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Abstract² In this paper, we consider the preconditioned 

iterative methods for solving the linear complementarity 

problem associated with an M-matrix. Two preconditioned 

SSOR methods for solving the linear complementarity problem 

are proposed. The convergence of the proposed methods are 

analyzed, and the comparison results are derived. The 

comparison results show that the proposed preconditioned 

SSOR methods accelerate the convergent rate of the SSOR 

method. Numerical experiments verify the theory results. 

 

Index Terms² Linear complementarity problems, SSOR 

method, Preconditioner, Comparison theorem, M-matrix. 

 

I. INTRODUCTION 

  For a given matrix
nn

RA
u�  and a given vector

n
Rf �

, 

the linear complementarity problem, abbreviated as LCP, 

consists of finding a vector 
n

Rx�  such that 

)1.1(.0,0,0  t� t rxfAxrx
T

Here, the notation "t  " denotes the component wise defined 

partial ordering between two vectors, and the superscript T 

denotes the transpose of a given vector. 

 

The LCP of the form (1.1) arising in many scientific 

computing and engineering applications, for example,  

 

contact problems with friction, free boundary value problems 

of fluid mechanics, the solution of optimization and 

behavioral models in biology and molecular biology, see [5, 

6, 9]. The LCP (1.1) possesses a unique solution if and only 

if
nn

RA
u�  is a P-matrix, namely, a matrix whose all 

principal submatrices have positive determinants, see 

[5,6,17]. A positive diagonal M-matrix (see Section 2) is a 

P-matrix, and the LCP (1.1) with an M-matrix has the unique 

solution [4]. 

Numerical methods for LCP (1.1) have attracted much 

attentions.There are three main classes of iterative methods 

for the solution of the LCP (1.1): the projected methods [11, 

12,16], the modulus algorithms [13] and the modulus-based 

matrix splitting iterative methods [3,7,21,22], see [12] for a 

survey of the solvers for LCP (1.1). We pay our attention in 

the present work to the SSOR method [8], which is a special 

projected method, for solving the LCP (1.1) with an 

M-matrix. For accelerating the convergent rate of the SSOR 

method [8], preconditioning techniques is often used [5, 20]. 

Preconditioning techniques for solving the large sparse linear 

algebraic equations
bAy  

have been investigated in depth, a  
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number of preconditioners for the classical iterative methods 

were proposed [10, 14, 19]. In [10], the preconditioner 
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is proposed for accelerating the convergence rate of classical 

iterative method for the linear system with L-matrices. The 

preconditioner 1P
 is generalized in [14] as 
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where 121, �nDDD /
 are real constants, for accelerating the 

convergent rate of 

the Gauss-Seidel method for the linear system with an 

M-matrix. To provide the 

preconditioning effect on the last row and based on the 

preconditioner 1P
, Niki etal. [19] proposed the 

preconditioner 
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Following the same idea and based on the preconditioner 2P
, 

we can propose the 

preconditioner 

 

  

with positive constants 
),2,1( nii / D
 

In this paper, the preconditioner P  in (1.2) is used to 

accelerate the convergent rate of the SSOR method [8] for 
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solving the LCP of the form (1.1). Two precondi-tioned 

SSOR methods are proposed, and its convergence are studied. 

The remainder of the paper are organized as follows. 

In Section 2, some preliminaries are given. The projected 

method for solving LCP is recalled, and two preconditioned 

SSOR methods are proposed. In Section 3, the convergence 

of the preconditioned SSOR methods are studied. The 

comparison results about the convergent rates between the 

proposed preconditioned SSOR methods with the SSOR 

method [8] for LCP (1.1) with an M-matrix are given in 

Section 4. Numerical examples are given to demonstrate our 

theoretical results in Section 5. Finally, a brief conclusion is 

drawn in Section 6. 

 

II. PRELIMINARIES 

Let us firstly summarize some notations. In reference to 
n

R  

and 
nn

R
u

, the relation t  denotes partial ordering. In 

addition, for 
n

Ryx �,  we write yx ! (or yx t ) if  ii yx !  (or 

ii yx t ) hold for ni ,,1/ . A nonsingular matrix 
nn

ij RaA
u� )(

is termed an M-matrix if
0dija

for ji z and 

01 t�
A ��,W¶V�FRPSDULVRQ�PDWUL[� ijaA  

 is defined by iiii aa  
 , 

ijij aa � 
 (i z j) for nji ,,1, / . A  is said to be an H-matrix if 

A
 is an M-matrix. For simplicity, we may assume that 1 iia  

for ni ,,1/ . 

Secondly, we present some definitions and results about the 

splitting of matrix. 

Definition 2.1 [20] Let 
nn

RA
u� . The representation 

NMA �  is called a splitting of A  if M is nonsingular. 

Then NMA �  is called 

1 . convergent if 1)( 1 ��
NMU ; 

2 . regular if 01 t�
M , 0tN ; 

3 . weak regular if 01 t�
M , t�

NM
1

 0; 

4 . an M-splitting of A if M is an M-matrix and 0tN . 

Lemma 2.1 [5] Let NMA �  is an M-splitting of A . Then 

1)( 1 ��
NMU  if and only if A  is an M-matrix. 

Lemma 2.2 [2] A  is monotone if and only if A  is nonsingular 

with 01 t�
A . 

Lemma 2.3 [15] Let A  be an M-matrix, and x  be a solution 

of LCP (1.1). If if > 0, then ix
 > 0 and therefore 

0
1

 �¦  ij

n

j ij fxa
. Moreover, if 

0df
 , then 0 x  is the 

solution of LCP (1.1). 

Lemma 2.4 [5] Let A be a Z-matrix. Then the following 

statements are equivalent: 

(1) A  is a nonsingular M-matrix. 

(2) There exists a positive vector 0!v  such that 0!Av . 

(3) Any weak regular splitting is convergent. 

Lemma 2.5 [18] Suppose that 111 NMA �  and 

222 NMA �  are weak regular splittings of the monotone 

matrices 1A and 2A , respectively, such that 
1

2

1

1

�� dMM , If there 

exists a positive vector x such that xAxA 210 dd , then for the 

monotonic norm associated with x , xx NMNM 1

1

12

1

2

��
d

. In 

particular, if 1

1

1 NM
�

 has a positive Perron vector, then 

)( 2

1

2 NM
�U  d  )( 1

1

1 NM
�U . 

Thirdly, we give the project methods, especially the SSOR 

method [8], for the LCP (1.1). 

Definition 2.2 For
n

Rx� , vector �x
 is defined such that 

},0max{)( jj xx  � , nj ,,1/ . Then, for any
n

Ryx �, . The 

following facts hold: 

��� �d� yxyx )( ; 

��� �d� )( yxyx  

��� �� )( xxx
; and 

yx d  implies that �� d yx . 

Following the Definition 2.2, the LCP (1.1) is equivalent to 

[1] 

)1.2())(( ��:� fAzzz D  

where D  is a positive constant and the matrix :  is positive 

diagonal. Let 20 ��w  and ULDA �� , where D , L  

and U are diagonal, strictly lower and upper triangular parts 

of A , respectively. Then (E, F) is called the SSOR splitting of 

A  [8] if ),( FE  is a splitting of A , and 

)()))(2(/(1 1
wUDDwLDwwE ��� �

 
and 

))1(())1))((2(/(1 1
wUDwDwLDwwwF ����� �

 

From (2.1) and the SSOR splitting of A , two SSOR methods 

for solving the LCP(1.1) are defined as follows (see [8]): 

Method 2.1 (SSOR method I); 

Choose an initial vector 
n

Rz �0
 , a positive parameter w 

and set 0 k ; 

Compute

�
��� ������� ]))2())2(([( 111

fwwzwUAwwwUzDzz
kkkk

 

If 
kk

zz  �1
, then stop, otherwise set 1� kk  and return to 

Step (2). 

Method 2.2 (SSOR method II) 

Choose an initial vector 
n

Rz �0
 , a positive parameter w and 

set 0 k ; 

Compute

�
��� ������� ]))2())2(([( 111

fwwzwLAwwwLzDzz
kkkk

 

If 
kk

zz  �1
, then stop, otherwise set 1� kk  and return 

to Step (2) 

Let 

LwDIB
1

1

�� 
 ,

])2([1

1 wLAwwDIC ��� �

       (2.2) 

and 

UwDIB
1

2

�� 
,

])2([1

2 wUAwwDIC ��� �

      (2.3) 

Then the convergence of the SSOR method I and SSOR 

method II are presented in 

the following lemma [8, Theorem 2.1] 

 

Lemma 2.6 [8] Let 
nn

ij RaA
u� )(

 be an H-matrix with 

positive diagonal elements. If 20 ��w , then for any initial 

vector
n

Rz �0
, the iterative sequences 

k
z  generated by the 

SSOR methods I and II converge to the unique solution 



z  of 
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the LCP (1.1) and it holds that 1)( 1

1

1 ��
CBU  and 

1)( 2

1

2 ��
CBU . 

Finally, we present the preconditioned SSOR 

methods..Let PffPAA   
~

,
~

and denote ULDA
~~~~

�� , 

where D
~

, U
~

 and L
~

are diagonal, strictly lower and upper 

triangular matrices, respectively. Then the preconditioned 

SSOR methods for the LCP (1.1) are defined as follows: 

Method 2.3 (Preconditioned SSOR method I): 

Choose an initial vector 
n

Rz �0
 , a positive parameter w 

and set 0 k ; 

Compute 

�
��� ������� ])

~
)2()

~~
)2((

~
[

~
( 111

fwwzUwAwwzUwDzz
kkkk

 

If 
kk

zz  �1
, then stop, otherwise set k := k + 1 and return to 

step (2) 

 Method 2.4 (Preconditioned SSOR method II): 

Choose an initial vector 
n

Rz �0
 , a positive parameter w 

and set k = 0; 

Compute

�
��� ������� ])

~
)2()

~~
)2((

~
[

~
( 111

fwwzLwAwwzLwDzz
kkkk

 

If 
kk

zz  �1
, then stop, otherwise set 1� kk  and return 

to Step (2) 

As the preconditioner P  is defines as in (1.2), the elements 

ija~
 of A

~
 satisfy 

¯
®
­

  �

 z�
 ��

,2,1,

,2,1,~

,,11,

,,11,

njjiaaa

njjiaaa
a

jnnnj

jiiiiij

ij /

/

D
D

       (2.4) 

and the elements if
~

 of
f
~

 satisfy 

¯
®
­

z�

z�
 ��

nifaf

nifaf
f

nnn

iiiii

i
,

,~

11,

11,

D
D

                          (2.5) 

III.  CONVERGENCE ANALYSIS 

 

In this section, we will consider the convergence of the 

preconditioned SSOR methods I and II for solving the LCP 

(1.1). From Lemma 2.3, if the problem LCP (1.1) has a 

nonzero solution, there is at least one index i  such that if  > 

0.Without loss of generality, let us assume that 1f  > 0 and 1�if  

> 0. 

Theorem 3.1 Let 
]~[

~
ijaPAA { 

, ifPff
~~

{ 
 If 01 !f  and 

01 !�if , then LCP(1.1) is equivalent to the linear 

complementarity problem 

)1.3(.0~,0
~~~,0  t� t rxfxArx

T

 
Proof. Suppose that x  is the solution to LCP (1.1). Because 

01 !f  and 
01 !�if  from Lemma 2.3 we have that 01 !x , 

011 1  �¦  
fxa j

n

j j
 and 

01 !�ix
,

011 ,1  � � �¦ ij

n

j ji fxa
. 

If ni  , then we have 

)()(
~~

111 111
fafxaaafxa nnnj

n

j jnnnjij

n

j ij DD ��� � ¦¦    

           
)( 11 111

fxaafxa
n

j jjnnnj

n

j nj ��� ¦¦   
D

            

            =
ij

n

j ij fxa �¦  1            (3.2)      

If ni z , then we get 

)()(
~~

11,1 ,11,1 �� �� 
��� � ¦¦ iiiiij

n

j jiiiiijij

n

j ij fafxaaafxa DD
    

)( 11 ,11,1 � �� 
��� ¦¦ i

n

j jjiiiiij

n

j ij fxaafxa D
 

            = ij

n

j ij fxa �¦  1         (3.3)          

From (3.2) and (3.3), it can be seen that x  is the solution of 

the LCP (3.1). Conversely, suppose that x  is the solution of 

the LCP (3.1). It follows from Lemma 2.3 that 01 !x , 

0
~~

11 1  �¦  
fxa j

n

j j
 and 

01 !�ix
,

0
~~

11 ,1  � � �¦ ij

n

j ji fxa
. 

This together with (3.2) and (3.3) give 
011 1  �¦  

fxa j

n

j j
 

and 
011 ,1  � � �¦ ij

n

j ji fxa
. 

Thus for ni   we have 

ij

n

j ij fxa �¦  1  =
nj

n

j nj fxa �¦  1  

            
)

~
()~( 111 11 fafxaaa nnij

n

j jnnij DD ��� ¦   

            
)(

~~
11 ,11,1

fxaafxa
n

j jjnnij

n

j ij ��� ¦¦   
D

 

            =
ij

n

j ij fxa
~~

1
�¦   

And for ni z , we can deduce that           

¦¦¦  �� �� 
��� �

n

j iiiiij

n

j jiiiiijij

n

j ij fafxaaafxa
1 11,1 ,11,1

)
~

()~(
~~ DD

 

            
)(

~~
11 ,11,1 � �� 

��� ¦¦ i

n

j jjiiiiij

n

j ij fxaafxa D
 

            =
ij

n

j ij fxa
~~

1
�¦   

Hence, x  is the solution of the LCP (1.1).  

In what follows, we assume that the conditions 

(H1) 
10 dd iD   for ni ,,1/ , 

(H2) jiiii aa ,11,0 ��dD
,  for ni ,,1/ . 

Theorem 3.2  If A  is an M-matrix, (H1)-(H2) hold, then 

PAA  
~

 is an M-matrix 

Proof. If A  is an M-matrix, then 
0dija

 for 
ji z

. Now from 

(2.4) and the assumptions, we have 

0~
,11, !� �� iiiiiiiii aaaa D

    
jini  z ,

; 

0~
,11, �� �� jiiiiijij aaaa D

   jini zz , ; 

0~
,11, !� nnnnnnn aaaa D

     nji   ; 

0~
,11, �� jnnnjnj aaaa D

      jini z , ; 

From Lemma 2.4 there exists a positive vector 
0!y

 such 

that 0!Ay . Note that 0tP , thus  0
~

! PAyyA , and from 

Lemma 2.4 A
~

 is an M-matrix.  

From Theorems 3.1 and Theorems 3.2, we can establish the 

following convergence theorem for the preconditioned SSOR 

methods I and II for solving the LCP (1.1) 

Theorem 3.3 Let 
nn

ij RaA
u� )(

 be a nonsingular M-matrix. 

If P  given in (1.2) satisfies the conditions of Theorem 3.2, 
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then for 20 ��w , the iterative sequences of the 

preconditioned SSOR methods I and II converge to the unique 

solution 



x  of the LCP (1.1), where for the given vector f, its 

components 01 !f  and 
01 !�if . 

Proof. Since A  is a nonsingular M-matrix, by Theorem 3.2 

A
~

 is also an M-matrix, then A
~

 is an H-matrix with positive 

diagonals. Hence, according to Lemma 2.6, the iterative 

sequences of the preconditioned SSOR methods I and II 

converge to the unique solution 



x  of the LCP (3.1), or 

equivalently, the unique solution 



x  of the LCP (1.1) by 

Theorem 3.1.  

IV. COMPARISON RESULTS 

In this section, we will consider comparison theorems, which 

show that the PSSOR methods can increase the convergence 

of corresponding SSOR methods for the LCPs of M-matrices. 

Let us consider the problem (1.1) with the splitting 

ULDA ��              (4.1) 

where D , L  and U are diagonal, strictly lower and strictly 

upper triangular parts of A , respectively. We assume that 

A
~

 = P A=( ija~
)    Pff  

~
     (4.2) 

where P  satisfies Theorem 3.3 and 

¯
®
­

  �

 z�
 ��

,2,1,

,2,1,~

,,11,

,,11,

njniaaa

njniaaa
a

jnnnj

jiiiiij

ij /

/

D
D

 

We split A
~

 in(4.2) as 

ULDA
~~~~

��              (4.3) 

where ,
~

,
~

LD  and U
~

 are diagonal, strictly lower and strictly 

upper triangular parts of A
~

 , respectively. Apparently, it 

follows that 
)(

~
iidD  

 with 

¯
®
­

 �

z�
 ��

,

,

,,11,

,,11,

niaaa

niaaa
d

nnnnn

iiiiiii

ij D
D

 

)(
~

iilL  
 with 

¯
®
­

 �

!z�
 ��

,

,,,

,,11,

,11,

niaaa

jiniaaa
l

jnnnj

jiiiiij

ij D
D

 

)(
~

iiuU  
 with  jiiiiijij aaau ,11, ��� D

   ji � , 

respectively. 

In what follows, we give some useful auxiliary results that are 

important for us 

to provide comparison theorems. 

Lemma 4.1 Let 
nn

ij RaA
u� )(

 be an M-matrix. Assume that 

A  is written as the splitting (4.1) and LDULD
~

,
~

,,,  and U
~

are 

given by (4.1)-(4.3). Then  

LDLD
~~ 11 �� d

, 
UDUD
~~ 11 �� d

, 

Proof. Since A
~

 is an M-matrix, naturally, an H-matrix with 

positive diagonals 

¯
®
­

 !�

z!� ��

,,0

,,0

,11,

,11,

niaaa

niaaa

nnnnn

iiiiiii

D
D

  (4.4) 

Let us denote 
)(1

ijlLD  �

 
)

~
(

~~ 1

ijlLD  �

 Then we have 

°̄

°
®
­ !

 
,,0

,,
1

other

ji
al a

ij

iiij

 
 And 

°
°
¯

°°
®

­

 �
�

z!�
�

 
��

��

,),(
1

,,),(
1

~

,11,,
,11,

,11,,
,11,

niaa
aaa

nijiaa
aaa

l

jnnjn

nnnnn

jiiiiji

iiiiiii

ij

a

a

D
D

D
D

On the one hand, from (4.4), 
0tiip

 and the fact that A  is an 

M-matrix, we have 

d
iia

1

iiiiiii aaa ,11,

1

���D
  and   

dija )( ,11, jiiiiij aaa ���D
 

d
nna

1

nnnnn aaa ,11,

1

D�
  and   

dnja )( ,11, jnnnj aaa D�
 

Therefore, we obtain that  
Njill ijij �d ,,

~

. In other words, 

LDLD
~~ 11 �� d

. 

Similarly, one can achieve that Similarly, one can achieve that 

UDUD
~~ 11 �� d

. 

Let 

LDwIB
~~~ 1

1

�� 
 ,

]
~~

)2([
~~ 1

1 LwAwwDIC ��� �

      (4.5) 

UDwIB
~~~ 1

2

�� 
,

]
~~

)2([
~~ 1

2 UwAwwDIC ��� �

           (4.6) 

Lemma 4.2 Let 
nn

ij RaA
u� )(

 be an M-matrix. Suppose that 

A
~

 and f
~

 are given by (4.2) and  11

~
,

~
CB  and  22

~
,

~
CB  ,are 

defined by (4.5) and (4.6), respectively. If 20 ��w , then for 

any initial vector 
n

Rx �0 ,the iterative sequences 
k

x generated by the PSSOR methods I and II converge to the 

unique solution 



x  of the LCP (1.1) and it follows that 

1)
~~

( 1

1

1 ��
CBU  and 1)

~~
( 2

1

2 ��
CBU . 

Proof. By (4.2), A
~

 is an H-matrix with positive diagonals. 

Hence, by Theorem 3.3, for any initial vector 
n

Rx �0  the 

iterative sequences 
k

x of the PSSOR methods I and II 

converge to the unique solution of the LCP(1.1), and from 

Lemma 2.6 and the fact that A
~

 is an H-matrix with positive 

diagonal entries, it follows that 1
~~

1

1

1 ��
CB  and 1

~~
2

1

2 ��
CB . 

Theorem 4.1 Assume that A is a nonsingular M-matrix and 

A  and A
~

 have the splitting (4.1) and (4.3), respectively. Let 

11,CB  and , 11

~
,

~
CB  be given as in (2.2) and (4.5), respectively. 

Then for the matrices 1

1

1 CB
�

 for SSOR I and  1

1

1

~~
CB

�

for 

PSSORI with respect to the LCPs, we have 

1)()
~~

( 1

1

11

1

1 �d ��
CBCB UU . 

Proof. By Lemma 2.6 and the fact that A is an M-matrix, for 

any initial vector 
n

Rx �0   the iterative sequence 
k

x  
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generated by SSOR I converges to the unique solution 



x  of 

the LCP (1.1) and 

1)( 1

1

1 ��
CBU                                                                  (4.7) 

Analogously, by Lemma 4.2 and the fact that A
~

 is an 

H-matrix with positive diagonals, for any initial vector 
n

Ry �0  the iterative sequence 
k

y  generated by PSSORI 

converges to the unique solution 



x  of the LCP (1.1) and 

1)
~~

( 1

1

1 ��
CBU                                                                    (4.8) 

Let us now consider the result )()
~~

( 1

1

11

1

1 CBCB
�� d UU .In 

terms of Lemma 4.1, we 

have that 
LDLD
~~ 11 �� d

,which is equivalent to 

LwDILDwI
11 ~~ �� �d�

 

that is, 11

~
BB d  ,Notice that 1

~
B  and 1B are M-matrices, this 

implies that 1
1

1
1 ~

0 �� dd BB . Let us denote 111 CBQ � and 

112

~~
CBQ � ,Observe that  1

~
B  and 1B are M-matrices  and 1

~
C  

and 1C  are nonnegative, it holds that 11 CB �  and 11

~~
CB �  are 

M-splittings of 1Q  and 2Q , respectively. It means from 

(4.7),(4.8) and Lemma 2.2 that 1Q  and 2Q are M-matrices. 

Therefore, 0
1

1 t�
Q  and 0

1

2 t�
Q which show by Lemma 2.2 

that 1Q and 2Q are monotone. From the fact that an 

M-splitting is an regular splitting, it can be derived 

that 11 CB � and 11

~~
CB � are regular splittings of the monotone 

matrices 1Q  and 2Q , respectively. 

Note that  A  is an irreducible matrix, taking into account that 

])2([)( 111

1

1

1 wLAwwDILwDICB ���� ����

 

this implies that the matrix 1

1

1 CB
�

 is a nonnegative 

irreducible matrix. Thus, by means of Perron-Frobenius 

theorem (see Theorem 2.7 of [4]), 1

1

1 CB
�

has a positive Perron 

vector. By Lemma 2.5, as a result, we have 

)()
~~

( 1

1

11

1

1 CBCB
�� d UU . This completes the proof.  

Similarly, we can obtain the following corollary. 

 

Corollary 4.1 

 Assume that A is a nonsingular M-matrix and A  and A
~

 

have the splitting (4.1) and (4.2), respectively. Let 22 ,CB  

and 22

~
,

~
CB  be given as in (2.3) and (4.6), respectively. Then 

for the matrices 2

1

2 CB
�

 for SSORII and 2

1

2

~~
CB

�

 for PSSORII 

with respect to the LCP (1.1), it holds that 

1)()
~~

( 2

1

22

1

2 �d ��
CBCB UU . 

V.  NUMERICAL EXAMPLES 

In this section, an example is given for verifying the 

theoretical result. 

 

Example 5.1 Consider the LCP with the system matrix 
nn

RA
u� and the 

Vector 
n

Rf �
, 

n

n

n

nn
RfR

S
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IS

IIS

A �
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»
»
»
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«
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�

u

)1(

)1(

1

1

1

,

1

0
2

2

2

 

where 
nn

RtridiagS
u��� )1,8,1(

and 
nn

RI
u� is the 

identity matrix and nn  2

 It is easy to check that A  is an 

M-matrix. So, the LCP has a unique solution. Taking into 

account that 
/,0,0 42 !! ff

  hence 
}6,4,2{ /�mk

. 

The results are summarized in Table 1,2. By Table 1,2, we 

compare spectral radii 

of two PSSOR methods with those of corresponding two 

SSOR methods for w = 0.2 and w = 0.9 when 

1600900,400,100 andn  respectively. It is observed 

from Table 1, 2 that two preconditioned SSOR methods 

improve considerably convergence rate of corresponding two 

SSOR methods for the LCP(A,f), which confirm our 

theoretical results. 

Table 1,2 list 
)(

1
CB

�U
 and 

)
~~

(
1
CB

�U
 with different D  

and w  for Example 5.1. 

Table 1: 
)(

1
CB

�U
 and  

)
~~

(
1
CB

�U
 with 

TT

nn )
3

2
,1.0,,1.0(),,,( 11 //  � DDD

 
2.0 w  for Example 5.1 

 

VI. CONCLUDING REMARKS 

In this paper, for the LCPs with an M-matrix A and the 

vector 
f

, we first present a preconditioner P  by using the 

number of positive sign of the components in 
f

, 

Table 2  

)(
1
CB

�U
 and  

)
~~

(
1
CB

�U
 with 

TT

nn )
3

2
,1.0,,1.0(),,,( 11 //  � DDD

9.0 w  for 

Example 5.1 

N SSOR1 PSSOR1 SSOR11 PSSOR11 

100 0.1150 0.0564 0.1150 0.0772 

400 0.1193 0.0587 0.1193 0.0812 

900 0.1202 0.0591 0.1202 0.0820 

1600 0.1205 0.0593 0.1205 0.0824 
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and prove that the original LCP (1.1) is equivalent to the LCP 

(3.1). Then, on the basis of the preconditioner P , two 

preconditioned SSOR methods for linear complementarity 

problem are proposed and the convergence analysis is 

provided.Also we achieve comparison theorems on the 

preconditioned SSOR methods for the linear complementarity 

problem, which show that the PSSOR methods improve 

considerably the convergence rate of the original SSOR 

methods for solving the LCP (1.1). Numerical examples 

tested show the prominent efficiency of the proposed 

methods. How to extend this technique to other methods for 

solving the LCPs is the content of future research. 
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N SSOR1 PSSOR1 SSOR11 PSSOR11 

100 0.7193 0.6856 0.7193 0.6871 

400 0.7218 0.6877 0.7218 0.6893 

900 0.7233 0.6881 0.7223 0.6898 

1600 0.7225 0.6883 0.7225 0.6899 


