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Abstract² The form error is an important index used to 

evaluate the form precision of parts; the accuracy of its 

evaluation method has a significant influence on the quality and 

use performance of a mechanical product. With the development 

of modern measuring techniques, especially the coordinate 

measuring machines (CMM) and other precision measuring 

instruments have already been applied to practical production 

extensively, it has important practical meaning to study 

sculptured surface form error evaluation method based on the 

coordinate measuring data. In view of this current situation, 

based on the related principle of the form error evaluation 

within the framework of the new generation GPS standards 

system, a generalized mathematical model of form errors 

evaluation based on the least square method is proposed in this 

paper, and then the way of solving the evaluation model by using 

multiple nonlinear optimization function in MATLAB 

optimization toolbox is also studied. Finally, a numerical 

example based on the actual measurement data obtained by 

CMM is given to verify the evaluation model. 

 
Index Terms² CMM, Evaluation, Form error, Least square 

method, MATLAB, New generation GPS standards system 

 

I. INTRODUCTION 

  The form error is the variation of actual shape of a 
geometric feature relative to its nominal shape of the part. The 
reason for causing the form errors is very complex, including 
the impacts of geometric errors of machining tools, cutting 
tools, fixtures, etc; and that of installation and adjustment 
errors of part; the elastic deformation of workpieces and 
machining equipments caused by cutting force and clamping 
force in the process of machining; and temperature change, 
vibration and cutting-tool wear during cutting etc [1]. The 
form errors have a great influence on the performance of 
mechanical parts. For example, the form error of the 
cylindrical surface will cause uneven gap distribution, 
accelerate the local wear and reduce the life of the part in 
clearance fit. The form error of the plane will reduce the 
actual supporting area of the contact parts, increase the 
pressure per unit area, and increase the deformation of the 
contact surface. Due to the massive impact of the form errors 
on the working accuracy and the life of products, it has great 
significance to correctly inspect and evaluate the form errors 
to ensure the quality of parts and mechanical products. 
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Researchers at home and abroad have made great 

achievements in the errors evaluation of some geometric 
tolerance items such as straightness, flatness, roundness, 
sphericity, etc. And the corresponding evaluation techniques 
are becoming more and more mature [2-3]. The evaluation 
methods of straightness errors include two points connection 
method, the minimum area method and the least square 
method, etc. The diagonal plane method, three far point plane 
method, least square method and minimum area method are 
used to evaluate flatness error. The evaluation methods of 
roundness errors evaluation have minimum circumscribed 
circle and maximum inscribed circle method, minimum zone 
method and least square method, etc. Along with the 
increasingly widespread application of complex curved 
surface parts, the research of form error evaluation for these 
parts is becoming more and more important. In this paper, a 
generalized approach for evaluating the form error of 
complex sculptured surface is studied based on the least 
square method. 

II. ATHEMATICAL MODEL OF FORM ERRORS EVALUATION 

In this section, a generalized mathematical model of form 
error evaluation for sculptured surface based on the least 
square method is studied. 

The equation of any ideal surface S in space can be 
expressed as: 

0)z,y,x(f                                                   (1) 

As shown in Fig. 1, the feature of any point (x, y, z) on 
surface S can be described by three vectors, namely radius 
vector r, unit normal vector n and spherical tangent vector t 
[4]: 

°
¯

°
®

­

D�E�J�D�E�J u 

�J��E��D 

����� 

kjinrt

kjin

kjir

)cosycosx()cosxcosz()coszcosy(

coscoscos

zyx

   (2) 

Where 2
z

2
y

2
xx ffffcos �� D , 

2
z

2
y

2
x ffffcos �� E y

, 2
z

2
y

2
xz ffffcos �� J , x/ffx ww , 

y/ffy ww , z/ffz ww . Vector t is located in the tangent 

plane of surface S and tangential to the intersecting line of the 
surface S and the sphere of radius ||r|| centered at the origin, 

222 zyx �� r
. Vectors r, n, t can also be regarded as the 

coordinate axes of surface S at this point. 
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Fig. 1 Unit normal vector and spherical tangent vector of arbitrary 
space surface 

Suppose the coordinate value of any measuring point on the 

surface is 
T

iiii ]z,y,[x r  (i = 1, 2, C, p), p is the number 

of the measured points. Under the assumption of small 
deviation and small error, the actual measuring points are all 

located near the ideal surface S. The distance )r(d i  from the 

actual measuring point ir
 to the surface S is formulized as 
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Due to the deviation between the measuring datum and 
evaluation datum, the coordinate values of the measured 
points should be adjusted slightly in the evaluation. In 
general, the tiny adjustment consists of three tiny translations 

x' ã y' ã z'  and three tiny rotations xG ã yG ã

zG .Assume that the tiny adjustment variable is 

],,,,,[ zyxzyx GGG''' 2
, the coordinates 
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of the measured points after adjustment can be obtained by 
differential transformation formula: 
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The distance from the actual measured point *
ir  to the ideal 

surface S is related with vector 2  and it is linear function of 

2 , which is represented as );r(d)r(d *
i 2

*

i , we have from 

Eq.(3): 
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Because surface )z,y,x(f  is fully smooth and 

],,,,,[ zyxzyx GGG''' 2  is a tiny variable, we can get: 
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In order to evaluate the surface form error by applying the 
least square method, we define the mean square deviation 
function of the distance from the actual measured point to the 
evaluation datum: 

¦
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According to the definition of least square method, our 
objective is to minimize the mean square deviation function, 
that is: 
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With minimizing Eq. (8), we can obtain: 
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The result of the form error evaluation for sculptured 
surface will be: 
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III. IMPLEMENTATION ERROR EVALUATION BASED ON 

MATLAB 

According to above analysis, the optimization model of 
form error evaluation for sculptured surface is formulized as 
Eq. (8). We use the MATLAB optimization toolbox to solve 
the model. The MATLAB optimization toolbox provides a 
complete solution to various optimization problems, 
including linear programming, quadratic programming, 
nonlinear programming, least squares problems, nonlinear 
equation solving, multi-objective decision-making and other 
optimization problems. The main functions for solving 
unconstrained nonlinear programming problems include 
fminbnd, fminunc and fminsearch. The main functions for 
solving constrained nonlinear programming problems are 
fgoalattain and fminimax. This error evaluation problem 
belongs to the unconstrained nonlinear programming 
problem, the result can be obtained by calling the appropriate 
function, and we will call function fminunc to solve the 
model. 

[x, fval, exitflag, output] = fminunc(fun, x0, options«� 
where x is the optimal solution of returning target function; 

fval is the optimal value of returning target function; exitflag 
is ending flag of return algorithm; output is a data structure 
for optimizing algorithmic information; fun is the function 
name of calling the target function; x0 is the initial point; 
options are used to set optimize options parameters. 

The detailed evaluation steps are as follows: 
Step 1: Assume that the equation of any ideal surface S in 

space is expressed as 0)z,y,x(f  , and import measuring 

coordinate data; 
Step 2: The sum of the absolute values of the distances 

from the measured points to the ideal surface is taken as the 
objective function; and call the MATLAB unconstrained 
optimization function fminunc to determine the parameter 
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values of the surface equation; 
Step 3: Calculate )r(d i

 corresponding to each 

measurement point by using Eq. (3). 

Step 4: Let ¦
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unconstrained optimization function fminunc, run 
optimization design program to obtain least squares solution 
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Step 5: Calculate )r(d *
i

 for each actual measuring point by 

using Eq. (5) and calculate 

^ `p,,2,1i|);r(dmax)(v *
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22 . Then the difference 

between �)(v *
2  and �)(v *

2  is the form error of the desired 

surface based on proposed method. 
 

IV. CASE STUDY 

In this section, the form error of an ellipsoid is evaluated 
based on the proposed method. Suppose the Cartesian 

coordinate equation of an ellipsoid is: 1
c
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 �� , the 

coordinate values of the ellipsoid surface measuring points 
are shown in Table 1 
 

Table 1 Coordinates of measuring points 

No x y z No x y z 
1 0.000 40.000 0.001 51 -50.000 0.002 0.000 
2 15.461 38.044 0.000 52 -40.457 0.00l -17.634 
3 12.502 38.045 5.449 53 -15.453 0.002 -28.533 
4 4.774 38.044 8.816 54 15.455 0.000 -28.532 
5 -4.776 38.042 8.817 55 40.458 0.004 -17.634 
6 -12.502 38.043 5.447 56 50.003 0.002 0.000 
7 -15.453 38.043 0.000 57 47.556 -12.361 0.000 
8 -12.503 38.043 -5.446 58 38.476 -12.365 16.771 
9 -4.776 38.042 -8.816 59 14.693 -12.363 27.136 

10 4.774 38.043 -8.817 60 -14.698 -12.362 27.135 
11 12.501 38.043 -5.447 61 -38.476 -12.364 16.770 
12 15.452 38.042 0.000 62 -47.554 -12.366 0.001 
13 29.387 32.362 0.000 63 -38.478 -12.361 -16.773 
14 23.776 32.363 10.365 64 -14.696 -12.363 -27.134 
15 9.083 32.362 16.770 65 14.695 -12.363 -27.135 
16 -9.084 32.362 16.771 66 38.475 -12.367 -16.772 
17 -23.777 32.361 10.365 67 47.554 -12.364 0.000 
18 -29.384 32.360 0.001 68 40.455 -23.512 0.000 
19 -23.775 32.362 -10.365 69 32.721 -23.511 14.265 
20 -9.081 32.362 -16.770 70 12.500 -23.512 23.084 
21 9.083 32.363 -16.770 71 -12.503 -23.511 23.082 
22 23.774 32.366 -10.365 72 -32.726 -23.512 14.265 
23 29.383 32.361 0.000 73 -40.453 -23.511 0.001 
24 40.452 23.510 0.000 74 -32.723 -23.512 -14.265 
25 32.723 23.512 14.265 75 -12.500 -23.513 -23.083 
26 12.501 23.512 23.083 76 12.500 -23.516 -23.083 
27 -12.503 23.512 23.083 77 32.724 -23.515 -14.265 
28 -32.722 23.511 14.266 78 40.453 -23.512 0.001 
29 -40.456 23.512 0.000 79 29.385 -32.362 0.000 
30 -32.723 23.514 -14.266 80 23.772 -32.362 10.365 
31 -12.505 23.511 -23.083 81 9.083 -32.361 16.775 
32 12.506 23.513 -23.082 82 -9.081 -32.360 16.772 
33 32.723 23.512 -14.265 83 -23.776 -32.362 10.366 
34 40.458 23.512 0.001 84 -29.386 -32.365 0.000 
35 47.557 12.362 0.000 85 -23.776 -32.362 -10.364 
36 38.476 12.362 16.770 86 -9.081 -32.362 -16.772 
37 14.697 12.362 27.l35 87 9.083 -32.362 -16.770 
38 -14.696 12.362 27.136 88 23.775 -32.363 -10.368 
39 -38.477 12.360 16.770 89 29.389 -32.364 0.002 
40 -47.554 12.362 0.001 90 15.457 -38.042 0.001 
41 -38.471 12.361 -16.770 91 12.500 -38.043 5.447 
42 -14.695 12.362 -27.136 92 4.775 -38.042 8.816 
43 14.695 12.364 -27.135 93 -4.776 -38.042 8.817 
44 38.475 12.366 -16.770 94 -12.501 -38.042 5.449 
45 47.554 12.365 0.000 95 -15.452  -38.043 0.001 
46 50.004 0.000 0.000 96 -12.502 -38.044 -5.446 
47 40.453 0.000 17.634 97 -4.776 -38.042 -8.816 
48 15.451 0.001 28.532 98 4.779 -38.043 -8.814 
49 -15.452 0.000 28.532 99 12.502 -38.045 -5.449 
50 -40.455 0.001 17.633 100 15.456 -38.043 0.000 
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Firstly, take ¦
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x  as objective function and 

)c,b,a(  as design variable; import the coordinates of 

measuring points and call unconstrained optimization 
function fminunc to calculate the optimum design variable 

)c,b,a( *** , according to the measured data above the 

calculated *a , *b , *c  are 50, 40, 30, respectively. Calculate 

)r(d i
 corresponding to each measuring point by using Eq. (3). 

Then, let ¦
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],,,,,[ zyxzyx GGG''' 2  design variable, call unconstrained 

optimization function fminunc, run optimization design 
program to obtain 

]0000.0-,0000.0-,0000.0-,0003.0,0002.0,0011.0-[ *
2 . Finally, 

calculate ^ `p,,2,1i|);r(dmax)(v *
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22  and 
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22  to obtain the difference 

between �)(v *
2  and �)(v *

2  is 0.0101, that is the final error 

evaluation result. Three-dimensional figure of fitted ellipsoid 
and measured data points is shown as Fig. 2. 

 

Fig. 2 Three-dimensional figure of fitted ellipsoid and measured 
data points 

 

V. SUMMARY 

Based on the least square method, a generalized 
mathematical model for evaluating the form error of complex 
surfaces is established. And the nonlinear optimization 
function of MATLAB optimization toolbox is used to solve 
the evaluation model. The method proposed in this paper can 
be applied to the shape measurement and data processing of 
three coordinate measuring machines, it is easy to execute by 
computer, and opens a new way for evaluating the form error 
of complex surface. It will provide a more practical way for 
manufacturing and inspection engineers to deal with the form 
error evaluation for sculptured surface in fields such as 
mechatronic products, robots and intelligent equipments, 
automobile manufacturing, etc. 
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