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Abstract—In this paper,we study the existence and 

multiplicity of positive solutions of  second-order three-point 

boundary value problems  
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where ),0[),0[ ：f is continuous, ,10   

，21   ,1)(0  s Rs ，
21 ， is a 

constant. ),0[]1,0[:a  and ]1,[0  x such that 

0)( 0 xa . The proof of the main results is based on the fixed 

point theorem in cones. 
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I. INTRODUCTION 

  The study of multi-point boundary-value problems for linear 

second-order ordinary differential equations was initiated by 

Il’in and Moiseev[7-8]. Then Gupta [5] studied three-point 

boundary value problems for nonlinear differential equations. 

Since then, the more general nonlinear multi-point boundary 

value problems have been studied by several authors by 

several authors by using the Leray-Schauder Continuation 

Theorem,Nonlinear Alternatives of Leray-Schauder, and 

coincidence degree theory .We refer the reader to 

[1-3,6,10-12]for some recent results of nonlinear multi-point 

boundary value problems. 

In this paper, we consider the existence of positive 

solutions to the equation  
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where ,10  Our purpose here is to give some existence 

results for positive solutions to )1.1( ,assuming that 

1 and f is either superlinear or sublinear. Our proof is 

based upon the fixed point theorem in a cone. 

From now on, we make the following assumptions: 

)1(H ),0[),0[ ：f is continuous; 

)2(H  ),0[]1,0[:a  and ]1,[0  x such that 0)( 0 xa . 

Set  
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then 00 f  and f  correspond to the superlinear case, 

and 0f correspond to the sublinear case. By the positive 

solution of )1.1(  we understand a function )(tu  which is 

positive on 10  t  and satisfies the differential 

equation )1.1(  . 

The main results of the present paper are as follows: 

 

Theorem 1. Let )1(H - )2(H hold. Then the problem 

)1.1(  has at least one positive solution in the case  

(i) 00 f and f (superlinear)or 

(ii) 0f and 0f (sublinear). 

      The proof of above theorem is based upon an application 

of the following well-known Guo’s fixed point theorem[4] 

 

Theorem 2. Let E be a Banach space, and let EK  be a 

cone. Assume 
21 ， are open subsets of E  with 

10  , 

21  , and let 

KKA  )\( 12：  

 

be a  completely continuous operator such that 

(i) uu A , ,1Ku  and uu A , 

2Ku ; or 

(ii) uu A , ,1Ku  and uu A , 

2Ku . 

Then A has a fixed point in )( 12 K . 

 

II. PRELIMINARIES 

]1,0[C is a Banach space. The norm in ]1,0[C is defined 

as follows 

)(max
]1,0[0
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 . 

Lemma1. Let 1))((  u then for ]1,0[Cy , the 

problem 

)1.2(
),())(()1(,0)0(

),1,0(,0)()(u








 uuuu

ttyt
 

has a unique solution  
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Lemma 2. Let .
1

))(u(0


  If ]1,0[Cy  

and 0y  ,then the unique solution u  of the problem )1.1(  

satisfies 

]1,0[,0  tu . 

Proof  From the fact that 0)()(  xyxu ,we know 

that the graph of )(tu is concave down on )1,0(  . So 

if 0)1( u  then the concavity of u and the boundary 

condition 0)0( u , imply that 0u  for ]1,0[t . 

If 0)1( u  ,then we have that 

0)( u , )3.2(  

and 

)(
1

)())(()1( 


 uuuu  )4.2(  

This contradicts the concavity of u .  

Lemma 3. Let 1))((  u . If ]1,0[Cy and 

for 0y , then the problem )1.1(  has no positive solution. 

Proof  Assume that has a positive solution u  

If 0)1( u ,then 0)( u , and  

,
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this contradicts the concavity of u  . 

  If 0)1( u  and for some ),1,0(  0)( u then  

  ,0)1()( uu )6.2(  

If ),0(   , then )1()()( uuu    , which contradicts 

the concavity of u  . If )1,(   , then 

)()()0(  uuu  , which contradicts the concavity of 

u again. 

   In the rest of the paper, we assume that 1))((  u  .  

Lemma 4. Let


 1
))((0  u  .If ]1,0[Cy  and 

0y , then the unique solution of the problem )1.1(  

satisfies 
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Proof  We divide the proof into two steps. 

Step1. We deal with the case 1))((0   u  .  

In this case, by Lemma 2 ,we know that  

)1()( uu  . )7.2(  

Set  

utu )( . )8.2(  

If 1t , then  
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This together with )9.2(   implies that  
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If 1 t , then  
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From the concavity of u , we know that  

t

tuu )()(





. )12.2(  

Combining )21.2( and boundary condition 

 )1()())(( uuu  , we conclude that  
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  Step 2. We deal with the case


 1
))((1  u  . In this 

case , we have  

)1()( uu  . )14.2(  

Set  

utu )( , )15.2(  

then we can choose t such that  

1 t . )16.2(  

(we note that if ]1,[\]1,0[ t , then the point ))(,(  u  
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is below the straight line determined 

by ))1(,1( u and ))(,( tut  . This contradicts the concavity 

of u  ). From )16.1(  and the concavity of u  , we know that  

)()(min
]1,[
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Using the concavity of u  and Lemma 2, we have that  

t

tuu )()(
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This implies 

utu
t







)(min
]1,[

. )91.2(  

This completes the proof. 

III. PROOF OF THE MAIN RESULT 

Proof of Theorem 1  Superlinear case. Suppose then that 

00 f and f . We wish to show the existence of a 

positive solution of )1.1(  .Now )1.1(  has a solution 

)(tyy  if and only if y solves the operator equation  
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Denote 

}yy(t)min0,y,C[0,1]y{y
1t







K )2.3(  

It is obvious that K is a cone in ]1,0[C  .Moreover, by 

Lemma 4, It is also easy to check that KKA :  is 

completely continuous. 

Now since 00 f , we may choose 01 H so 

that yyf )(  , for
10 Hy   where 0  satisfies 
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Thus, if Ky  and 1Hy   ,then from 

）（3.1 and )3.3(  ,we get 
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Now if we let 

)5.3(}C[0,1]{y1 ，Ｈｙ １  

then )4.3(  show  that yAy   , for 1Ky  . 

 Further, since f , there exists 0ˆ
2 H such that 

uuf )( , for
2Ĥu   ,where 0 is chosen so that  
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Therefore, by the first part of the Fixed Point Theorem, it 

follows that A  has a fixed point in )\( 12 K  , such 

that 21 HuH   . This completes the superlinear part of 

the theorem. 

Sublinear case. Suppose next that 0f  and 0f . 

We first choose 03 H such that Myyf )( for 

30 Hy  , where 
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By using the method to get )7.3(  ,we can get that 
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Thus we may let }]1,0[{ 33 HyCy   so that  

,yAy  .3Ky  

Now, since 0f , there exists 0ˆ
4 H  so that 

yyf )( for
4Ĥy   , where 0  satisfies  
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We consider two cases: 

Case(i). Suppose f is bounded, say Nyf )(  for 

all ),0[ y  . In this case choose 
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and therefore yAy   . 

Case(ii). If f  is unbounded, then we know from )1(A  that 

there is }ˆ1
,2max{: 4344 HHHH


  such that  

)()( 4Hfyf  for 40 Hy  . 

(We are able to do this since f  is unbounded). Then 

for Ky  and 4Hy   we have  
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Therefore, in either case we may put  

},]1,0[{ 44 HyCy   

and for 4Ky  we may have yAy   . By the 

second part of the Fixed Point Theorem, it follows that )1.1(  

has a positive solution. Therefore, we have completed the 

proof of Theorem 1. 
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