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Existence and multiplicity of positive solutions of
second-order three-point boundary value problems

Jiao Wang

Abstract—In this paper,we study the existence and
multiplicity of positive solutions of second-order three-point
boundary value problems

{u"(t) +a(t)f(u())=0, t(0,1),
u(0) = 0,u(l) = a(u(m)u(n),
fi[0,00) —>[0,00) is

o, <a<ay, 0<na(s)<l, seR", «ap a,is a

where continuous, 0<77 <1,

constant. a:[0,1] —[0,00) and Jx, €[7,1] such that

a(x,) > 0. The proof of the main results is based on the fixed

point theorem in cones.
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I. INTRODUCTION

The study of multi-point boundary-value problems for linear
second-order ordinary differential equations was initiated by
II’'in and Moiseev[7-8]. Then Gupta [5] studied three-point
boundary value problems for nonlinear differential equations.
Since then, the more general nonlinear multi-point boundary
value problems have been studied by several authors by
several authors by using the Leray-Schauder Continuation
Theorem,Nonlinear Alternatives of Leray-Schauder, and
coincidence degree theory .We refer the reader to
[1-3,6,10-12]for some recent results of nonlinear multi-point
boundary value problems.

In this paper, we consider the existence of positive
solutions to the equation

{u"(t) +a(t)f(u(t))=0, t(0,]1),
u(0) = 0,u(l) = a(u(m)un),

where 0 <77 <1, Our purpose here is to give some existence

1.1

results for positive solutions to (1.1) ,assuming that
an <land f is either superlinear or sublinear. Our proof is

based upon the fixed point theorem in a cone.
From now on, we make the following assumptions:

(H1) f[0,00) — [0, 0) is continuous;
(H2) a:[0,1]] > [0,0)and 3 x, €[7,1] such that a(x,)>0.
Set
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then fo =0 and f =0 correspond to the superlinear case,
and f, = (Ocorrespond to the sublinear case. By the positive
solution of (1.1) we understand a function u(#) which is
the differential

positive on 0<z<1 and satisfies

equation (1.1) .

The main results of the present paper are as follows:

Theorem 1. Let (H1) - (H2) hold. Then the problem
(1.1) has at least one positive solution in the case

(i) f, =0and f, = oo (superlinear)or

(i) f, =ocand f, = 0(sublinear).

The proof of above theorem is based upon an application
of the following well-known Guo’s fixed point theorem([4]

Theorem 2. Let E be a Banach space, and let K C E be a
cone. Assume €2, €2, are open subsets of £ with 0 €Q,,

ﬁl c €2, and let
A: Kn(Q,\Q)—>K

be a completely continuous operator such that

O JAu|<|u] . ueKnoQ, md [Au|z]u] .
ue KMo, ;or

G) JAu|zfu] . weKnoQ, wd |Au|<|u] .
ue KMo, .

Then A has a fixed pointin K M (52 NQ,)).

II. PRELIMINARIES
C[0,1]is a Banach space. The norm in C[0,1]is defined
as follows

jul, = maxju(®).

Lemmal. Let a(u(77))n #1 then for y € C[0,1] , the

problem

{u @O +y()=0, t(0,)), @0

u(0) = 0,u(l) = a(u@))u(n),

has a unique solution
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u(t) = [ G(t.5)f (y(s))ds

a(u(n))
o [[Gar.9)f ((s)ds.
:=Au(r),t € (0,1).

Where

a(u(n))

H t, =G t, _—
69 =00 o

G(n,s). (2.2)

And

t(1-5),0<t <5<,
G(t,s)=

s(1-1),0<s<1r <1,

nl-s),n<s<l,
G(n,s)=
s1-7n),0<s<n.

Lemma 2. Let O<a(u(n))< l If yeC[0,]
n

and y > 0 ,then the unique solution# of the problem (1.1)

satisfies
u>0,re[0,1].

Proof From the fact that 1"(x) = —y(x) <0 ,we know
that the graph of u(¢) is concave down on (0,1) . So
if u(1)>0 then the concavity of # and the boundary
condition #(0) = 0, imply thatzt >0 fort € [0,1].

Ifu(l) <O ,then we have that

u(n)<0, (2.3)

and
ul) = a(u(m)un) > %u(ﬂ) (2.4)

This contradicts the concavity of u .

Lemma 3. Let a(u(n))n>1. 1t ye C[0,1] and

for y > 0, then the problem (1.1) has no positive solution.
Proof Assume that has a positive solution u

If u(1) >0 ,thenu(r7) >0, and
u) _ alu@)ulp u) -, 5
1 1 T

this contradicts the concavity of u .
Ifu(1) =0 and for some 7 € (0,1), u(z) > 0then

u(m)=u()=0, z#n (2.6)
If 7€ (0,77), thenu(z) > u(n)=u(l) , which contradicts
If ze(n,l)

u(0) =u(n) <u(r), which contradicts the concavity of
U again.

the concavity of u then

In the rest of the paper, we assume that & (u(77))n <1 .
1

Lemma 4. Let 0<a(u(n))<— .If ye C[0,1] and
n

y=0,

satisfies

then the unique solution of the problem (1.1)

50

min u(t) > ;/||u||

te[n,1]
1(1 n)

7
Proof We divide the proof into two steps.
Stepl. We deal with the case 0 < a(u(n)) <1 .
In this case, by Lemma 2 ,we know that

u(n)zu().(2.7)

Where y = min{e,, ———

1}

Set
u(@) =|u].(2.8)
If 1 <n<l1,then
min u(®) = u(b), (2.9)

and

(@) <u(l)+

u(li_u(m 0-1

o

—u(H[l-—&
uD[ 1 ]

1-an
=u(l)——_
u()a a-n)
I-an

a(l-n)

This together with (2.9) implies that

1(1 77)” ”(2 10).
—on

l

<u(l)

min u(t) >
te[n.1]

If n<t<1,then
minu(t) =u(l),(2.11)
reln.1]

From the concavity of u# , we know that
un) u(r)
n
Combining (2.12) and boundary condition
a(u(n))u(n) =u(l), we conclude that

w40 iy =[],
a(mn 1

(2.12)

This is
min u(t) > au(m)nu|> & @m)nlul. 2.13)

. 1 .
Step 2. We deal with the case 1 < a(u(77)) < — . In this
n

case , we have

u(n)<u(l).(2.14)
Set

u(@) =|u].(2.15)

then we can choose 7 such that
n<t<1.(2.16)
(we note that if 7 €[0,1]\[77,1], then the point (77, (7))
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is below the straight line determined
by (Lu(1)) and (7,u(t)) .
ofu ). From(1.16) and the concavity ofu , we know that

n[lin]u(t) =u(n).(2.17)
te[n,l

This contradicts the concavity

Using the concavity of # and Lemma 2, we have that
u u f

n
This implies

min u(r) > nuf . (2.19)

te[n,1]
This completes the proof.

III. PROOF OF THE MAIN RESULT
Proof of Theorem 1 Superlinear case. Suppose then that
fo=0and f, =o0. We wish to show the existence of a

positive solution of (1.1) .Now (1.1) has a solution
y = y(t) if and only if y solves the operator equation

0= [ 6.9 (s s 2 (27)3) [[Gr.5)f (v(s)ds
=40 G

Denote

K ={y|yeCl0,1],y <0,miny(® > y]y]} 3.2)

It is obvious that K is a cone in C[0,1] .Moreover, by
Lemma 4, It is also easy to check that A: K — K is
completely continuous.

Now since f, =0 , we may choose H, >0 so

that f(y) < gy ,forO<y<H, whereg& >0 satisfies

5[1+M]j G(s,5)ds<l  (3.3)
L-a, (u(n)n *°
Thus, if yeK and ||y|| =H sthen  from
(3.Dand (3.3) ,we get
Ay <[ G(s.5)f (3(s))ds +% [[G(s.5)7 (y(s)ds
< J:)l G(s,8)ey(s)ds+ 1_;(:;(2;)]‘0 G(s,5)ey(s)ds
2
<&l 80‘27
0 a, (u(m)n
< e.E G(s,s)dsH, +%j G(s,s)dsH,

a, (u(r))

<efl+—2 2
1=, (u(m)n

1, Gs.)dsH,  (3.4)

Now if we let

Q =y eClO.0][|y] <H) 35
then (3.4) show that”Ay” < ”y” Jforye KMoQ, .
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Further, since foO =00, there exists ﬁ 5 > 0 such that
f(u)Zpu,forquAI

pyo (u(n))
1o, (u(n))n =°

,where p > 0 is chosen so that

j G(n,5)ds|y|>1.(3.6)

Let H, = max{2H,,

i} and Q, ={
4

then y € K and ||y|| = H, implies
min y(@) > y|y| > H, .

77<[<]

and so

o au@m) ¢
Ay =[] G f v+ o o [[G@.9)f (y(s)ds
)

11—, (u(m)n .[o G, 9)f (y(s))ds

_pa,u@m)
S Eo— [ Ga.f(x(s)as

> pye, (u(n))
I—a, u(m)n
Hence, for y € K M0Q,
||A ||Z pyo (u(n))
l—aoa (u(m)n

2
Therefore, by the first part of the Fixed Point Theorem, it

follows that A has a fixed point in K M (52 \Q)

>_

[[G@.sasly| wyn<n 3.7)

[[G@r.s)as)dsy

, such

that | < ”u” < H, . This completes the superlinear part of
the theorem.

Sublinear case. Suppose next that f, =00 and f, =0.
We first choose H; >0 such that f(y)=My for
0<y<H,, where

Mf G(n,5)ds>1(3.8)
1=, (u(n)n
By using the method to get (3.7) ,we can get that
A =[G s+ —ZD [ G507 (3(57)ds
g —a(ulnn

al(u(n))
= (u(m))n 0
AC0)
1=o, (u@m)n
o, (u(n))
REACIO A
>H, (3.9

Thus we may let Q2, ={y € C[0,1] ‘ ||y|| < H,} so that
since f, =0, [:I4>O
f(y)<Ayfory> H, , where A >0 satisfies

[ G017 (y(s)ds
[[GOr.5M (y(s))ds

[, Gr.sxds)s]

Now, there exists so that
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a,(u(n)
+—1-a2(u(77))77] jo G(s,s)ds<1.(3.10)

We consider two cases:
Case(i). Suppose f is bounded, say f(y)<N for

all y € [0,0) . In this case choose
D) G syas),
1=a, (u(m)n
so that for y € K with”y” = H, we have
a(u())
1=a(u(m)n
a, (1))
L=a, (u(m)n

a,(u(n))
< N[+ M) d
< N[ +1—a2(u(n))n]j°G(s’S) s

H,=max{2H,,N[1+

Ay(©) = [[G9)f (y(s)ds+ [[Gr.9)f (ys)ds

1 1
< jo G(s,s)Nds + LG(s, 5)Nds

<H,
and therefore ”Ay” < ||y|| .
Case(ii). If f is unbounded, then we know from (A1) that

1
thereis H, : H, >max{2H3,zH4} such that

S f(H,)forO<y<H,.
(We are able to do this since f is unbounded). Then

forye K and”y” = H, we have

_f a(u(m)

Ay =[,Ge.f (y(sNds+ 1= P [ G ) ()
! a(um) ¢

< [[Gs.9)f (y(s)ds + o [, Gs.)f (H,)ds

< jH,[1+—%LWD) [ 'G(s, 5)ds
1—a, (u(m)n
<H,

Therefore, in either case we may put

Q, =(yeco1]||y]<H,).
and for y € K MOQ, we may have ”Ay”S”y” . By the

second part of the Fixed Point Theorem, it follows that (1.1)

has a positive solution. Therefore, we have completed the
proof of Theorem 1.
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