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Abstract² Semantic Web is a collection of different 

technologies, where most of them is already standardized. The 

main purpose of these technologies is to describe semantic 

content of the web, i.e. their meaning and sense, in the format 

understood by computers. As a consequence, computer 

programs will be able to use more (human) knowledge to do 

assigned tasks.  

In this paper we overview the ontology and logic layers of the 

semantic web stack. Although ontology languages are 

standardized by W3C, there are still many problems remaining, 

which are related to reasoning over the ontologies.  

On the logic layer of the semantic web stack are considered 

unranked languages, where function and predicate symbols do 

not have a fixed arity. Such languages can naturally model XML 

documents and operations on them. In this paper we present 

survey of reasoning methods over such unranked languages. 

 

Index Terms² Description Logic, query answering, semantic 

web, web data extraction 

I. INTRODUCTION 

  From its beginning, development of semantic web 
technologies was closely related to the Internet. The name 
itself, Semantic Web, was introduced by Tim Berners-Lee, 
who was a founder of this scientific direction [1]. The main 
idea of the semantic web is to have knowledge available for 
wide auditory (the purpose of WWW itself) and to utilize this 
knowledge by developing systems for searching, browsing 
and evaluation. Thus, main technologies in semantic web are 
knowledge representation formats and different forms of 
knowledge. 

The semantic web, as scientific direction, was almost 
pronounced dead, when major IT companies started to invest 
money in it. As a consequence, the field is alive, growing 
rapidly and has big financial support from research 
organizations and industry.  

Semantic Web is a collection of different technologies, 
where most of them is already standardized [2]. The main 
purpose of these technologies is to describe semantic content 
of the web, i.e. their meaning and sense, in the format 
understood by computers. As a consequence, computer 
programs will be able to use more (human) knowledge to do 
assigned tasks. Nowadays, the main research is concentrated 
on the ontology, logic and proof layers [3], [4]. 

Ontologies are called machine-processable formalisms for 
knowledge description. Their purpose is to describe objects 
according to domain of interests. For example, modern 
libraries (especially online ones) use model that is based on 
books content and search is carried out according to author, 
title, publisher and the like.  
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Although ontology languages are standardized by W3C 

(e.g. OWL [5]), there are still many problems remaining. One 
of the most important problem is related to reasoning over 
such ontologies. It is important to link ontology layer with 
logic layer. In this paper we summarize existing approaches 
and propose some new ideas.  

Another very important layer of semantic web is the logic 
layer, which is not yet standardized. This layer is related to 
reasoning over the knowledge, so called knowledge 
derivation. Humans derive new knowledge from existing facts 
in their mind, but the first formalization of this process was 
given by Aristotle with simple syllogism: if A implies B and B 
implies C, then A implies C. More serious work in this 
direction was resumed in nineteenth century, when George 
Boole created propositional logic (often called Boolean 
logic), and Gottlob Frege introduced notions of quantifiers, 
which is considered as basis for first-order logic. Later, 
Whitehead and Russel conjectured that any mathematical 
truth can be obtained from several axioms by logical 
deduction. They gave formalization of set theory and 
arithmetic in a strong deductive way [6]. Based on these 
results, Hilbert created his well-known program and 
iQWURGXFHG� +LOEHUW¶V� V\VWHP� >�], an alternative to logical 
deduction. But in 1930s Godel proved, by his famous 
incompleteness theorems [8], that formalization of 
mathematics in this way is not possible. Analogous result was 
obtained by Turing, who proved that there is no algorithm, 
which tells us whether an arbitrary computer program will 
terminate (so called Halting Problem, [9]). 

Nevertheless, from the 1960s a new direction, called 
Artificial Intelligence was born. Its main purpose was to 
automatize reasoning and derivation of new knowledge from 
facts. The main problem in this direction was that reasoning 
worked on small problems under limited knowledge and was 
not able to handle big problems. Later it was proved, that this 
limitation is not due to hardware, but algorithms chosen, and 
even unavoidable in some cases. Because of this, a notion of 
scalability was proposed, which is the main requirement in 
semantic web technologies. Scalability means to create 
algorithms, oriented on practical problems, which will solve 
bigger problems on a better computer. Thanks to such 
algorithms, nowadays we have so called expert systems, 
which are used in almost all areas, namely in medicine, 
biology and the like. The most important fact is that in many 
cases such systems perform better than humans. 

Nowadays, on the logic layer of the semantic web are 
considered formal languages, which are based on unranked 
alphabets. This means that functional and/or predicate 
symbols do not have a fixed arity. Such language can naturally 
model XML documents and operation over them [10] and 
many more. These kind of languages are called unranked 
languages. One of the most interesting formalisms, based on 
an unranked alphabet, is Common Logic [11]. It is a logic, 
which is used to exchange information between different 
systems and networks. It was given ISO/IEC standard in 
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2007. In this paper we will discuss reasoning methods over 
such languages and show its connection with ontology layer. 

II. PRELIMINARIES 

Semantic web is a collection of different technologies, where 
at the bottom of the stack we have XML, which is a language 
allowing to write structured documents by user defined 
vocabulary. XML is famous for its ability to transform 
structured information from site to site over the web. There 
are several XML-based knowledge representation languages 
for the Semantic Web, such as RDF, RDF Schema, and OWL.  

A. Resource Description Framework 

Resource Description Framework is a formal language for 
describing structured information. It is a data model used to 
represent information about resources. Its main intention is 
not to display documents, but to allow their further processing 
and re-combination of the information contained in them. 
RDF document is a directed graph with labeled nodes and 
edges.  

The fundamental concepts of RDF are resources, properties 
and statements [12]. In the Semantic Web everything is a 
resource. Resources are objects we want to talk about, for 
example people, books, cars, search queries and so on. They 
are represented by Universal Resource Identifier (URI). 
Properties are a special kind of resources. They describe 
relationships between resources, for example "is parent of", 
"has child" and so on. Statements are (subject; Predicate; 

object) triples, expressing that some resource (subject) is 
related to another resource or a value (object) through the 
property (Predicate). We can consider this triple as a logical 
formula Predicate(subject, object). RDF offers only binary 
predicates. 

The RDF Vocabulary Description Language (RDF 
Schema) is an extension of RDF [13]. It introduces the 
notions of class and property and provides mechanisms for 
specifying class hierarchies, property hierarchies and for 
defining domains and ranges of properties. 

RDF Schema (RDFS) is a universal language that lets users 
describe resources using their own vocabularies. RDF does 
not make any particular assumption about application 
domains and does not define semantics of domain. It is a 
semantic extension of basic RDF essentially by giving special 
meaning to the properties rdfs:subClassOf and 
rdfs:subPropertyOf, as well as to several types (like 
rdfs:Class, rdfs:Resource, rdfs:Literal, rdfs:Datatype etc.), in 
order to express simple taxonomies among properties and 
resources. 

RDF Schema provides modeling primitives for expressing 
the information about class hierarchy, property hierarchy, 
defining domains and ranges of properties and so on. It uses 
RDF language itself. The modeling primitives of RDF 
Schema are defined using resources and properties. So, RDFS 
document is just RDF document written in XML syntax. 

The RDF Schema language class and property system is 
similar to the general principles of object-oriented 
programming paradigms, but there are major differences as 
well. One point is that instead of defining a class in terms of 
the properties its instances may have, the RDF vocabulary 
description language describes properties in terms of the 
classes of resource to which they apply. For example, we 
could define the ex:author property to have a domain of 

ex:Document and a range of ex:Person, whereas a classical 
object oriented system would define a class Book with an 
attribute called author of type Person. Another major 
difference is that classes can have multiple super-classes in 
RDF Schema. 

B. Web Ontology Language 

There was a need to develop more expressive ontology 
language than RDF Schema. For example, RDF Schema 
cannot express cardinality constraints and properties like 
transitivity, symmetry, etc.  

Ideally, new web ontology language would extend RDF 
Schema, but naive extension of RDF Schema with logic leads 
to uncontrollable computational properties. Thus, OWL [14] 
is based on a logic family called Description Logics, which 
are usually decidable fragments of first-order predicate logic 
(there are some undecidable description logics, but they are 
rarely used in practice).  

The main notions in DLs are concepts and roles. Concept 
names are equivalent to unary predicates and concepts itself 
to formulae with one free variable. Role names are equivalent 
to binary predicates and roles itself to formulae with two free 
variables. Individuals are equivalent to constants. Operators 
Ê and Ì are restricted so that the language is decidable. 

Let A be an atomic class, and R be an (abstract) role; class 
expressions C, D are constructed using the following rule: 

C, D ::= A | a | c | ¬C | C Q D | C P D | ÊR.C | ÌR.C 
In general, a DL knowledge base is a pair (TB, AB), where 

TB is a set of terminological boxes (TBox) and AB is a set of 
assertional boxes (ABox). 

TBox contains class and role definitions and assertions 
about them. In particular, it formalizes subset and equivalence 
relations. Subset is typically written as C N D which means 
that D subsumes C, i.e. the class (or role) D is more general 
than the class (role) C (e.g., Man N Person). Equivalence is 
denoted as C A D and is often used to define left-hand side 
classes. For example, Woman A�Person P Female defines a 
woman as a female person. 

ABox contains the facts about the individuals belonging to 
some classes or connected to other individuals via roles. For 
example, Person(john) states that the individual john is a 
Person; and MarriedTo(john, marry) stated that john is 
married to marry. Formally, it is not allowed to have ABox of 
the form (Person P Female)(marry), but we can define new 
class Woman (using a TBox as it is shown above) and write 
Woman(marry). This process is called ABox reduction in the 
literature [15]. 

Applying some kind of syntactic restriction on TBoxes, 
different sublanguages of OWL can be defined. These 
sublanguages have different computational properties and 
expressive power. In practice it is common to use the 
sublanguages that are less expressive, but reasoning over the 
ontologies is at most polynomial. 

III. REASONING METHODS 

Reasoning on the Semantic Web is a process of deriving 
new knowledge from a particular ontology (knowledge base). 
The main reasoning tasks are: 

Subsumption: whether a class C is a subclass of D (i.e., 
whether the fact C N D is derivable). 

Class equivalence: whether a class C is equivalent to a 
class D (i.e., whether the fact &�A�' is derivable). 
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Instance checking: whether an individual i belongs to a 
class C (i.e., derive fact C(i)). 

Class disjointness: whether two classes C and D are 
disjoint (i.e., whether the fact C P D N c is derivable). 

Class consistency: whether a given class C is consistent 
(i.e., whether the fact C N c is not derivable). 

All these tasks are reducible to the task of global 

consistency: whether the given knowledge base is satisfiable. 
The reduction idea is simple ± add negation of the task to the 
knowledge base and check its global consistency. For 
example, if a knowledge K is given and we are interested if it 
implies that a class C contains an individual i, the knowledge 
base K � {¬C(i)} must be unsatisfiable. 

Description Logics are fragments of first-order logic, thus 
in principle it is possible to transform every OWL statement 
into a first-order formula and use well known reasoning 
methods of first-order logic for satisfiability checking of the 
ontology. Such naïve approach would be highly inefficient. 
Thus, deduction algorithms from first-order logic must be 
adjusted to the description logic settings. The most successful 
approach for description logics to date is based on tableaux 
algorithms. All major Description Logic reasoners (e.g. Racer 
[16], FaCT++ [17], Pellet [18], etc.) use tableaux as their 
main reasoning method (see e.g. [19], [20]). 

Tableaux calculus [21] is based on the principle of 
refutation. When a formula is given, it is negated and 
according to some rules decomposed to subformulas. This 
decomposition produces a tree of formulas. If every branch of 
the tree is closed, then the given formula is valid. A branch of 
a tableaux is closed if it contains both, formula and its 
negation; otherwise it is open. Tableau has advantage over 
other proof systems in that it can also build a model for 
satisfiable formula, or find a counter-example for non-valid 
formula. The model is extracted from the open branches of a 
tableaux. 

There are many refinements and modification of the 
tableaux calculus in the literature (see e.g. [22], [23]). This 
includes tableaux for intuitionistic, temporal, modal, 
substructural, nonmonotonic, many-valued logics and the 
like.  

Another tableaux method in the context of Semantic Web 
was developed in [24]. The classical first-order Tableaux 
calculus was extended with formulas over unranked terms. 
Unranked unification procedure was integrated into the 
calculus as a mechanism that decides whether a branch can be 
closed. It selects terms for replacement in quantification rules. 
Unranked unification was introduced in [25] and proved not 
to be finitary in general, that can cause non-termination of the 
given algorithm. The classical example of non-finitary 
unification is the pair f(x,a) and f(a,x), where x is a sequence 
variable; the unifiers are [x => ()], [x => a], [x => (a,a)], etc. 
Nevertheless, the termination can be achieved in practice by 
restricting unification to matching, a special case when one of 
the unifiable terms is ground, i.e. does not contain sequence 
(unranked) variables. Such restriction makes sense, because 
although the query might contain sequence variables, the 
knowledge base contains only ground terms. Matching 
proved to be complete and finitary in [26].  

Another important technique in refutational reasoning is 
Skolemization, which eliminates existential quantifiers. It is 
sometimes called an extension method, because it introduces 
new symbols in the signature of a formula. Very important 

feature of skolemization is that it loses logical equivalence, 
but preserves sat- or validity-equivalence. 

Skolemization procedure is well studed for classical 
first-order logic [27], Constrained Logic [28], Intuitionistic 
Logic [29], Fuzzy Logics [30], Lukasiewicz Logic [31], 
Probabilistic Logic [32] and the like.  

A skolemization procedure for unranked logics was 
presented in [33]. It can be used as an important part of 
resoning method together with unranked tableaux calculus. 
There are various ways to define skolemization: 

Prenex: the traditional way to get skolem normal form of a 
formula. First, the formula is transformed to prenex normal 
form and then existential quantifiers are removed by replacing 
the corresponding bound variables by new function symbols, 
where sort of the function symbols are determined according 
to the number of universal quantifiers, preceding the 
existential one and according to the sort of variables that these 
quantifiers are binding. 

Structural: this method does not need transformation to 
prenex normal form. It is a bit more general, because it can 
eliminate strong quantifiers from a formula. The rule is 
similar -- strong quantifier (Qx) depends on the weak 
quantifiers having (Qx) in their scope. It is possible to remove 
weak quantifiers in the same way, but it is called 
Herbandization in the literature [27]. 

Antiprenex: this method is similar to structural 
skolemization, but contrary to prenex normal form, 
quantifiers are shifted deep inside the formula using quantifier 
shifting rules, to minimize the range of quantifiers. This leads 
to smaller skolem terms in general. 

 It is easy to see, that different skolemization methods 
produce formulae of the similar length (the number of 
symbols) and logical complexity (the number of logical 
connectives). In [27] it was shown, that in terms of proof 
complexity, the particular form of skolemization actually 
matters, since it might destroy some information encoded 
inside a formula. Thus, skolemization should be considered as 
an integral part of the inference process and not as a 
preprocessing step of minor importance.  
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