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� 
Abstract² A feedback stabilizing control law is proposed in 

this paper for the electric power systems to delay and/or 

eliminate the appearance of the so-FDOOHG�³YROWDJH�FROODSVH�´�7KH�

phenomenon of voltage collapse is known to be possibly 

attributed to the occurrence of the saddle-node bifurcation or 

Andronov-Hopf bifurcation. Based on a previous study (Liaw et 

al, 2005), in this study a washout filter aided linear stabilizing 

control law is designed for the power systems to delay and/or 

eliminate the appearance of the bifurcation phenomena. 

Numerical simulations demonstrate the success of preventing 

the occurrence of voltage collapse by the proposed schemes. 

 

Index Terms²power systems, voltage collapse, control  

 

I. INTRODUCTION 

  In the recent years, the study of voltage collapse 

phenomena in electric power systems has attracted lots of 

attention [1]-[8]. The main concern is that the power systems 

are facing growing load demands but with little addition of the 

power generation and transmission facilities, which will then 

push the power systems to be operated near the stability 

limits. As the load demands become too heavy to offer, the 

magnitude of load voltage falls sharply to a very low level. 

Such a phenomena is referred as the so-FDOOHG� ³YROWDJH�

FROODSVH�´�$PRQJ� WKRVH� H[LVWLQJ� VWXGLHV�� WKH� RFFXUUHQFH� RI�

voltage collapse had been believed to be attributed to the 

existence of saddle-node bifurcation in electric power systems 

[1]-[4]. Based on the simple dynamical model proposed by 

Dobson and Chiang, et al [2]-[3], it had been shown that 

voltage collapse may arise from the existence of 

Andronov-Hopf bifurcation, which is prior to the appearance 

of saddle-node bifurcation [5]-[6]. The effect of tap changer 

ratio on the nonlinear behavior of an electric power system 

has been studied for the large scale electric power networks 

(e.g., [1], [7]). Based on the model of [3], an extra tap changer 

was proposed in [9] to be added in parallel to the nonlinear 

load of the power model for the bifurcation analysis of 

nonlinear dynamics for electric power system with respect to 

the variation of the tap changer ratio. Both of saddle-node 

bifurcation and Andronov-Hopf bifurcations were observed 

in [9] by treating the real power, reactive power and tap 

changer as system parameters, which make the appearance of 

static and dynamic voltage collapses, respectively. Those 

phenomena are found to generate a progressive decrease or a 

sharp change in load voltage magnitude of electric power 

system.  

The Static Var Compensator (SVC) has been recently  
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considered as a control actuator for improving system 

stability (e.g., [8], [10]). For instance, a washout filter-aided 

feedback control law was proposed in [8] to delay the 

occurrence of the system instability and/or voltage collapse 

while a sliding-mode based design was proposed to regulate 

the load voltage [10]. Instead of controlling the system 

behavior via the tuning of the SVC, in this paper we consider 

a different approach by using the ratio of the tap changer as 

the solely control to prevent and/or delay the occurrence of 

voltage collapse.  

The organization of the paper is as follows. First, the 

model of the electric power systems given in [3] and [9] are 

recalled. It is followed by the design of the proposed control 

laws for an example system. Numerical simulations are then 

presented in Section IV to demonstrate the success of the 

proposed scheme. Finally, conclusion is given in Section V to 

highlight the major contributions and possible applications.  

 

II. ELECTRIC POWER SYSTEM DYNAMICS 

In this paper, we will focus on the control design for 

electric power systems by using the mathematical model 

proposed in [3] and tap changer as a solely control input. First, 

we recall the electric power system model from [3] in this 

section. It will then be used in Section III to develop the 

control law. As recalled from [3], we have the electric power 

system model as given by 
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where ,  ,  
m m
G Z G and V denote the generator phase angle, 

the generator phase angle velocity, the phase angle of the load 

voltage and the load voltage, respectively, and the nonlinear 

PQ load are given as 
2
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Definitions of each system parameter and derivations of the 

model equations above can be referred to [2]-[3]. Based on 

the parameter values given in Table I, a bifurcation diagram 

was obtained via code AUTO [12] as shown in Fig. 1 for the 

electric power system (1)-(4) with P1=0. Note that, the 

symbols of HB and SNB in Fig. 1 denote the Andronov-Hopf 

bifurcation and saddle-node bifurcation, respectively. In 

addition, the solid-line denotes the stable equilibrium point, 

while the dashed-line is unstable one. The corresponding 

values of the two bifurcation points are given in Table II. 

Nonlinear dynamical behaviors with different values of 

PQ-load around the bifurcation point HB were also obtained 

as shown in Figs. 2 and 3. It is observed from Fig. 2-3 that the 

system might exhibit chaos-like behavior for P1 = 0 and 

1 2.98984.Q     

 

Table I System parameter values 
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Fig. 1 Bifurcation diagram of open-loop system 

 

Table II Location of bifurcation points 

 
1Q  (p.u.)  

m
G (rad) G  (rad)  V (p.u.) 

HB 2.98021 0.267426 0.0475028 0.873124 

SNB 3.02578 0.30292 0.0610163 0.795136 

 
Fig. 2 Phase-diagram of open-loop system: (a)

1 2.98840Q  , 

 (b)
1 2.98920Q  , (c)

1 2.98954Q  , (d)
1 2.98984.Q   

 

 
Fig. 3 Chaos alike timing response of open-loop system 

at
1 2.98984Q  : (a) ,  (b) ,  (c) ,

m m
G Z G  and (d) V. 

 

III. DESIGN OF CONTROL LAWS 

As presented in [9], we have obtained a nonlinear analysis 

of bifurcation phenomena for a power system with tap 

changer as depicted in Fig. 4 below. In that study, numerical 

simulations demonstrate that the occurrence of subcritical 

Andronov-Hopf bifurcation or saddle-node bifurcation might 

lead to the voltage collapse of power system. In addition, it 

was also found that the Andronov-Hopf bifurcation occurs 

first as the PQ-load increases. Thus, the control of Hopf 

bifurcation becomes a major issue in the design of prevention 

of voltage collapse. In this study, we will focus on the design 

of control laws to eliminate and/or delay the occurrence of 

Hopf bifurcation as well as voltage collapse phenomena. 

Here, for practical implementation we only consider the tap 

changer ratio as the solely control input for the electric power 

systems. 

 
Fig. 4  Schematic diagram of electric power 

 system with tap changer 

 

Let the control input u be defined as the difference of tap 

changer ratio, i.e.,
01/ 1/u n n � , where 

0n  denotes the 

nominal value of the tap changer. We can then adopt the 

modified model of electric power systems from [9] as given 
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with 
0 'n  = 1/

0n . 

It is known that the existence and location of system 

equilibria depend on the given system dynamics. Thus, one 

may expect the system equilibria will be affected if a static 

type state feedback control law is applied. As discussed in 

[11], the advantages of using washout filter-aided control law 

include the preservation of system equilibria and automatic 

equilibrium following. Motivated by [11] and the design 

presented in [8], in the following we will design a washout 

filter-aided feedback control law to delay or eliminate the 

occurrence of Andronov-Hopf bifurcation. The major 

difference between the design proposed in this paper below 

and those in [8] is that the tap changer ratio is used as solely 

control instead of the SVC given in [8]. 

In the following discussion, we assume that the values of 

extra real power demand 
1P  is fixed but the values of the 

extra reactive power demand 
1Q and tap changer ratio n can 

be varied. The parameter values listed in Table I is used in 

Eqs. (10)-(13) as an example system for control design. Let 

1 ,
m

x G 2 ,
m

x Z 3 ,x G 4x V and 
5x  denote the washout 

state.  

Follow the design in (e.g., [8], [11]), we take the output of 

the washout filter y as 
1 1 5 2 2 3 3 4 4- .y k x dx k x k x k x � � �  

From Eqs. (10)-(13) with washout filter dynamics, we then 

have the following five state equations: 
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5 1 1 5 2 2 3 3 4 4- .x k x dx k x k x k x � � �&   

It is clear from the first four state equations in (16) above that 

the system equilibrium of the original power system will be 

the same for 0.u   But, there is an extra equilibrium value 

50x  for the washout filter state variable 
5x , which is solvable 

by letting 
5 0x  & and will be a linear function of the original 

equilibrium state variables.  

Now, consider the tap changer control system (16) with the 

control input .u y Let 10 20 30 40 50[ , , , , ]T

e
X x x x x x be the 

equilibrium point of system (16), where 10 20 30 40[ , , , ]T
x x x x  is 

the Andronov-Hopf bifurcation point HB as given in Table II.  

Note that, as discussed above the value of 
50x can be solved 

from 
5 0x  & and will be a linear function of 

0i
x for 1,.., 4.i   

Let Ö
e

x X X � with 1 2 3 4 5[ , , , , ] .T
X x x x x x Taking the 

linearization of (16) at ,
e

X we then have the following 

linearized model : 
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The characteristic equation of the closed-loop system 

given in (17) is then calculated as 
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By applying the Routh-Hurwitz stability criterion to (18), 

we then have the following results. 
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Lemma 1.  The equilibrium point HB of system (10)-(13) is 

asymptotically stabilizable by the washout filter aided control 

with
5 1 1 2 2 3 3 4 4u dx k x k x k x k x � � � � �  if the following 

conditions hold : 
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It is clear from the condition (v) of Lemma 1 above that we 

need to have 0d !  for the design of stabilizing control laws. 

For simplicity and without loss of generality, let 1.d   Next 

result follows readily from Lemma 1 to relax the design of 

control laws. 

 

Corollary 1. The equilibrium point HB of system (10)-(13) is 

guaranteed to be asymptotically stable by the control law of 

5 1 1 2 2 3 3 4 4u x k x k x k x k x � � � � �  if one of the following four 

conditions hold: 

(i)     
1 2 3 40.6252 0 and 0,k k k k� � �      

(ii) 
2 1 3 40.0398 0 and 0,k k k k� � �      

(iii) 
3 1 2 40 and 0,k k k k�      

(iv) 
4 1 2 30 and 0.k k k k!      

IV. NUMERICAL SIMULATIONS 

In this paper, we choose 0 1n    for numerical study. As 

presented in Lemma 1 and Corollary 1 above,  the stability of 

system equilibria of (10)-(13) can only be guaranteed at which 

near the equilibrium point HB. In order to study the 

non-local stability range of system equilibria with respect to 

the variation of the PQ-load and the advantages of using 

washout filter aided control design, in the following we will 

study the effect of the control gain 
i

k for each 1,..,4i   on 

the nonlocal system stability.  

First, consider the condition (i) of Corollary 1. It is clear 

from the bifurcation diagram shown in Fig. 5 that the whole 

branch of system equilibria will be stabilized by choosing 

1 0.2.k  � Time responses of the four system states for two 

typical examples at 
1 2.98Q  and 

1 3Q  are given in Figs. 6 

and 7, respectively. It is observed from those figures that 

system states will be pushed to approach the desired system 

equilibrium by the applied control input. In addition, it is 

found that the system equilibrium branch shown in Fig. 5 is 

the same as those in Fig. 1 for the open-loop system. That 

demonstrates the system equilibria will not be changed by the 

applied washout filter aided control. 

Next, we consider the condition (ii) of Corollary 1. As 

stated in the condition (ii) of Corollary 1, the feasible range of 

2k for system stabilization is very small. As depicted in Fig. 8, 

the system equilibria can only be stabilized up to some extent 

of 
1Q  for 

2 0.02k  �  and
2 0.03.k  �  That means the 

Andronov-Hopf bifurcation can only be delayed but not be 

eliminated by the condition (ii) of Corollary 1. Time 

responses of the four system states for two typical examples at 

1 2.98Q  and 
1 2.985Q  are given in Figs. 9 and 10, 

respectively. It is observed from those figures that system 

states will be finally approaching the desired system 

equilibrium by the applied control input. 

Now, we consider another two conditions of Corollary 1. It 

is clear from the bifurcation diagram shown in Fig. 11 that the 

whole branch of system equilibria will be stabilized by 

choosing 
3 40.2 or 3.k k �   Time responses of the four 

system states for two typical examples at 
1 2.98Q  and 

1 3Q  with different control strategies are given in Figs. 

12-15, respectively. It is observed from those figures that 

system states will be pushed to approach the desired system 

equilibrium by any of the four control schemes listed in 

Corollary 1 at 
1 2.98.Q   However, the system equilibrium 

will not be stabilized at 
1 3Q  by the condition (ii) of 

Corollary 1. Moreover, it is also observed from those figures 

that the control law from the condition (iv) of Corollary 1 will 

provide better timing performance with the expense of large 

magnitude of the control gain. 

 

 
Fig. 5: Bifurcation diagram with respect to 

1Q  for 
1 0.2.k  �  
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Fig. 6: Time responses at 

1 2.98Q   for 
1 0.2.k  �  

 
Fig. 7: Time responses at 

1 3Q   for 
1 0.2.k  �  

 
  (a)                                     (b) 

Fig. 8: Effect of 
2k on the bifurcation diagram: 

 (a)
2 0.02k  �  (b)

2 0.03k  �  

 
Fig. 9: Time responses at 

1 2.98Q   for 
2 0.02.k  �  

 

 
Fig. 10: Time responses at 

1 2.985Q   for 
2 0.02.k  �  

 
Fig. 11: Effect of  for 3 and 4

i
k i  on the bifurcation 

diagram: 
3 4(a) 0.2 and (b) 3.k k �   

 
Fig. 12: Comparison of time responses at 

1 2.98Q   for 

1 0.2k  � and  
2 0.02.k  �  

 
Fig. 13: Comparison of timing responses at 

1 2.98Q   for 

3 0.2k  � and  
4 3.k   

 
Fig. 14: Comparison of timing responses at 

1 3Q   for 

1 0.2k  � and  
2 0.02.k  �  

 
Fig. 15: Comparison of timing responses at 

1 3Q   for 

3 0.2k  � and  
4 3.k   
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V. CONCLUSION 

In this paper, we focus on the washout filter aided 

stabilizing control design of bifurcation phenomena for a 

power system with tap changer. The simulations demonstrate 

the success of the proposed schemes. It was found that the 

Andronov-Hopf bifurcation can only be delayed up to some 

extent if the control input is a function of the washout state 

and the state .
m

Z  In contrast, the Andronov-Hopf bifurcation 

can be eliminate by the control input with another three 

system states of the electric power system as feedback signals.  

That means the dynamic type of voltage collapse caused by 

the Andronov-Hopf bifurcation can be totally prevented via 

suitable choice of the control laws. Those finding might give a 

guide in the practical applications.  
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