KINERJA TEKNIK SINKRONISASI FREKUENSI PADA SISTEM ALAMOUTI-OFDM

Arifin, Yoedy Moegiharto, Dhina Chandra Puspita
Prodi Studi D4 Teknik Telekomunikasi
Departemen Teknik Elektro
Politeknik Elektronika Negeri Surabaya
Kampus PENS Keputih Sukolilo Surabaya 60111
Telp (+62)31-5947280, 5946114, Fax. (+62)31-5946114
Email: arifin@eepis-its.edu, ymoegiharto@eepis-its.edu, dhina.cp@gmail.com

Abstrak

Pada penelitian ditunjukkan kinerja teknik sinkronisasi frekwensi dengan menggunkan cyclic prefix (CP) pada sistem ALAMOUTI-OFDM yang diterapkan pada jenis modulasi MPSK. Untuk nilai pengamatan BER = 10^{-3} pada skema antena pemancar-penerima 2 x 1, kinerja sinkronisasi frekwensi untuk pengaruh CFO = 0,1 dicapai untuk SNR sekitar 14 dB lebih baik 1 dB dibanding untuk CFO = 0,2 sekitar 6 dB dibanding CFO = 0,3 dan sekitar 8 dB untuk CFO = 0,4. Untuk nilai pengamatan BER = 10^{-3} pada skema antena pemancar-penerima 2 x 2 kinerja sinkronisasi frekwensi untuk pengaruh CFO = 0,1 dicapai untuk SNR sekitar 13,5 dB lebih baik 1 dB dibanding untuk CFO = 0,2 sekitar 3 dB dibanding CFO = 0,3 dan sekitar 4 dB untuk CFO = 0,4.

Kata kunci: Carrier Frequency Offset (CFO), ALAMOUTI, OFDM

Abstract

This research shows the performance of frequency synchronization technique using cyclic prefix (CP) on ALAMOUTI-OFDM system with MPSK modulation. At BER value of equal to 10^{-3} , the performance of frequency synchronization technique with transmit-receive antenna scheme of 2 x 1, for CFO = 0,1 shown at SNR = 14 dB, 1 dB better than CFO = 0,2, 6 dB better than CFO = 0,3 and 8 dB better than CFO = 0,4. At BER value of equal to 10^{-3} , the performance of frequency synchronization technique with transmit-receive antenna scheme of 2 x 2 for CFO = 0,1 shown at SNR = 13,5 dB, 1 dB better than CFO = 0,2, 3 dB better than CFO = 0,3 and 4 dB better than CFO = 0,4.

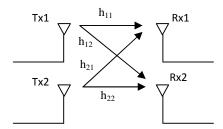
Keywords: Carrier Frequency Offset (CFO), ALAMOUTI, OFDM

PENDAHULUAN

Gejala multipath fading merupakan pengganggu penting pada sistem komunikasi nirkabel yang dapat menurunkan kinerja sistem. Penerapan diversitas antena cukup efektif untuk mengurangi dari efek multipath fading. Teknik Multiple Input Multiple Out put (MIMO) dengan aplikasi lebih dari satu antena di pemancar dan penerima, mampu memperbaiki kehandalan sistem dan menaikkan laju pengiriman informasi. Alamouti menemukan sebuah skema transmisi MIMO baru yang mampu meningkatkan kehandalan pengiriman informasi dengan mengkorelasikan sinyal-sinyal informasi diantara antena pemancar (Alamouti, 1998). Teknik transmisi tersebut dapat diintegrasikan dengan teknik

modulasi multicarrier yaitu seperti Orthogonal Frequency Division Multiplex (OFDM). OFDM memberikan efisiensi bandwith yang tinggi dan mampu menghilangkan inter symbol interferences (ISI) yang disebabkan oleh kanal frequency selective fading (J.A.C. Bigham, 1990); (L.J. Cimini, 1985). Tetapi OFDM memiliki kelemahan utama, yaitu sangat peka terhadap frequency offset, yang dapat menghilangkan sifat ortogonalitas antara sub carrier-sub carrier sehingga menimbulkan intercarrier interferences (ICI) menurunkan kinerja system (T.Pollet, et al, 1995). Maka diperlukan proses sinkronisasi frekuensi disisi penerima untuk menghilangkan CFO. Teknik sinkronisasi frekuensi pada sis-tem MIMO OFDM bisa dilakukan dengan menggunakan Cyclic Prefix (Sandell, et al, 1995).

Penggabungan sistem OFDM dengan teknik transmisi *multiple-input multiple-output* (MIMO) dapat memperbaiki kinerja sistem komunikasi nirkabel untuk laju transmisi yang semakin tinggi. Sama seperti pada sistem *single-input single-output* (SISO) OFDM, sistem MIMO OFDM juga sangat peka juga terhadap *carrier frequency offset* (CFO). Dalam penelitian ini akan dilakukan proses sinkronisasi frekuensi pada sistem MIMO Alamouti-OFDM dengan menerapkan *Cyclic Prefix*.


MODEL SISTEM

Model sistem yang akan dianalisa secara blok diagram ditunjukkan seperti gambar 1 (apendiks). Pada antena pemancar deretan input bit masuk ke dalam modulator. Selanjutnya sinyal hasil modulasi disusun pararel sebanyak jumlah *subcarrier* dan kemudian dilakukan proses IFFT yang berfungsi untuk pembuatan simbol-simbol OFDM. Setelah itu dilakukan penyisipan *cyclic prefic* pada simbol-simbol OFDM lalu dikonversikan ke dalam bentuk serial, dikodekan dengan menggunakan *encoder* Alamouti untuk ditransmitkan melalui beberapa antena pemancar.

Pada penerima sinyal informasi yang diterima mengalami gangguan CFO. Selanjutnya diperlukan proses sinkronisasi pertama kali pada penerima setiap kali menerima data sehingga proses deteksi data dapat berjalan dengan benar. Selanjutnya dilakukan pendekodean STBC, lalu disusun secara secara pararel dan dilakukan proses pembuangan *cyclic prefic* kemudian proses *Fast Fourier Transform* (FFT) yang berfungsi untuk menguraikan simbol-simbol OFDM dan mengkonversikan ke dalam domain frekuensi. Setelah disusun menjadi serial dilakukan proses demodulasi sehingga dihasilkan *output* bit yang di harapkan.

Skema Transmisi Alamouti

Teknik transmisi dengan Alamouti adalah teknik pengiriman kode-kode setelah melalui proses pengkodean Alamouti atau STBC (*Space Time Block Code*). Transmisi kode Alamouti dengan dua antena pemancar dan penerima ditunjukkan seperti Gambar 2.

Gambar 2. Transmisi kode Alamouti.

Simbol x_1 dan x_2 dikirimkan secara unik dari antena Tx1 dan Tx2 seperti tabel berikut.

Tabel 1. Pengiriman Kode Alamouti

	Waktu	antena Tx1	antena Tx2
	T	x_1	x_2
	t+T	- x ₂ *	x_1^*

Sehingga matriks transmisi dapat dinyatakan seperti,

$$\mathbf{x} = \begin{bmatrix} x_1 & -x_2^* \\ x_2 & x_1^* \end{bmatrix} \dots (1)$$

Sinyal yang diterima oleh antena R x 1 pada waktu T_0 dan T_1 dinyatakan seperti,

$$y_0 = h_{11} x_1 + h_{21} x_2 + n_0$$

 $y_1 = h_{21} x_1^* - h_{11} x_2^* + n_1$(2)

Sedangkan yang diterima oleh antena R x 2 adalah seperti,

$$y_2 = h_{12} x_1 + h_{22} x_2 + n_2$$

 $y_3 = h_{22} x_1^* - h_{12} x_2^* + n_3$(3)

Sistem SISO-OFDM

Dalam sistem SISO OFDM deretan informasi X(k), k = N, N jumlah subcarrier diparalel sebanyak N dan diproses IFFT dan

dijumlahkan menjadi sebuah simbol OFDM, x[n] seperti,

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{\frac{j2\pi kn}{N}}$$

untuk
$$n = 0, 1, ..., -1$$
(4)

Sinyal OFDM yang diterima dinyatakan seperti,

$$y[n] = \frac{1}{N} \sum_{k=0}^{N-1} H[k] X[k] e^{\frac{j2\pi kn}{N}} + z(n)$$
 ..(5)

Bila terjadi gangguan carrier frequency offset (CFO) karena frekwensi subcarrier bergeser karena pengaruh efek Doppler, maka terjadi intercarrier interferensi (ICI) dan terjadi perubahan phasa sinyal-sinyal OFDM yang diterima. Jika nilai CFO lebih besar dari 0.5 maka akan menyebabkan perbedaan fasa yang lebih besar dari π pada sinyal OFDM, dan menyebabkan penerjemahan fasa yang ambigu atau membingungkan pada saat proses estimasi dilakukan. Bila CFO disebabkan oleh ketidakpaduan osilator lokal di pemancar dan penerima, maka sinyal yang diterima karena CFO dapat dituliskan seperti.

$$y[n] = \frac{1}{N} \sum_{k=0}^{N-1} H[k] X[k] e^{j2\pi(k+\epsilon)n/N} + z(n).....(6)$$

dengan ε menyatakan CFO, H[k] adalah respon kanal dan z[n] adalah derau di penerima. Sehingga diperlukan sinkronisasi frekuensi yang akurat disisi penerima untuk mengkompensasi adanya CFO sehingga proses deteksi data dapat berjalan dengan benar. Sinkronisasi dilakukan penerima pertama kali setiap kali menerima data.

Skema Alamouti-OFDM

Pada skema Alamouti OFDM, sinyal yang yang dikirimkan dari antenna Tx1 dan Tx2 untuk periode T_0 adalah

$$x_1[n] = \frac{1}{N} \sum_{k=0}^{N-1} X_1[k] e^{\frac{j2\pi kn}{N}}$$

untak $n = 0, 1, ..., N-1$(6)

$$x_{2}[n] = \frac{1}{N} \sum_{k=0}^{N-1} X_{2}[k] e^{\frac{j2\pi kn}{N}}$$
untuk = 0, 1, ..., N - 1.....(7)

Sinyal yang yang dikirimkan dari antenna Tx1 dan Tx2 untuk periode T₁ adalah

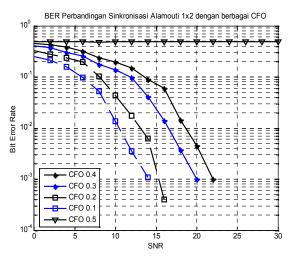
$$-x_{2}^{*}[n] = \frac{1}{N} \sum_{k=0}^{N-1} X_{2}^{*}[k] e^{\frac{j2\pi kn}{N}}$$
untuk = 0, 1,, N - 1.....(8)

$$x_1^*[n] = \frac{1}{N} \sum_{k=0}^{N-1} X_1^*[k] e^{\frac{j2\pi kn}{N}}$$

untuk $n = 0, 1, \dots, N-1$(10)

Sinyal yang diterima oleh dua buah antena penerima Rx1 dan Rx2 adalah y_0 , y_1 , y_2 dan y_3 yang berupa sinyal-sinyal OFDM. Bila muncul CFO dan dianggap nilai CFO pada setiap sinyal yang diterima oleh kedua antena penerima besarnya sama, maka sinyal yang diterima antena penerima dapat dinyatakan seperti,

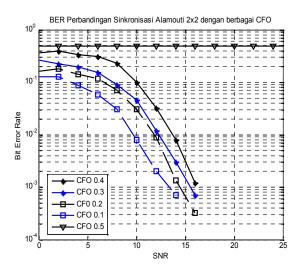
$$Y[n] = e^{\frac{j2\pi(k+\epsilon)\eta}{N}}H(k)X(k)$$
....(11)


dengan $\mathbf{H}(k)$ dan $\mathbf{X}(k)$ masing-masing menyatakan matriks kanal dan sinyal yang dikirimkan.

Proses sinkronisasi dilakukan pada setiap sinyal OFDM yang diterima di antena Rx1 dan Rx2.

HASIL SIMULASI

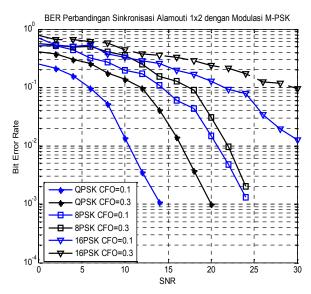
Kinerja Sinkronisasi Alamouti 1Tx- 2Rx pada modulasi QPSK berdasarkan CFO


Kinerja sinkronisasi frekwensi pada transmisi kode Alamouti 1Tx-2Rx dengan koreksi *cyclic prefix* OFDM ditunjukkan seperti Gambar 3 untuk nilai CFO 0.15, 0.2, 0.3, 0.4 dan 0.5 dengan CP = 1/4.

Gambar 3. Grafik Perbandingan Sinkronisasi Alamouti 1Tx-2Rx dengan berbagai CFO.

Pada BER = 10^{-3} kinerja sinkronisasi frekwensi untuk pengaruh CFO = 0,1 dicapai untuk SNR sekitar 14 dB lebih baik 1 dB dibanding untuk CFO = 0,2 sekitar 6 dB dibanding CFO = 0,3 dan sekitar 8 dB untuk CFO = 0,4.

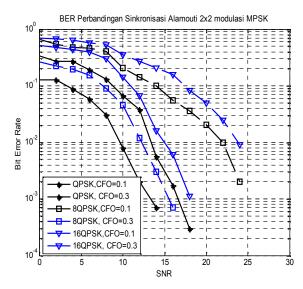
Kinerja Sinkronisasi Alamouti 2Tx-2Rx pada modulasi QPSK berdasarkan CFO


Gambar 4. Grafik Perbandingan Sinkronisasi Alamouti 2Tx-2Rx dengan berbagai CFO.

Kinerja sinkronisasi frekwensi pada transmisi kode Alamouti 2Tx-2Rx dengan koreksi cyclic prefix OFDM ditunjukkan seperti Gambar 4 untuk nilai CFO 0.15, 0.2, 0.3, 0.4 dan 0.5 dengan CP = 1/4.

Pada BER = 10^{-3} kinerja sinkronisasi frekwensi untuk pengaruh CFO = 0,1 dicapai untuk SNR sekitar 13,5 dB lebih baik 1 dB dibanding untuk CFO = 0,2 sekitar 3 dB dibanding CFO = 0,3 dan sekitar 4 dB untuk CFO = 0,4.

Kinerja Sinkronisasi Alamouti 1Tx- 2Rx pada berbagai level modulasi PSK


Kinerja sinkronisasi frekwensi pada transmisi kode Alamouti 1Tx-2Rx dengan nilai CFO 0.1 dan 0.3 dengan modulasi QPSK, 8 PSK dan 16 PSK ditunjukkan pada Gambar 5.

Gambar 5. Grafik Perbandingan sinkronisasi CFO 0.1 dan 0.3 Alamouti OFDM 1Tx-2Rx dengan berbagai level modulasi PSK.

Kinerja Sinkronisasi Alamouti 2Tx- 2Rx pada berbagai level modulasi PSK

Kinerja sinkronisasi frekwensi pada transmisi kode Alamouti 2Tx-2Rx dengan nilai CFO 0.1 dan 0.3 dengan modulasi QPSK, 8 PSK dan 16 PSK ditunjukkan pada gambar 6.

Gambar 6. Grafik Perbandingan sinkronisasi CFO 0.1 dan 0.3 Alamouti OFDM 2Tx-2Rx dengan berbagai level modulasi PSK.

KESIMPULAN

Perbedaan kinerja teknik sinkronisasi frekwensi antara satu dan dua antena penerima tidak berpengaruh banyak untuk nilai CFO = 0,1, untuk nilai CFO = 0,3 dan 0,4 terdapat perbaikan kinerja sistem. Kinerja sistem untuk berbagai level modulasi menunjukkan bahwa makin tinggi level modulasi makin turun baik untuk antena penerima 1 maupun 2 buah.

DAFTAR PUSTAKA

- Alamouti, M., S (1998) A Simple Transmit Diversity Technique for Wireless Communications, *IEEE Journal on Select Areas in Communications*, Vol. 16, No. 8, pp 1451–1458.
- Bingham, J.A.C (1990) Multicarrier modulation for data transmission: An idea whose time has come, *IEEE Communications Magazine*, Vol. 28, No. 5, pp. 5-14.
- L.J. Cimini (1985) Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing, *IEEE Trans. Comm.*, *COM*, Vol. 33, No. 7, pp. 665-675.
- T. Pollet, M. van Bladel, and M. Moeneclaey (1995) BER sensitivity of OFDM systemsto carrier frequency o®set and Wiener phase noise', *IEEE Transactions on Communications*, Vol. 43, No. 2/3/4, pp. 191-193.
- Magnus Sandell, Jan-Jaap van de Beek and Per Ola Borjesson (1995) Timing and Frequency Synchronization in OFDM Systems Using the Syclic Prefix, in Proceedings of International Symposium on Synchronization, Vol., No., pp. 16-19, Essen, Germany.