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Positive Solutions of Periodic Boundary Value
Problems for a Class of Second-order Ordinary
Differential Equations
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Abstract— In this paper, we consider the existence of positive
solutions to the second-order periodic boundary value problems
u"(x) +d’u(x) = da(x) f (u),x  (0,7)
u(O) =u(™),u’'(0) =u'(T).
Where f :R" > Ris continuous, f 0)>0,dis a

constant, a:(0,7) —> R may change sign, and A >0 is

sufficiently small. Our approach is based on the Leray-Schauder
fixed point theorem.

Index Terms— Leray-Schauder fixed point theorem, Periodic
boundary value problems, Positive solutions, Existence.
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I. INTRODUCTION

Recently, periodic boundary value problems have been

U121 11] uses the cone fixed point

studied extensively
theorem to study the existence of positive solutions of the
second-order @- periodic boundary value problem. [2] deal
with periodic boundary value problems using the method of
upper and lower solutions.

In particular, in 1998, Jiangm obtained the existence of
positive solutions by using Krasnoselskiis fixed point theorem

—u"+Mu= f(t,u),x e (0,27) 1
{u(O)zu(Zz), u'(0) =u'(27). (-

The main results are as follows:
Theorem A Assume that f(¢,u):[0,27]x[0,0) —[0,0)
is continuous, Then the periodic boundary value problem
(1.1) has a positive solutions, provided M > and one of
the following conditions hold:

ftu) fw) _

(Al) lim max =0, and lim max or
u—0te[0,27] u u—0 1€[0,27] u
. ) tu ) . f(t,u)
(A2) lim min 1, ):oo, and lim min ——=0
u—01€[0,27] u u—01€[0,27] u

In 2010, Hao "“'used the fixed point index theorem to
discuss the existence, multiplicity and nonexistence of
positive solutions for periodic boundary value problems

u"+au=Af(t,u), xe(0,2x), 1.2)
u(0)=ux), u'(0) =u'27). '
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where a € L'(0,27), 1> 0.
The main results are as follows:
Theorem B Assume that f :[0,277]x[0,00) — [0, )

is continuous, and

fa0 _

X

f, = lim min
x—+0 te[0,27]

Then there exist A > 0, such that the periodic boundary

value problem (1.2) has at least two positive solutions

forO < A < A , at least one positive solution for A = A and

no positive solution for A > 4.
It is worth noting that [3] and [4] consider the case

of f:[0,27]%[0,0) —[0,00) is continuous, However,

we will discuss the broader situation f :[0,7]xR" — R

is continuous. And as far as we know, second-order periodic
boundary value problems have not been studied by applying
the Leray-Schauder fixed point theorem.

Motivated by the above works, we will apply the
Leray-Schauder fixed point theorem to establish the existence
of positive solutions to the following second-order periodic
value problems

u"(x)+d’u(x) = Aa(x) f(u),x € (0,T) 1.3)
u(0) = u(T), u'(0) =u'(T). '
We make the following assumptions:
(H1) f ‘R" >R s continuous, fO)>0

A>0,d>0and d2<%;

(H?2) ais aconstant on [0,7'], and not identically zero, there

exists a number k > 1 such that
T T
[} kCeya® (dy= k[ k(x y)a™ (y)dy

for every x€[0,T] ,where a’ (resp. @ ) is the positive

(resp.negative) part of @, K (x, y) is the Green’s function of

u"(x)+d*u(x)=0,x€(0,T)
u(0) =u(T), u'(0) =u'(T).

and
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sind(x—y)+sind(T —x+y)
K(x.y)= 2d(1-cosdT)
sind(y—x)+sind(T — y+x)
2d(1-cosdT)

The main results of the present paper are as follows:
Theorem 1.1. Let (H 1) - (H 2) hold. Then there exists a positive

O<x<y<T,

O y<x<T.

number A such that (1.3) has a positive solution for 0 < A< .

II. PRELIMINARIES
Throughout the paper, we assume that f (1) = f (0) for
u <0, C[0,T]is a Banach space. The norm in C[0,T ]is
defined as follows

|u| =max|u(t)|.

0 tef0,1]

We first recall the following fixed point result of
Leray-Schauder fixed point theorem in a space.

Lemma2.1. Let O <o <1. Then there exists a positive
number A > 0 such that, for 0 < A < A , the problem

u"(x)+d’u(x)=Aa" (x) f (u),x €(0,T)
{M(O) =u(T),u'(0)=u'(T).
has a positive solution U , with |ﬁ/1|o —>0 as A —>0,and
u,(x)2Acf(0)p(x), xe(0,7T).

2.1)

T

where P( X) =J. K(x,y)a" (y)dy.
0

Proof. For eachu € C[0,7T], let

Au(x) = A[ K(x, y)a* () f (y)dy, x €[0,T1.

Then A : C[0,T] — C[0,T]is completely continuous and

fixed points of A are solutions of ( 2. 1) . We shall apply the
Lemma 2.1 to prove that A has a fixed point for A4 small. Let
& > O be such that

fx)zof(O)for 0<s<¢g.

&
suppose that 4 < ————=—— where ]%t) =max f(s).
2|p|0 ]%g) 0<s<t

Then there exists A, € (0, &) such that
fea) 1
A, 240p|,
Let u € C[0,T] and 8 € (0,1) be such thatu =EGAu .
Then we have

|u|0 < 2’|p|0 ]%|u|0)’

or
Ful) L1
)

which implies that|u|0 # A, . Note that A, = 0as 1 —0.
By the Lemma 2.1 , A has a fixed point 0 with
|ﬁ73|0 <A, <& . Consequently, #o(x)= Ao f(0)p(x),

X €[0,T7], and the proof is complete.
III. PROOF OF THE MAIN RESULT
T
Proof of Theorem 1.1 Let g(x) = IK(x, y)a (y)dy .By
0

(H 2), there exist positive numbers &, ¥ € (0,1) such that
q)|f ()| <7 ()£ (0). 3.1
for s €[0,a].Fixo € (,1) and let A* > 0 be such that

||, + 20 f(0)|p|, <. (3.2)
for 1< A" where I/%)is given by Lemma 2.2, and
f(0) - F ()] < f(ox%) , (3.3)

for x, y € [—a, ] with |x— y| < /1*6]”(0)|p|0 :
Let A <A". We look for a solution u, of (1.3) of the form

Wo+v,.Thus v, solves
Vi(x)+d*v, = Aa" (0)(f Wo+v,) - f (%))
—Aa (x)f (o +v,),xe(0,T)
v, (0)=v,(T),v,(0)=v,(T),

For eachw € C[0,T], letv = A@be the solution of
VI(xX)+d’v = Aa” (x)(f (i + w) - f (7))
—Aa (x) f (o + w),x €(0,T)

v(0) =v(T),v'(0) =v'(T),

Then A : C[0,T]— C[0,T]is completely continuous. Let

v e C[0,T]and @ € (0,1) be such thatv = @Ay . Then we
have

V'(x)+d’v = 202" (X)(f o+ V)~ f (1))
—A0a” (x) f (o +v).
We claim that |v|, # A0 f(0)|p|, . Suppose to the
contrary that|v| =40 f (0)|p], . Then by (3.2) and (3.3),

we obtain
|I%)+v|0 < |67Q|0 +|Vi|0 sa,

and
|f @+ v)— £ ()], < f((»%.

which, together with (3.1) , implies that
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o-y forO<A<A .
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u"(x)+4u(x)=0,x<(0,7)
u(0)=u(T), u'(0)=u'(T).

and
sin2(x—y)+sin2(T —x+y) 0<r<v<T
4(1—cos 2T) DEAEIED
K(x,y)=4 | .
sin2(y—x)+sin2(T — y+x) 0<v<x<T
4(1—cos2T) e YEER

which satisfies the assumption (H 2) .

By Theorem 1.1, if (H1)—(H 2) hold, then there exists a

positive number A~ such that (4.1) has a positive solution
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