the following useful properties.
Proposition 1. For any integer $n \geq 1, B S_{n}$ is (2n-3)regular, vertex transitive.
Proposition 2. For any integer $n \geq 2, B S_{n}$ is bipartite.
Proposition 3. For any integer $n \geq 3$, the girth of $B S_{n}$ is 4 .
Theorem 2. ([31]) Let H be a simple connected graph with $n=|V(H)| \geq 3$. If H^{1} and H^{2} are two different labelled graphs obtained by labelling H with $\{1,2, \cdots, n\}$, then $\operatorname{Cay}\left(H^{1}, S_{n}\right)$ is isomorphic to $\operatorname{Cay}\left(H^{2}, S_{n}\right)$.

We can partition $B S_{n}$ into n subgraphs $B S_{1}, B S_{2}, \ldots, B S_{n}$, where every vertex $u=x_{1} x_{2} \ldots x_{n} \in V\left(B S_{n}\right)$ has a fixed integer i in the last position x_{n} for $i \in[n]$. It is obvious that
$B S_{n}^{i}$ is isomorphic to $B S_{n-1}$ for $i \in[n]$. Let $v \in V\left(B S_{n}^{i}\right)$. Then $v(1 n)$ and $v(n-1, n)$ are called outside neighbors of v.

Proposition 3. ([29]) Let $B S_{n}^{i}$ be defined as above. Then there are $2(n-2)$! independent cross-edges between two different H_{i} 's.
Proposition 4. ([29]) Let $B S_{n}$ be the bubble-sort star graph. If two vertices u, v are adjacent, there is no common neighbor vertex of these two vertices, i.e., $|N(u) \cap N(v)|=0$. If two vertices u, v are not adjacent, there are at most three common neighbor vertices of these two vertices, i.e., $|N(u) \cap N(v)| \leq 3$.
Lemma 1. ([9]) The nature connectivity $\kappa^{*}\left(B S_{4}\right)$ of the bubble-sort star graph $B S_{4}$ is 8 .

A connected graph G is super nature connected if every minimum nature cut F of $V(G)$ isolates one edge. If, in addition, $G-F$ has two components, one of which is an edge, then G is tightly $|F|$ super nature connected.
Theorem 3. ([14]) For $n \geq 5$, the bubble-sort star graph $B S_{n}$ is tightly $(4 n-8)$ super nature connected.
Lemma 2. Let $A=\{(1),(12)\}$. If $n \geq 4, F_{1}=N_{B S_{n}}(A)$, $F_{2}=A \cup N_{B S_{n}}(A)$, then $\left|F_{1}\right|=4 n-8,\left|F_{2}\right|=4 n-6$, $\delta\left(B S_{n}-F_{1}\right) \geq 1$, and $\delta\left(B S_{n}-F_{2}\right) \geq 1$.
Proof. By $A=\{(1),(12)\}$, we have $B S_{n}[A] \cong B S_{2}=K_{2}$. Since $B S_{n}$ has not 3-cycles, $\left|N_{B S_{n}}(A)\right|=4 n-8$. Thus from calculating, we have $\left|F_{1}\right|=4 n-8,\left|F_{2}\right|=|A|+\left|F_{1}\right|=4 n-6$.

Claim 1. For any $\left.x \in S_{n} \backslash F_{2}, \mid N_{B S_{n}}(x) \cap F_{2}\right) \mid \leq 2 n-4$.
Since $B S_{n}$ is a bipartite graph, there is no 5-cycle (1), (ki), $x,(12)(l j),(12),(1) \quad$ of $B S_{n}, \quad$ where $\quad(k i),(l j) \in$ $S \backslash(12)$. Let $u \in N_{B S_{n}}((1)) \backslash(12)$. If u is adjacent to x, then x is not adjacent to each of $N_{B S_{n}}((12)) \backslash(1)$. Since $\left|N_{B S_{n}}((1)) \backslash(12)\right|=2 n-4$, we have that x is adjacent to at most $(2 n-4)$ vertices in F_{1}.
By Claim 1, $\left.\mid N_{B S_{n}}(x) \cap F_{2}\right) \mid \leq 2 n-4$ for any $x \in S_{n} \backslash F_{2}$. Therefore, $\delta\left(B S_{n}-F_{2}\right) \geq 2 n-3-(2 n-4)=1 . B S_{n}-F_{1}$ has two components $B S_{n}-F_{2}$ and $B S_{2}$. Note that $\delta\left(B S_{2}\right)=1$. Therefore, $\delta\left(B S_{n}-F_{1}\right) \geq 1$.

III. The nature diagnosability of the bubble-Sort STAR GRAPH UNDER THE PMC MODEL

In this section, we shall show the nature diagnosability of the bubble-sort star graph under the PMC model. Let F_{1} and F_{2} be two distinct subsets of V for a system $G=(V, E)$. Define the symmetric difference $F_{1} \Delta F_{2}=\left(F_{1} \backslash F_{2}\right) \cup\left(F_{2} \backslash F_{1}\right)$. Yuan et al. [10] presented a sufficient and necessary condition for a system to be nature t-diagnosable under the PMC model.
Theorem 4. ([10]) A system $G=(V, E)$ is nature t-diagnos -able under the PMC model if and only if there is an edge $u v$ $\in E$ with $u \in V \backslash\left(F_{1} \cup F_{2}\right)$ and $v \in F_{1} \Delta F_{2}$ for each distinct
pair of nature faulty subsets F_{1} and F_{2} of V with $\left|F_{1}\right| \leq t$ and $\left|F_{2}\right| \leq t$.
Lemma 3. A graph of minimum degree 1 has at least two vertices.

The proof of Lemma 3 is trivial.
Lemma 4. Let $n \geq 4$. Then the nature diagnosability of the bubble-sort star graph $B S_{n}$ under the PMC model is less than or equal to $4 n-7$, i.e., $t_{1}\left(B S_{n}\right) \leq 4 n-7$.
Proof. Let A be defined in Lemma 2, and let $F_{1}=N_{B S_{n}}(A)$, $F_{2}=A \cup N_{B S_{n}}(A)$. By Lemma 2, $\left|F_{1}\right|=4 n-8,\left|F_{2}\right|=4 n-6$, $\delta\left(B S_{n}-F_{1}\right) \geq 1$ and $\delta\left(B S_{n}-F_{2}\right) \geq 1$. Therefore, F_{1} and F_{2} are both nature faulty sets of $B S_{n}$ with $\left|F_{1}\right|=4 n-8$ and $\left|F_{2}\right|=4 n-6$. Since $A=F_{1} \Delta F_{2}$ and $N_{B S_{n}}(A)=F_{1} \subset F_{2}$, there is no edge of $B S_{n}$ between $V\left(B S_{n}\right) \backslash\left(F_{1} \cup F_{2}\right)$ and $F_{1} \Delta F_{2}$. By Theorem 4, we can deduce that $B S_{n}$ is not nature $(4 n-6)$-diagnosable under the PMC model. Hence, by the definition of nature diagnosability, we conclude that the nature diagnosability of $B S_{n}$ is less than $4 n-6$, i.e.,
$t_{1}\left(B S_{n}\right) \leq 4 n-7$.
Lemma 5. Let $n \geq 4$. Then the nature diagnosability of the bubble-sort star graph $B S_{n}$ under the PMC model is more than or equal to $4 n-7$, i.e., $t_{1}\left(B S_{n}\right) \geq 4 n-7$.
Proof. By the definition of nature diagnosability, it is sufficient to show that $B S_{n}$ is nature ($4 n-7$) -diagnosable. By Theorem 4, to prove $B S_{n}$ is nature ($4 n-7$) -diagnosable, it is equivalent to prove that there is an edge $u v \in E\left(B S_{n}\right)$ with $u \in V\left(B S_{n}\right) \backslash\left(F_{1} \cup F_{2}\right)$ and $v \in F_{1} \Delta F_{2}$ for each distinct pair of nature faulty subsets F_{1} and F_{2} of $V\left(B S_{n}\right)$ with $\left|F_{1}\right| \leq 4 n-7$ and $\left|F_{2}\right| \leq 4 n-7$.

We prove this statement by contradiction. Suppose that there are two distinct nature faulty subsets F_{1} and F_{2} of $V\left(B S_{n}\right)$ with $\left|F_{1}\right| \leq 4 n-7$ and $\left|F_{2}\right| \leq 4 n-7$, but the vertex set pair $\left(F_{1}, F_{2}\right)$ is not satisfied with the condition in Theorem 4, i.e., there are no edges between $V\left(B S_{n}\right) \backslash\left(F_{1} \cup F_{2}\right)$ and $F_{1} \Delta F_{2}$. Without loss of generality, assume that $F_{2} \backslash F_{1} \neq \varnothing$. Suppose $V\left(B S_{n}\right)=F_{1} \cup F_{2}$. By the definition of $B S_{n}$, $\left|F_{1} \cup F_{2}\right|=\left|S_{n}\right|=n!$. It is obvious that $n!>8 n-14$ for $n \geq 4$. Since $n \geq 4$, we have that $n!=\left|V\left(B S_{n}\right)\right|=\left|F_{1} \cup F_{2}\right|=\left|F_{1}\right|+$ $+\left|F_{2}\right|-\left|F_{1} \cap F_{2}\right| \leq\left|F_{1}\right|+\left|F_{2}\right| \leq 2(4 n-7)=8 n-14$ a contradiction. Therefore, $V\left(B S_{n}\right) \neq F_{1} \cup F_{2}$.

Since there are no edges between $V\left(B S_{n}\right) \backslash\left(F_{1} \cup F_{2}\right)$ and $F_{1} \Delta F_{2}$, and F_{1} is a nature faulty set, $B S_{n}-F_{1}$ has two parts $B S_{n}-F_{1}-F_{2}$ and $B S_{n}\left[F_{2} \backslash F_{1}\right]$ (for convenience). Thus, $\delta\left(B S_{n}-F_{1}-F_{2}\right) \geq 1 \quad$ and $\delta\left(B S_{n}\left[F_{2} \backslash F_{1}\right]\right) \geq 1$. Similarly, $\delta\left(B S_{n}\left[F_{1} \backslash F_{2}\right]\right) \geq 1$ when $F_{1} \backslash F_{2} \neq \varnothing$. Therefore, $F_{1} \cap F_{2}$ is also a nature faulty set. When $F_{1} \backslash F_{2}=\varnothing, F_{1} \cap F_{2}=F_{1}$ is also a nature faulty set.Since there are no edges between $V\left(B S_{n}-F_{1}-F_{2}\right)$ and $F_{1} \Delta F_{2}, F_{1} \cap F_{2}$ is a nature cut. Since $n \geq 4$, by Theorem 3, $\left|F_{1} \cap F_{2}\right| \geq 4 n-8$. By Lemma 3, $\left|F_{2} \backslash F_{1}\right| \geq 2$. Therefore, $\left|F_{2}\right|=\left|F_{2} \backslash F_{1}\right|+\left|F_{1} \cap F_{2}\right| \geq 2+4 n-$
$8=4 n-6$, which contradicts with that $\left|F_{2}\right| \leq 4 n-7$. So $B S_{n}$ is nature ($4 n-7$) -diagnosable. By the definition of $t_{1}\left(B S_{n}\right), t_{1}\left(B S_{n}\right) \geq 4 n-7$.

Combining Lemmas 4 and 5, we have the following theorem.
Theorem 5. Let $n \geq 4$. Then the nature diagnosability of the bubble-sort star graph $B S_{n}$ under the PMC model is $4 n-7$.

IV. THE NATURE DIAGNOSABILITY OF THE BUBBLE-SORT STAR GRAPH $B S_{n}$ UNDER THE MM* MODEL

Before discussing the nature diagnosability of the bubble-sort star graph $B S_{n}$ under the MM* model, we first give an existing result.
Theorem 6. ([1,10]) A system $G=(V, E)$ is nature t-diagnosable under the MM^{*} model if and only if each distinct pair of nature faulty subsets F_{1} and F_{2} of V with $\left|F_{1}\right| \leq t$ and $\left|F_{2}\right| \leq t$ satisfies one of the following conditions.
(1) There are two vertices $u, w \in V \backslash\left(F_{1} \cup F_{2}\right)$ and there is a vertex $F_{1} \Delta F_{2}$ such that $u w \in E$ and $v w \in E$.
(2) There are two vertices $u, v \in F_{1} \backslash F_{2}$ and there is a vertex $w \in V \backslash\left(F_{1} \cup F_{2}\right)$ such that $u w \in E$ and $v w \in E$.
(3) There are two vertices $u, v \in F_{2} \backslash F_{1}$ and there is a vertex $w \in V \backslash\left(F_{1} \cup F_{2}\right)$ such that $u w \in E$ and $v w \in E$.
Lemma 6. Let $n \geq 4$. Then the nature diagnosability of the bubble-sort star graph $B S_{n}$ under the MM^{*} model is less than or equal to $4 n-7$, i.e., $t_{1}\left(B S_{n}\right) \leq 4 n-7$.
Proof. Let A, F_{1} and F_{2} be defined in Lemma 2. By Lemma 2, $\left|F_{1}\right|=4 n-8,\left|F_{2}\right|=4 n-6, \delta\left(B S_{n}-F_{1}\right) \geq 1$ and $\delta\left(B S_{n}-F_{2}\right) \geq 1$. So both F_{1} and F_{2} are nature faulty sets. By the definitions of F_{1} and $F_{2}, F_{1} \Delta F_{2}=A$. Note $F_{1} \backslash F_{2}=$ $\varnothing \quad, \quad F_{2} \backslash F_{1}=A \quad$ and $\quad\left(V\left(B S_{n}\right) \backslash\left(F_{1} \cup F_{2}\right)\right) \cap A=\varnothing$ Therefore, both F_{1} and F_{2} are not satisfied with any one condition in Theorem 6, and $B S_{n}$ is not nature ($3 n-6$) -diagnosable. Hence, $t_{1}\left(B S_{n}\right) \leq 4 n-7$. The proof is complete.
Lemma 7. Let $n \geq 5$. Then the nature diagnosability of the bubble-sort star graph $B S_{n}$ under the MM^{*} model is more than or equal to $4 n-7$, i.e., $t_{1}\left(B S_{n}\right) \geq 4 n-7$.
Proof. By the definition of nature diagnosability, it is sufficient to show that $B S_{n}$ is nature ($4 n-7$) -diagnosable.

By Theorem 6, suppose, on the contrary, that there are two distinct nature faulty subsets F_{1} and F_{2} of $B S_{n}$ with $\left|F_{1}\right| \leq 4 n-7$ and $\left|F_{2}\right| \leq 4 n-7$, but the vertex set pair $\left(F_{1}, F_{2}\right)$ is not satisfied with any one condition in Theorem 6. Without loss of generality, assume that $F_{2} \backslash F_{1} \neq \varnothing$. Similarly to the discussion on $V\left(B S_{n}\right) \neq F_{1} \cup F_{2}$ in Lemma 5, we can deduce that $V\left(B S_{n}\right) \neq F_{1} \cup F_{2}$. Therefore, $V\left(B S_{n}\right) \neq F_{1} \cup F_{2}$. Claim I. $B S_{n}-F_{1}-F_{2}$ has no isolated vertex.

Suppose, on the contrary, that $B S_{n}-F_{1}-F_{2}$ has at least one isolated vertex w. Since F_{1} is a nature faulty set, there is a vertex $u \in F_{2} \backslash F_{1}$ such that u is adjacent to w. Since the
vertex set pair $\left(F_{1}, F_{2}\right)$ is not satisfied with any one condition in Theorem 6, there is at most one vertex $u \in F_{2} \backslash F_{1}$ such that u is adjacent to w. Thus, there is just a vertex $u \in F_{2} \backslash F_{1}$ such that u is adjacent to w. Similarly, we can deduce that there is just a vertex $v \in F_{1} \backslash F_{2}$ such that v is adjacent to w when $F_{1} \backslash F_{2} \neq \varnothing$. Let $W \subseteq S_{n} \backslash\left(F_{1} \cup F_{2}\right)$ be the set of isolated vertices in $B S_{n}\left[S_{n} \backslash\left(F_{1} \cup F_{2}\right)\right]$, and let H be the subgraph induced by the vertex set $S_{n} \backslash\left(F_{1} \cup F_{2} \cup W\right)$. Then for any $w \in W$, there are $(2 n-5)$ neighbors in $F_{1} \cap F_{2}$. Since $\quad\left|F_{2}\right| \leq 4 n-7 \quad$, we have $\sum_{w \in W}\left|N_{B S_{n}\left[\left(F_{1} \cap F_{2}\right) \cup W\right]}(w)\right|=|W|(2 n-5) \leq \sum_{v \in F_{1} \cap F_{2}} d_{B S_{n}}(v) \leq$ $\left|F_{1} \cap F_{2}\right|(2 n-3) \leq\left(\left|F_{2}\right|-1\right)(2 n-3) \leq(4 n-8)(2 n-3)=$ $8 n^{2}-28 n+24$. It follows that $|W| \leq \frac{8 n^{2}-28 n+24}{2 n-5}<4 n-3$ for $\quad n \geq 5$. Note $\left|F_{1} \cup F_{2}\right|=\left|F_{1}\right|+\left|F_{2}\right|-\left|F_{1} \cap F_{2}\right| \leq$ $2(4 n-7)-(2 n-5)=6 n-9$. Suppose $V(H)=\varnothing$. Then $n!=\left|S_{n}\right|=\left|V\left(B S_{n}\right)\right|=\left|F_{1} \cup F_{2}\right|+|W|<6 n-9+4 n-3=10 n$ -11 . This is a contradiction to $n \geq 5$. So $V(H) \neq \varnothing$.

Since the vertex set pair $\left(F_{1}, F_{2}\right)$ is not satisfied with the condition (1) of Theorem 6, and any vertex of $V(H)$ is not isolated in H, we induce that there is no edge between $V(H)$ and $F_{1} \Delta F_{2}$. Thus, $F_{1} \cap F_{2}$ is a vertex cut of $B S_{n}$ and $\delta\left(B S_{n}-\left(F_{1} \cap F_{2}\right)\right) \geq 1$, i.e., $F_{1} \cap F_{2}$ is a nature cut of $B S_{n}$. By Theorem 3, $\left|F_{1} \cap F_{2}\right| \geq 4 n-8$. Because $\left|F_{1}\right| \leq 4 n-7$, $\left|F_{2}\right| \leq 4 n-7$, and neither $F_{1} \backslash F_{2}$ nor $F_{2} \backslash F_{1}$ is empty, we have $\left|F_{1} \backslash F_{2}\right|=\left|F_{2} \backslash F_{1}\right|=1$. Let $F_{1} \backslash F_{2}=\left\{v_{1}\right\}$ and $F_{2} \backslash F_{1}=$ $\left\{v_{2}\right\}$. Then for any vertex $w \in W, w$ are adjacent to v_{1} and v_{2}. According to Proposition 5, there are at most three common neighbors for any pair of vertices in $B S_{n}$, it follows that there are at most three isolated vertices in $B S_{n}-F_{1}-F_{2}$, i.e., $|W| \leq 3$.

Suppose that there is exactly one isolated vertex v in $B S_{n}-F_{1}-F_{2}$.
Let v_{1} and v_{2} be adjacent to v. Then $N_{B S_{n}}(v) \backslash\left\{v_{1}, v_{2}\right\}$ $\subseteq F_{1} \cap F_{2}$. Since $B S_{n}$ contains no triangle, it follows that $N_{B S_{n}}\left(v_{1}\right) \backslash\{v\} \subseteq F_{1} \cap F_{2} \quad ; \quad N_{B S_{n}}\left(v_{2}\right) \backslash\{v\} \subseteq F_{1} \cap F_{2} \quad ;$ $\left[N_{B S_{n}}(v) \backslash\left\{v_{1}, v_{2}\right\}\right] \cap\left[N_{B S_{n}}\left(v_{1}\right) \backslash\{v\}\right]=\varnothing$ and
$\left[N_{B S_{n}}(v) \backslash\left\{v_{1}, v_{2}\right\}\right] \cap\left[N_{B S_{n}}\left(v_{2}\right) \backslash\{v\}\right]=\varnothing$. By Proposition 5, $\left|\left[N_{B S_{n}}\left(v_{1}\right) \backslash\{v\}\right] \cap\left[N_{B S_{n}}\left(v_{2}\right) \backslash\{v\}\right]\right| \leq 2$. Thus, $\left|F_{1} \cap F_{2}\right| \geq$ $\left|N_{B S_{n}}(v) \backslash\left\{v_{1}, v_{2}\right\}\right|+\left|N_{B S_{n}}\left(v_{1}\right) \backslash\{v\}\right|+\left|N_{B S_{n}}\left(v_{2}\right) \backslash\{v\}\right|=(2 n-$ 5) $+(2 n-4)+(2 n-4)-2=6 n-15$. It follows that $\left|F_{2}\right|=$ $\left|F_{2} \backslash F_{1}\right|+\left|F_{1} \cap F_{2}\right| \geq 1+6 n-15=6 n-14>4 n-7(n \geq 5)$, which contradicts $\left|F_{2}\right| \leq 4 n-7$.

Suppose that there are exactly two isolated vertices v and w in $B S_{n}-F_{1}-F_{2}$.
Let v_{1} and v_{2} be adjacent to v and w, respectively. Then $N_{B S_{n}}(v) \backslash\left\{v_{1}, v_{2}\right\} \subseteq F_{1} \cap F_{2}$. Since $B S_{n}$ contains no triangle, it follows that $N_{B S_{n}}\left(v_{1}\right) \backslash\{v, w\} \subseteq F_{1} \cap F_{2}, N_{B S_{n}}\left(v_{2}\right) \backslash\{v, w\}$
$\subseteq F_{1} \cap F_{2}, \quad\left[N_{B S_{n}}(v) \backslash\left\{v_{1}, v_{2}\right\}\right] \cap\left[N_{B S_{n}}\left(v_{1}\right) \backslash\{v, w\}\right]=\varnothing$ and $\left[N_{B S_{n}}(v) \backslash\left\{v_{1}, v_{2}\right\}\right] \cap\left[N_{B S_{n}}\left(v_{2}\right) \backslash\{v, w\}\right]=\varnothing$. By Proposition 5, there are at most two common neighbors for any pair of vertices in $B S_{n}$. Thus, it follows that $\mid\left[N_{B S_{n}}\left(v_{1}\right) \backslash\{v, w\}\right] \cap$
$\left[N_{B S_{n}}\left(v_{2}\right) \backslash\{v, w\}\right] \mid \leq 1$. Thus, $\left|F_{1} \cap F_{2}\right| \geq\left|N_{B S_{n}}(v) \backslash\left\{v_{1}, v_{2}\right\}\right|$
$+\left|N_{B S_{n}}(w) \backslash\left\{v_{1}, v_{2}\right\}\right|+\left|N_{B S_{n}}\left(v_{1}\right) \backslash\{v, w\}\right|+\left|N_{B S_{n}}\left(v_{2}\right) \backslash\{v, w\}\right|$
$=(2 n-5)+(2 n-5)-1+(2 n-5)+(2 n-5)-1=8 n-22 \quad$. It
follows that $\left|F_{2}\right|=\left|F_{2} \backslash F_{1}\right|+\left|F_{1} \cap F_{2}\right| \geq 1+8 n-22=8 n-21$ $>4 n-7$ ($n \geq 5$), which contradicts $\left|F_{2}\right| \leq 4 n-7$.
Suppose that there are exactly three isolated vertices u, v and w in $B S_{n}-F_{1}-F_{2}$.
Let v_{1} and v_{2} be adjacent to u, v and w, respectively. Then $N_{B S_{n}}(v) \backslash\left\{v_{1}, v_{2}\right\} \subseteq F_{1} \cap F_{2}$. Since $B S_{n}$ contains no triangle, it follows that $N_{B S_{n}}\left(v_{1}\right) \backslash\{u, v, w\} \subseteq F_{1} \cap F_{2}$,
$N_{B S_{n}}\left(v_{2}\right) \backslash\{u, v, w\} \subseteq F_{1} \cap F_{2},\left[N_{B S_{n}}(v) \backslash\left\{v_{1}, v_{2}\right\}\right] \cap\left[N_{B S_{n}}\left(v_{1}\right)\right.$
$\backslash\{u, v, w\}]=\varnothing$ and $\left[N_{B S_{n}}(v) \backslash\left\{v_{1}, v_{2}\right\}\right] \cap\left[N_{B S_{n}}\left(v_{2}\right) \backslash\{u, v, w\}\right]$
$=\varnothing$. By Proposition 5, there are at most three common neighbors for any pair of vertices in $B S_{n}$. Thus, it follows that $\left|\left[N_{B S_{n}}\left(v_{1}\right) \backslash\{u, v, w\}\right] \cap\left[N_{B S_{n}}\left(v_{2}\right) \backslash\{u, v, w\}\right]\right|=0$. Thus, $\left|F_{1} \cap F_{2}\right| \geqslant\left|N_{B S_{n}}(u) \backslash\left\{v_{1}, v_{2}\right\}\right|+\left|N_{B S_{n}}(v) \backslash\left\{v_{1}, v_{2}\right\}\right|+\mid N_{B S_{n}}(w)$ $\backslash\left\{v_{1}, v_{2}\right\}\left|+\left|N_{B S_{n}}\left(v_{1}\right) \backslash\{u, v, w\}\right|+\left|N_{B S_{n}}\left(v_{2}\right) \backslash\{u, v, w\}\right|=(2 n-\right.$ 5) $+(2 n-5)+(2 n-5)+(2 n-6)+(2 n-6)-3=10 n-30$. It follows that $\left|F_{2}\right|=\left|F_{2} \backslash F_{1}\right|+\left|F_{1} \cap F_{2}\right| \geq 1+10 n-30=$ $10 n-29>4 n-7 \quad(n \geq 5)$, which contradicts $\left|F_{2}\right| \leq 4 n-7$.

Suppose $F_{1} \backslash F_{2}=\varnothing$. Then $F_{1} \subseteq F_{2}$. Since F_{2} is a nature faulty set, $B S_{n}-F_{2}=B S_{n}-F_{1}-F_{2}$ has no isolated vertex. The proof of Claim I is complete.

Let $u \in V\left(B S_{n}\right) \backslash\left(F_{1} \cup F_{2}\right)$. By Claim I, u has at least one neighbor in $B S_{n}-F_{1}-F_{2}$. Since the vertex set pair $\left(F_{1}, F_{2}\right)$ is not satisfied with any one condition in Theorem 6, by the condition (1) of Theorem 6, for any pair of adjacent vertices $u, w \in V\left(B S_{n}\right) \backslash\left(F_{1} \cup F_{2}\right)$, there is no vertex $v \in F_{1} \Delta F_{2}$ such that $u w \in E\left(B S_{n}\right)$ and $v w \in E\left(B S_{n}\right)$. It follows that u has no neighbor in $F_{1} \Delta F_{2}$. By the arbitrariness of u, there is no edge between $V\left(B S_{n}\right) \backslash\left(F_{1} \cup F_{2}\right)$ and $F_{1} \Delta F_{2}$. Since $F_{2} \backslash F_{1} \neq \varnothing$ and F_{1} is a nature faulty set, $\delta_{B S_{n}}\left(\left[F_{2} \backslash F_{1}\right]\right) \geq 1$. By Lemma 3, $\left|F_{2} \backslash F_{1}\right| \geq 2$. Since both F_{1} and F_{2} are nature faulty sets, and there is no edge between $V\left(B S_{n}\right) \backslash\left(F_{1} \cup F_{2}\right)$ and $F_{1} \Delta F_{2}, F_{1} \cap F_{2}$ is a nature cut of $B S_{n}$. By Theorem 3, we have $\left|F_{1} \cap F_{2}\right| \geq 4 n-8$. Therefore, $\left|F_{2}\right|=\left|F_{2} \backslash F_{1}\right|+\mid F_{1}$ $\cap F_{2} \mid \geq 2+(4 n-8)=4 n-6$, which contradicts $\left|F_{2}\right| \leq 4 n-7$. Therefore, $B S_{n}$ is nature $(4 n-7)$-diagnosable and $t_{1}\left(B S_{n}\right) \geq 4 n-7$. The proof is complete.
Combining Lemmas 6 and 7, we have the following theorem.
Theorem 7. Let $n \geq 5$. Then the nature diagnosability of the bubble-sort star graph $B S_{n}$ under the MM^{*} model is $4 n-7$.

ACKNOWLEDGMENT

This work is supported by the National Natural Science Foundation of China (NO. 61772010).

REFERENCES

[1] Dahbura, A.T., Masson, G.M., An $O\left(n^{2.5}\right)$ Fault identification algorithm for diagnosable systems. IEEE Transactions on Computers, 33 (6), 486-492, 1984.
[2] Preparata, F.P., Metze, G., Chien, R.T., On the connection assignment problem of diagnosable systems. IEEE Transactions on Computers, EC-16, 848-854, 1967.
[3] Barsi, F., Grandoni, F., Maestrini, P., A Theory of Diagnosability of Digital Systems. IEEE Transactions on Computers, 25 (6), 585-593, 1976.
[4] Maeng, J., Malek, M., A comparison connection assignment for self-diagnosis of multiprocessor systems. Proceeding of 11th International Symposium on Fault-Tolerant Computing, 173-175, 1981.
[5] Lai, P.-L., Tan, J.J.M., Chang, C.-P., Hsu, L-H., Conditional Diagnosability Measures for Large Multiprocessor Systems. IEEE Transactions on Computers, 54 (2), 165-175, 2005.
[6] Peng, S.-L., Lin, C-K., Tan, J.J.M., Hsu, L.-H., The g-good-neighbor conditional diagnosability of hypercube under PMC model. Applied Mathematics and Computation, 218 (21), 10406-10412, 2012.
[7] Wang, S., Han, W., The g-good-neighbor conditional diagnosability of n-dimensional hypercubes under the MM^{*} model. Information Processing Letters, 116, 574-577, 2016.
[8] Ren, Y., Wang, S., Some properties of the g-good-neighbor (g-extra) diagnosability of a multiprocessor system. American Journal of Computational Mathematics, 6, 259-266, 2016.
[9] Wang, S., Wang, Z., Wang, M., The 2-good-neighbor connectivity and 2-good-neighbor diagnosability of bubble-sort star graph networks. Discrete Applied Mathematics, 217, 691-706, 2017.
[10] Yuan, J., Liu, A., Ma, X., Liu, X., Qin, X., Zhang, J., The g-good-neighbor conditional diagnosability of k-ary n-cubes under the PMC model and MM* model. IEEE Transactions on Parallel and Distributed Systems, 26, 1165-1177, 2015.
[11] Yuan, J., Liu, A., Qin, X., Zhang, J., Li, J., g-Good-neighbor conditional diagnosability measures for 3 -ary n-cube networks. Theoretical Computer Science, 622, 144-162, 2016.
[12] Wang, M., Lin, Y., Wang, S., The 2-good-neighbor diagnosability of Cayley graphs generated by transposition trees under the PMC model and MM* model. Theoretical Computer Science, 628, 92-100, 2016.
[13] Zhang, S., Yang, W., The g-extra conditional diagnosability and sequential t / k-diagnosability of hypercubes. International Journal of Computer Mathematics, 93 (3), 482-497, 2016.
[14] Wang, S., Wang, Z., Wang, M., The 2-extra connectivity and 2-extra diagnosability of bubble-sort star graph networks. The Computer Journal, 59 (12), 1839-1856, 2016.
[15] Han, W., Wang, S., The g-extra conditional diagnosability of folded hypercubes. Applied Mathematical Sciences, 9 (146), 7247-7254, 2015.
[16] Wang, S., Yang, Y., The 2-good-neighbor (2-extra) diagnosability of alternating group graph networks under the PMC model and MM* model. Applied Mathematics and Computation, 305, 241-250, 2017.
[17] Wang, M., Guo, Y., Wang, S., The 1-good-neighbor diagnosability of Cayley graphs generated by transposition trees under the PMC model and MM* model. International Journal of Computer Mathematics, 94 (3), 620-631, 2017.
[18] Bai, C., Wang, S., Wang, Z., The 1-good-neighbor connectivity and diagnosability of $\mathrm{M} \ddot{\circ}$ bius cubes. Advances in Applied Mathematics, 5 (4), 728-737, 2016.
[19] Hao, Y., Wang, S., The 1-good-neighbor diagnosibility of augmented k-ary n-cubes. Advances in Applied Mathem, 5 (4), 762-772, 2016.
[20] Jirimutu, Wang, S., The 1-good-neighbor diagnosability of alternating group graph networks under the PMC model and MM* model. Recent Patents on Computer Science, 10, 1-7, 2017.
[21] Ma, X., Wang, S., Wang, Z., The 1-good-neighbor connectivity and diagnosability of crossed Cubes. Advances in Applied Mathematics. 5 (3), 282-290, 2016.
[22] Zhao, N., Wang, S., The 1-good-neighbor diagnosability of augmented 3-ary n-cubes. Advances in Applied Mathematics,5 (4), 754-761, 2016.
[23] Kavianpour , A., Sequential diagnosability of star graphs. Computers and Electrical Engineering, 22 (1), 37-44, 1996.
[24] Zheng, J., Latifi, S., Regentova, E., Luo, K., Wu, X., Diagnosability of star graphs under the comparison diagnosis model. Information Processing Letters, 93 (1), 29-36. 2005.
[25] Lin, C.-K., Tan, J.J.M., Hsu, L.-H., Cheng, E., Liptàk, L., Conditional Diagnosability of Cayley Graphs Generated by Transposition Trees under the Comparison Diagnosis Model. Journal of Interconnection Networks, 9 (1-2), 83-97, 2008.
[26] Bondy, J.A., Murty , U.S.R., Graph Theory. Springer, New York , 2007.
[27] Hsieh, S.-Y., Kao, C.-Y., The conditional diagnosability of k-ary n -ubes under the comparison diagnosis model. IEEE Transactions on Computers, 62 (4), 839-843, 2013.
[28] Zhou, S., Wang, J., Xu, X., Xu, J.-M., Conditional fault diagnosis of bubble sort graphs under the PMC model. Intelligence Computation and Evolutionary Computation, 180, 53-59, 2013.
[29] Cai, H., Liu, H., Lu, M., Fault-tolerant maximal local-connectivity on Bubble-sort star graphs. Discrete Applied Mathematics, 181, 33-40, 2015.
[30] Guo, J., Lu, M., Conditional diagnosability of bubble-sort star graphs. Discrete Applied Mathematics, 201(11), 141-149, 2016.
[31] Wang, M., Yang, W., Guo, Y., Wang, S., Conditional Fault Tolerance in a Class of Cayley Graphs. International Journal of Computer Mathematics, 3 (1), 67-82, 2016.

[^0]: Mujiangshan Wang, School of Electrical Engineering and Computer Science, The University of Newcastle NSW 2308, Australia.

 Yuqing Lin, School of Electrical Engineering and Computer Science, The University of Newcastle NSW 2308, Australia.
 *Shiying Wang, School of Mathematics and Information Science, Henan Normal University, Xinxiang, PR China, +86-03733326148.

