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Abstract— We study the new concept of a p-convex function 

and A-p-convex sets for some  set A of a vector space  E. These 

concepts may have applications in convex and non linear 

analysis and other topics of mathematical sciences. 

 

 Index Terms— Non convex analysis, convex and p-convex sets , 

A-p-convex sets, p-convex functions, discrete sets 

I. INTRODUCTION 

In this paper, we extend some concepts and theorems to non 
convex analysis .  In fact, we have proved that the family of 
p-convex sets form a vector space, (Th.2.3). 
   The epigraph of  f  is defined to be the set of all points lying 
on or above its graph.  We proved that, if S is  a nonempty 

p-convex set in   and   f: S . Then  f  is  p-convex if 
and only  if  the epigraph of  f,  p-epi f  , is a p-convex set (Th. 

3.3).  As an example of a p-convex function is  f(x)=   

defined by a p-norm on a vector space ( Example 3.1). 
   We also proved equivalent properties to A-p-convex sets 
for some fixed set A of  E, (Th.3.5). Here the set B is said to be  

A-p-convex set if B=A  for some p-convex set C  in  E. 
  Now for  two fixed subsets  A  and  Q  of a vector space  E  if 
an operator  between two power sets, 

 :P(E)  

 is defined by 

 
 for a real vector space  E and  for  any subset A  of   E   we 

proved that  B  is a A-p-convex if and only if  B=  (B) for all  

Q  , (Th. 3.5) 

II.   SOME PROPERTIES OF P-CONVEX SETS : 

Throughout this paper we let 0˂p 1. Let us first go to the 

following definitions and examples 

A  “p-norm”   on a vector space E over a field K is a mapping  
f(x)=   from E to   satisfying the following 

axioms, 

1.  =0  if and only if  x=0,  x  

2.  

     3.  = ≤ + = , x,y for all  

x,y . 

Let U be a set in a vector space E and  x, y U, s ,t ≥0. The 
set  
 

 
 Aboubakr Bayoumi,and Ahmed fathy, Mathematics Deprt.,, Alazhar 
University / Faculty of science, Cairo, Naser City,Cairo Egypt, tel.+20 127 
65976597585,P.O.Box 11884 

 

 

={sx+ty ; + =1},   x  

      ={ + y ;  s+t=1} 

Is said to be the “closed arc segment “  joining   x, y.   

can also be written as  

 x+  

A set  A  in a vector space is said to be “P-convex” if  for all x 
,y , we have  

s x + t y whenever   + =1 
Equivalently, if we put s=1-t , we obtain 

x+ y    whenever  

We note that the singleton set   is convex but it is 

not p-convex. 
  As examples of p-convex  sets  is the arc segment defined 
above. 

 Also the closed unit ball in  , in the metric space  , 

= } 

Is a p-convex set. 

We claim that   ,   for  x 

,y  

Note that  

  

= + , 

+ ) . 

Since  (  ,  a , b> 0 and  

1 , it follows that 

| +  

+  

≤(   +| +(| 

 +|  

≤(    + +  

+  

≤ (1-t)+t ≤1.      
 
    In what follows we show that the family of p-convex sets is 
closed under the operations of the sum and scalar 
multiplication. 

Theorem  2.1 . If  and    are p-convex sets , then 

 is also p-convex, where  

} 

Proof. 

Let  x, y  then  
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x=  and  y=   ,  for every  

 and   ,  

Now , 

 + y=  

+  (  

=[  +  ]+  

+  . 

Therefore    is a p-convex set .   .     
 

Theorem 2.2.  If  C  is a p-convex set, then  C  is also 
p-convex, where  

C={ x, x  

Proof.  Let x, y C , then  and y=   for 

every   ,  
Now 

 + y=  

+   

                                    =  

+   

Then  C is a p-convex set.     
                                                

Corollary 2.3 If and  are p-convex sets, then 

+ is also a p-convex set, where   are 
scalar. That is, the family of p-convex sets form a vector 
space. 

Proof . It is obvious.        
   If X is a topological vector space and A  is  a subset of  X , 
the “closed p-convex hull” , denoted by “p-cvx “, is the 
smallest closed  p-convex  set containing A. 

   Let  , …, where  A is p-convex . Given 

 ≥0 such that =1, then is said to be a 

“p-convex combination of  .” 

 

III. P-CONVEX FUNCTIONS  AND P-EPIGRAPH. 

 
    In this paper, we extend some concepts and theorems to 
non convex analysis .  In fact, we have proved that the family 
of p-convex sets form a vector space, (Th.2.3). 
   The epigraph of  f  is defined to be the set of all points lying 
on or above its graph.  We proved that, if S is  a nonempty 

p-convex set in   and   f: S . Then  f  is  p-convex if 
and only  if  the epigraph of  f,  p-epi f  , is a p-convex set (Th. 

3.3).  As an example of a p-convex function is  f(x)=   

defined by a p-norm on a vector space ( Example 3.1). 
   We also proved equivalent properties to A-p-convex sets 
for some fixed set A of  E, (Th.3.5). Here the set B is said to be  

A-p-convex set if B=A  for some p-convex set C  in  E. 
  Now for  two fixed subsets  A  and  Q  of a vector space  E  if 
an operator  between two power sets, 

 :P(E)  

 is defined by 

 
 for a real vector space  E and  for  any subset A  of   E   we 

proved that  B  is a A-p-convex if and only if  B=  (B) for all  

Q  , (Th. 3.5) 

    Finally, we proved that the intersection   , j  of  

A-p-convex sets  is A-p-convex, (Th.3.8). 

 
    Example 3.1.   The following is an example of a p-convex 

function. let 

f:   R  with  f(x)=  , x , 

In fact, 

f(  

+ y)=||  

≤| |  +  

i.e. f(x)  is a p-convex  function.  

    Example 3.2. The following is an example of ½ -convex 

function 

f( ) =  

In fact,  

f((1-t x+ )=f((1- ( ( )) 

=f((1- , ((1- )+  

=f((1- ), ((1- )) 

=

 

 

+  

 +t(  

≤ +t f(y).   

    Let  S be a non convex set of a vector space  E  and   

f:S  ; “the epigraph of  f ”  denoted by  p-epi f , is a 
subset of  E x R  defined by , 

p-epi f ={(x, t); x  , t  

That is, the epigraph of  f  is the set of all points lying on or 
above its graph. 

. Theorem 3.3.  Let  S  be a nonempty p-convex set in    

and   f: S . Then  f  is  p-convex if and only  if   p-epi f  
is a p-convex set. 
Proof . Assume  f  is a  p-convex function. Let  (a 

,b) and in  p-epi f  .Then for any  

t   ,we have  
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f(  

+ b)   

 

Since S  is a p-convex set,   + b  
Therefore, 

(  + b)  

) , 

i.e.,  p-epi f  is a p-convex set. 
To show sufficiency, assume that  epi-f  is a p-convex set, and 

consider a, b S and  

(a, f(a)) , (b, f(b))  

From p-convexity of  p-epi f , for   t  , we have 

(  + b)  

) , 

Since, 

f(  

+ b) ), 

it follows that f  is a p-convex function.   
 
Corollary 3.4. If  f  and g are p-convex functions , then  

  is also a p-convex function, when   0. 

Proof. 

 (  )[  + y]= 

 (  + y]+  

)  + y 

  

+ y)]+  + y)], 

since  f  and  g  are p-convex. Therefore    is also 

p-convex.   
 
    Let  E  be a real vector space and fix a subset  A   of  E . A 
set  B  of  E  is said to be “ A-p-convex”  if there exist a 
p-convex  set  C  in  E  such that 

B=C  A. 

We are interested in the case  E=   and  A= . 
    For digitization of p-convex sets the mapping  

C is not always satisfactory, because it yields 
the empty set for some long and narrow p-convex sets C. One 
might then want to replace it by a mapping like 

C  

where D is some fixed set which grantees that the image is 
nonempty when  C  is nonempty. 
 
Theorem 3.5.  Given a vector space E and a subset  A of  E , 
the following properties are equivalent for any subset  B  of  
A. 
1.  B  is  A-p-convex. 

2. B=A  (p-cvx B)  

3.  B B) 

4.  For all  n, all  …, and for all 

nonnegative numbers  …, with  =1, 

If  A, then  B, 

Proof. This is obvious. As far as property  4  is concerned , we 
can in view generalize of  Caratheodory,s  theorem,  let  n  be 
the dimension of  E  if the space is finite dimensional; 

otherwise we must use all  n.    
    Let us now fix two subsets  A  and  Q  of a vector space  E  
and define an operator  between two power sets, 

 :P(E)  

by 

 

We may consider  E=  , A=m , m=1,2,…and Q= . 

Note that    is  A-p-convex if  C  is  p-convex in  . 

 

Theorem 3.6  .Let  E  be a real vector space and  A  any subset 

of  E . Then B  is A-p-convex if and only if  B=   for 

all  Q  , also if and only if B=  for some  Q  

Proof.  If  B  is  A-p-convex, then  B=C A for some 
p-convex   C. Now, 
 

 

                                  =   

                                  

=   for all   

Q . 

If   B=   for some choice of  Q   then 

B= =C  

Defining  C=p-cvx(B Q)  so that   B is A-p-convex.    

Corollary 3.7.  If ,  then  Q   for 
any  Q. 
Proof. Note that in the previous definition of  A-p-convex sets 
we may take 

C=  

Provided that Q .   

Theorem 3.8. Let  E  be a vector space and  A  any subset of  

E. If   are  A-p-convex sets,  then the intersection  

 is a A-p-convex set . If the index set J is ordered and 

filtering to right and if (   is an increasing family of   

A-p-convex sets, then the union   is also p-convex. 

Proof. For each we have 

 

where  =p-cvx is a p-convex set in E. Then 

. 

For the union we have 
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.  .   

IV. CONCLUSION 

A conclusion section is not required. Although a conclusion 
may review the main points of the paper, do not replicate the 
abstract as the conclusion. A conclusion might elaborate on 
the importance of the work or suggest applications and 
extensions 
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