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Abstrak 

 

Tulisan ini akan membahas analisa model matematika tentang sistem 

dinamika sumber daya perikanan pada suatu wilayah perairan. Wilayah 

perairan yang dipertimbangkan terdiri dari dua zona: zona noncadangan 

(ikannya boleh ditangkap) dan zona cadangan (ikannya tidak boleh 

ditangkap), di mana kepadatan populasi ikan di masing-masing zona 

dinyatakan dalam bentuk persamaan diferensial taklinear. Berdasarkan 

model tersebut, ingin diketahui bagaimana kebijakan penangkapan ikan 

yang optimal. Oleh karena itu, sebuah kebijakan penangkapan ikan yang 

optimal telah dianalisis menggunakan prinsip maksimum Pontryagin. Suatu 

contoh ilustratif telah diberikan dengan mempertimbangkan studi kasus 

penangkapan Sardinella lemuru di Selat Bali. Simulasi numerik tersebut 

memberikan informasi bahwa secara umum model dapat mengambarkan 

dinamika populasi ikan yang mempertimbangkan dua zona di atas. 

 

Kata Kunci: prinsip maksimum Pontryagin, zona cadangan, zona 

noncadangan. 

 

 

PENDAHULUAN 

Latar Belakang 

 

Kegiatan penangkapan dan pembudidayaan ikan telah berlangsung ribuan 

bahkan puluhan ribu tahun yang lalu. Dengan demikian, kegiatan perikanan 

merupakan proses pembelajaran kolektif dalam kurun waktu yang cukup lama [5]. 

Perikanan telah menjadi aspek yang tak terpisahkan dari sejarah peradaban 

manusia sejak zaman prasejarah, zaman batu, hingga zaman modern. Sejak zaman 

manusia purba (Homo Erectus dan Australophiticus) ikan telah menjadi salah satu 

bahan makanan manusia-manusia purba tersebut. Pada zaman batu sekitar 5000 

tahun yang lalu, penemuan arkeologi di gua Skipshelleren, Norwegia menemukan 

adanya “desa nelayan” pertama. Perikanan menjadi  masyarakat setempat untuk 
memanfaatkan ikan sebagai sumber pangan. Pada fase selanjutnya, perikanan juga 

telah dilakukan pada masa kekaisaran Romawi kuno, Mesir kuno, dan peradaban 

Cina [5]. 
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Pada abad modern ini, kegiatan perikanan semakin berkembang dari 

sekedar urusan ekonomi lokal menjadi kegiatan ekonomi global yang 

menghasilkan miliaran dolar. Saat ini hasil perikanan telah mengarah pada produk 

bernilai tambah. Sebagai contoh pada tahun 2012, neraca perdagangan 

menunjukkan bahwa dari sektor perikanan, Indonesia surplus USD 3,52 miliar 

atau 81,11% dari total transaksi perdagangan ekspor impor [6]. 

Selama beberapa dekade terakhir telah dilakukan beberapa penelitian 

mengenai sumber daya perikanan. Kitabatake (1982) mengembangkan model 

dinamik untuk sumber daya perikanan tentang hubungan mangsa-pemangsa 

berdasarkan data amatan dari Danau Kasumigaura di Jepang. Ragozin dan Brown 

(1985) mempelajari kebijakan penangkapan yang optimal untuk sistem mangsa-

pemangsa. Mangsa tidak memiliki nilai jual dan pemangsa ditangkap secara 

selektif. Chaudhuri (1986) mengusulkan sebuah model untuk mempelajari 

penangkapan gabungan pada dua spesies competing fish. Chauduri juga berhasil 

menunjukkan kesetimbangan bionomik di area yang ikannya boleh ditangkap dan 

berhasil menunjukan adanya kemungkinan terjadinya kepunahan pada salah satu 

spesies ikan tersebut [2]. 

Beberapa literatur di atas membahas model yang mempertimbangkan satu 

zona saja, yaitu zona yang ikannya boleh ditangkap. Akan tetapi, aspek zona 

cadangan (ikannya tidak boleh ditangkap) belum dimodelkan dan belum dianalisis. 

Oleh karena itu, aspek zona cadangan merupakan masalah yang menarik untuk 

dikaji. Karena ada dua zona yang dipertimbangkan, maka sistem dinamika yang 

terjadi adalah sistem dinamika populasi ikan di zona cadangan dan zona 

noncadangan. Model yang mempertimbangkan zona cadangan adalah model yang 

digagas oleh Dubey et al. [2]. Karena belum dibahas contoh ilustratifnya, maka 

studi kasus tentang simulasi numerik pemanenan ikan menjadi hal yang menarik 

untuk dipelajari. 

 

Tujuan Penelitian 

 

Berdasarkan latar belakang, tujuan karya ilmiah ini adalah sebagai berikut: 

1. Mendeskripsikan model dinamik pertumbuhan dan pemanenan ikan di zona 

cadangan dan zona noncadangan. 

2. Mengaplikasikan prinsip maksimum Pontryagin dalam menentukan kebijakan 

penangkapan ikan yang memaksimumkan keuntungan tanpa membahayakan 

habitatnya. 
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TINJAUAN PUSTAKA 

Model Pertumbuhan Organisme 

 

Proses pemodelan umumnya membutuhkan banyak keahlian, pengalaman, 

dan ilmu pengetahuan. Proses ini menetapkan suatu penyederhanaan masalah 

yang menggambarkan kejadian nyata. Sering kali di dalamnya terdapat suatu 

persamaan diferensial. Metode matematika tertentu digunakan untuk melakukan 

proses ini. Penyederhanaan masalah ini disebut model matematika untuk kejadian 

nyata [3]. 

Model paling sederhana untuk menggambarkan pertumbuhan populasi 

suatu organisme adalah 𝑁̇ = 𝑟𝑁, dengan 𝑁(𝑡) merupakan populasi pada waktu 𝑡 

dan 𝑟 > 0  adalah laju pertumbuhan. Model 𝑁̇ = 𝑟𝑁  merupakan model 

pertumbuhan eksponensial yang memiliki solusi 𝑁(𝑡) = 𝑁0𝑒𝑟𝑡  dengan 𝑁0 

merupakan populasi pada saat 𝑡 = 0 . Jelas bahwa model pertumbuhan 

eksponensial tidak bisa berlaku selamanya [10].  

Efek dari keterbatasan ruang dan sumber daya, sifat biologis populasi, dan 

demografi menjadi asumsi yang dipertimbangkan dalam pemodelan. Laju 

pertumbuhan per kapita 𝑁̇/𝑁 menurun ketika 𝑁 menjadi cukup besar. Untuk 𝑁 

yang kecil, laju pertumbuhan sama dengan 𝑟 . Akan tetapi, bila populasi lebih 

besar dari daya dukung lingkungan 𝐾 , laju pertumbuhan menjadi negatif: laju 

kematian lebih tinggi daripada laju kelahiran. Sebuah cara yang menurut ilmu 

matematika untuk memasukan ide ini adalah asumsi bahwa laju pertumbuhan per 

kapita 𝑁̇/𝑁  menurun secara linear terhadap 𝑁 . Hal ini menjadi dasar konsep 

persamaan logistik 𝑁̇ = 𝑟𝑁(1 − 𝑁/𝐾) yang pertama kali diajukan untuk model 

pertumbuhan populasi manusia oleh Verhulst pada tahun 1838. Model logistik ini 

memiliki solusi 𝑁(𝑡) = 𝐾𝐾𝑒−𝑟𝑡 + 1 

dan memiliki titik tetap tak stabil 𝑁∗ = 0 serta titik tetap stabil 𝑁∗ = 𝐾, artinya 𝑁(𝑡) → 𝐾 seiring dengan 𝑡 → ∞. Dengan kata lain, lim𝑡→∞ 𝑁(𝑡) = 𝐾 [10]. 

Sumber daya alam yang dapat diperbarui memiliki beberapa konsep 

pengukuran ketersediaan yang sering digunakan. Salah satu konsep pengukuran 

tersebut adalah kapasitas daya dukung (carrying capacity). Pengukuran kapasitas 

ini didasarkan pada pemikiran bahwa lingkungan memiliki kapasitas maksimum 

untuk mendukung suatu pertumbuhan organisme. Sebagai contoh adalah ikan 

dapat tumbuh di kolam secara positif jika daya dukung lingkungannya masih 

besar. Namun, pertumbuhan yang terus menerus akan menimbulkan kompetisi 

terhadap ruang dan makanan sampai daya dukung lingkungan tidak mampu lagi 

mendukung pertumbuhan [4]. 

Proses eksploitasi atau menangkap ikan di suatu perairan membutuhkan 

berbagai sarana. Sarana tersebut merupakan faktor input yang dalam literatur 

(1) 
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perikanan biasa disebut sebagai upaya (effort). Upaya adalah indeks dari berbagai 

input seperti ekstraksi sumber daya perikanan yang merupakan aktifitas ekonomi 

dengan menggunakan input tenaga kerja, kapal, alat tangkap, mesin, bahan bakar, 

dan sebagainya. Adapun koefisien kemampuan tangkap ikan (koefisien 

catchability) merupakan proporsi stok ikan yang dapat ditangkap oleh satu unit 

upaya [4]. 

 

Prinsip Maksimum Pontryagin 

 

Prinsip ini merupakan suatu cara untuk menemukan suatu vektor kontrol 𝒖(𝑡) = [𝑢1(𝑡), … , 𝑢𝑚(𝑡)]  yang kontinu dan 𝒙(𝑡) = [𝑥1(𝑡), … , 𝑥𝑛(𝑡)]  yang 

merupakan suatu vektor state padanan yang dapat diturunkan serta didefinisikan 

pada interval waktu tertentu [𝑡0, 𝑡1]  sehingga memaksimumkan fungsional 

objektif 𝐽 = ∫ 𝑓(𝑡, 𝒙(𝑡), 𝒖(𝑡)) 𝑑𝑡𝑡1𝑡0 ,  
dengan kendala persamaan diferensial  𝑥𝑖̇(𝑡) = 𝑔𝑖(𝑡, 𝒙(𝑡), 𝒖(𝑡))                  𝑖 = 1, … , 𝑛, 

kondisi awal (initial conditions) 𝑥𝑖(𝑡0) = 𝑥𝑖0, 𝑖 = 1, … , 𝑛, 

salah satu kondisi akhir (terminal conditions) sebagai berikut: 𝑥𝑖(𝑡1) = 𝑥𝑖1,           𝑖 = 1, … , 𝑝, 𝑥𝑖(𝑡1) ≥ 𝑥𝑖1,           𝑖 = 𝑝 + 1, … , 𝑞,     𝑥𝑖(𝑡1) bebas          𝑖 = 𝑞 + 1, … , 𝑛,                                                                 
dan variabel kontrol 𝒖(𝑡) ∈ 𝑈  dengan 𝑈  merupakan suatu himpunan yang 

ditetapkan dalam 𝑅𝑚 . Diasumsikan bahwa 𝑓, 𝑔𝑖, 𝜕𝑓/𝜕𝑥𝑗  dan 𝜕𝑔𝑖/𝜕𝑥𝑗  adalah 

fungsi-fungsi kontinu untuk setiap 𝑖 = 1, … , 𝑛 dan 𝑗 = 1, … , 𝑛. [7]. 

 

Teorema. Agar 𝒙∗(𝑡), 𝒖∗(𝑡) menjadi optimum untuk masalah di atas, diperlukan 

keberadaan suatu konstanta 𝜆0  dan fungsi-fungsi kontinu 𝝀(𝑡) =(𝜆1(𝑡), … , 𝜆𝑛(𝑡)) , di mana untuk setiap 𝑡0 ≤ 𝑡 ≤ 𝑡1  terdapat (𝜆0(𝑡), 𝜆(𝑡)) ≠(0,0)  sehingga untuk setiap 𝑡0 ≤ 𝑡 ≤ 𝑡1  dipenuhi 𝐻(𝑡, 𝒙∗(𝑡), 𝒖, 𝝀(𝑡)) ≤𝐻(𝑡, 𝒙∗(𝑡), 𝒖∗(𝑡), 𝝀(𝑡)), dengan fungsi hamilton 𝐻 didefinisikan sebagai berikut: 𝐻(𝑡, 𝒙, 𝒖, 𝝀) = 𝜆0𝑓(𝑡, 𝒙, 𝒖) + ∑ 𝜆𝑖𝑔𝑖(𝑡, 𝒙, 𝒖)𝑛𝑖=1   

kecuali pada titik-titik diskontinuitas  𝑢∗(𝑡), 

 

 

 

 𝜆𝑖̇(𝑡) = −𝜕𝐻(𝑡, 𝒙∗(𝑡), 𝒖∗, 𝝀(𝑡))/𝜕𝑥𝑖        𝑖 = 1, … , 𝑛.                                         
Selanjutnya 𝜆0 = 1 atau 𝜆0 = 0 

dan akhirnya salah satu kondisi transversalitas di bawah ini terpenuhi: 

koefisien dari 𝑢(𝑡) > 0, 
koefisien dari 𝑢(𝑡) < 0, 𝐻𝑢 = 0. 
  

𝑢∗(𝑡) = { 𝑀𝑚 𝑀∗ 
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𝜆𝑖(𝑡1) tidak dapat ditentukan,  𝑖 = 1, … , 𝑝, 𝜆𝑖(𝑡1) ≥ 0 (=0 jika 𝒙∗𝑖(𝑡1) > 𝑥𝑖1) 𝑖 = 𝑝 + 1, … , 𝑞,     𝜆𝑖(𝑡1) = 0     𝑖 = 𝑞 + 1, … , 𝑛. 

Prinsip maksimum Pontryagin memiliki kajian tentang kontrol bang-bang 

dan kontrol singular. Jika 𝑢  berbatas 𝑚 ≤ 𝑢(𝑡) ≤ 𝑀  dan 𝐻  linear terhadap 𝑢 

maka kontrol optimum merupakan kontrol bang-bang dan jika 𝐻𝑢 = 0  maka 

kontrol optimum merupakan kontrol singular. Dengan demikian, kontrol 

optimumnya adalah [7]: 

 

Metode Runge-Kutta  

 

 Metode Runge-Kutta adalah alternatif lain dari metode Taylor. Metode ini 

memiliki ketelitian yang tinggi dan tanpa membutuhkan perhitungan turunan. 

Perhatikan masalah nilai awal berikut: 𝑦̇ = 𝑓(𝑥, 𝑦);  𝑦(𝑥0) = 𝑦0, 
dengan 𝑦  merupakan fungsi skalar atau vektor yang belum diketahui dan 

bergantung pada 𝑥. Untuk suatu ℎ > 0 yang disebut riap (increment), kemudian 

didefinisikan untuk 𝑛 = 0, 1, 2, … , 𝑁, dan titik 𝑥𝑛 = 𝑥0 + 𝑛ℎ, terdapat suatu nilai 

aproksimasi (𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑁, 𝑦𝑁) yang diperoleh melalui formula [3]: 𝑦𝑛+1 = 𝑦𝑛 + ℎ6 (𝑘𝑛1 + 2𝑘𝑛2 + 2𝑘𝑛3 + 𝑘𝑛4), 
dengan 𝑘𝑛1 = 𝑓(𝑥𝑛, 𝑦𝑛), 𝑘𝑛2 = 𝑓(𝑥𝑛 + ℎ2 , 𝑦𝑛 + ℎ𝑘𝑛12 ), 𝑘𝑛3 = 𝑓 (𝑥𝑛 + ℎ2 , 𝑦𝑛 + ℎ𝑘𝑛22 ), 𝑘𝑛4 = 𝑓(𝑥𝑛 + ℎ, 𝑦𝑛 + ℎ𝑘𝑛3). 

 

 

MODEL MATEMATIKA 

Model Pertumbuhan Ikan di Zona Cadangan dan Noncadangan 

 

Sumber daya ikan merupakan sumber daya milik bersama (common 

resources) dan bersifat akses terbuka (open access) sehingga semua lapisan 

masyarakat berhak memanfaatkannya. Hal ini bisa memicu eksploitasi sumber 

daya perikanan secara besar-besaran dan tidak terkontrol [4]. Oleh sebab itu perlu 

adanya upaya-upaya untuk mencegah kondisi tersebut. Salah satunya dengan 

membuat peraturan tentang wilayah pemanfaatan ruang laut. 

Kegiatan pemanfaatan ruang laut memiliki beberapa aturan tipologi, salah 

satunya adalah tentang adanya zona preservasi. Zona preservasi adalah zona 

tertutup untuk umum, tidak ada  pengambilan sumber daya yang diizinkan. Setiap  



 

 

R. NURBAYAN, T. BAKHTIAR, A. KUSNANTO 

 

 

40 

yang ada di zona ini harus mendapatkan izin. Selain itu, ada juga zona konservasi, 

yaitu zona yang melakukan perlindungan dan konservasi terhadap suatu sumber 

daya tertentu dan mengizinkan kegiatan pengambilan sumber daya dengan tetap 

memperhatikan keberlanjutan (sustainability) dari sumber daya tersebut [8]. 

Pemodelan ekosistem perairan yang dibahas adalah model perikanan yang 

mempertimbangkan aturan ruang laut di atas. Misalkan suatu ruang laut tertentu 

didefinisikan terdiri dari zona noncadangan dan zona cadangan. Kemudian ada 

aturan bahwa penangkapan ikan di zona noncadangan diperbolehkan secara 

terbuka. Sebaliknya, penangkapan ikan di zona cadangan tidak diperbolehkan. 

Diasumsikan bahwa pertumbuhan populasi ikan di setiap zona mengikuti model 

logistik. Dengan demikian, dinamika populasi ikan di zona noncadangan dan zona 

cadangan (model tanpa pemanenan) dapat disajikan dalam bentuk sistem 

persamaan diferensial sebagai berikut: 𝑥̇ = 𝜙𝑥(𝑡) (1 − 𝑥(𝑡)𝐾 ) − 𝑟1𝑥(𝑡) + 𝑟2𝑦(𝑡), 𝑦̇ = 𝜃𝑦(𝑡) (1 − 𝑦(𝑡)𝐿 ) + 𝑟1𝑥(𝑡) − 𝑟2𝑦(𝑡).      
Keterangan: 𝑥(𝑡) : populasi ikan (ton) di zona noncadangan pada waktu 𝑡 (tahun),  𝑦(𝑡) : populasi ikan (ton) di zona cadangan pada waktu 𝑡 (tahun), 𝜙 : laju pertumbuhan populasi ikan di zona noncadangan (% per tahun), 𝜃 : laju pertumbuhan populasi ikan di zona  cadangan (% per tahun), 𝑟1  : laju populasi ikan yang bermigrasi dari zona noncadangan ke zona  

cadangan (% per tahun), 𝑟2    : laju populasi ikan yang bermigrasi dari zona cadangan ke zona  

noncadangan (% per tahun), 𝐾 : daya dukung lingkungan di zona noncadangan (ton),  𝐿 : daya dukung lingkungan di zona cadangan (ton), 

 

Asumsi yang digunakan pada model (2) adalah sebagai berikut: 

1. Parameter 𝑟1, 𝑟2, 𝜙 , 𝜃, 𝑞, 𝐾 dan 𝐿 diasumsikan sebagai konstanta positif.   

2. Jika tidak ada migrasi populasi ikan dari zona cadangan ke zona noncadangan (𝑟2 = 0) dan 𝜙 − 𝑟1 < 0, maka 𝑥̇ < 0. Ketika 𝑥̇ < 0 berarti laju pertumbuhan 

populasi ikan di zona noncadangan bernilai negatif. Hal tersebut tidak mungkin 

terjadi dalam populasi suatu makhluk hidup yang mengikuti model logistik. 

Oleh sebab itu, diasumsikan 𝜙 − 𝑟1 > 0.                                                                

3. Jika  tidak ada migrasi populasi ikan dari zona noncadangan ke zona cadangan 

(𝑟1 = 0) dan 𝜃 − 𝑟2 < 0, maka 𝑦̇ < 0. Ketika 𝑦̇ < 0 berarti laju pertumbuhan 

populasi ikan di zona cadangan bernilai negatif. Hal tersebut tidak mungkin 

terjadi dalam populasi suatu makhluk hidup yang mengikuti model logistik. 

Oleh sebab itu, asumsi yang digunakan agar kondisi tersebut tidak terjadi 

adalah 𝜃 − 𝑟2 > 0.                                 

 

(2) 
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Kebijakan Penangkapan Optimum 

 

Prinsip maksimum Pontryagin merupakan suatu konsep untuk menentukan 

kebijakan penangkapan ikan yang optimal. Prinsip ini diaplikasikan pada model 

pemanenan ikan sebagai berikut: 𝑥̇ = 𝜙𝑥(𝑡) (1 − 𝑥(𝑡)𝐾 ) − 𝑟1𝑥(𝑡) + 𝑟2𝑦(𝑡) − 𝑞𝐸(𝑡)𝑥(𝑡), 𝑥(0) = 𝑥0, 𝑦̇ = 𝜃𝑦(𝑡) (1 − 𝑦(𝑡)𝐿 ) + 𝑟1𝑥(𝑡) − 𝑟2𝑦(𝑡), 𝑦(0) = 𝑦0, 
dengan 𝐸 merupakan total upaya penangkapan ikan di zona noncadangan (trip per 

tahun) pada waktu 𝑡 dan 𝑞 merupakan koefisien cathability populasi ikan di zona 

noncadangan (ton per trip). Nilai sekarang (present value) dari pendapatan bersih 

dengan waktu kontinu dapat dinyatakan dalam bentuk fungsional sebagai berikut: 𝐽 = ∫ 𝑒−𝛿𝑡[𝑝𝑞𝑥(𝑡) − 𝑐]𝐸(𝑡) 𝑑𝑡𝑇
0 , 

dengan 𝛿 sebagai tingkat diskonto kontinu tahunan. Kemudian bahasan sekarang 

adalah memaksimumkan fungsional 𝐽 dengan kendala persamaan diferensial (3). 

Adapun kendala peubah kontrolnya yaitu kontrol berbatas 0 ≤ 𝐸 ≤ 𝐸𝑚𝑎𝑥 .  
Dengan demikian, fungsi hamiltonnya adalah:                                                                        𝐻 = 𝑒−𝛿𝑡(𝑝𝑞𝑥 − 𝑐)𝐸 + 𝛾1(𝑡) [𝜙𝑥 (1 − 𝑥𝐾) − 𝑟1𝑥 + 𝑟2𝑦 − 𝑞𝐸𝑥] + 𝛾2(𝑡) [𝜃𝑦 (1 − 𝑦𝐿) + 𝑟1𝑥 − 𝑟2𝑦] 

= [𝑒−𝛿𝑡(𝑝𝑞𝑥 − 𝑐) − 𝛾1𝑞𝑥]𝐸 + 𝛾1(𝑡) [𝜙𝑥 (1 − 𝑥𝐾) − 𝑟1𝑥 + 𝑟2𝑦] 

   + 𝛾2(𝑡) [𝜃𝑦 (1 − 𝑦𝐿) + 𝑟1𝑥 − 𝑟2𝑦] 
= 𝜏(𝑡)𝐸 + 𝛾1(𝑡) [𝜙𝑥 (1 − 𝑥𝐾) − 𝑟1𝑥 + 𝑟2𝑦] 

   + 𝛾2(𝑡) [𝜃𝑦 (1 − 𝑦𝐿) + 𝑟1𝑥 − 𝑟2𝑦]. 
Ketika 𝜏(𝑡) = 0, maka fungsi hamilton 𝐻  menjadi tak bergantung pada 

peubah kontrol 𝐸  (𝐻𝐸 = 0) . Ini adalah syarat perlu untuk kontrol singular 𝐸∗ dengan batas  0 < 𝐸∗ < 𝐸𝑚𝑎𝑥 . Berdasarkan (1), kontrol optimum dari 

kebijakan penangkapan ikan yang optimal adalah sebagai berikut: 

     𝐸(𝑡) = {𝐸𝑚𝑎𝑥 ,           𝜏(𝑡) > 0,0,                  𝜏(𝑡) < 0,𝐸∗,                𝜏(𝑡) = 0,  dengan 𝜏(𝑡) = 𝑒−𝛿𝑡(𝑝𝑞𝑥 − 𝑐) − 𝛾1𝑞𝑥.  

 

 

 

(3) 

(4) 



 

 

R. NURBAYAN, T. BAKHTIAR, A. KUSNANTO 

 

 

42 

STUDI KASUS 

Potensi Sardinella lemuru di Selat Bali 

 

Perairan Selat Bali berbentuk corong dengan lebar bagian sebelah utara 

kira-kira 2,5 km dan bagian selatan kurang lebih 55 km, dan dengan luas perairan 

kira-kira 2.500 km2. Perairan ini cenderung dipengaruhi oleh massa air dari 

Samudra Indonesia dibanding oleh massa air dari Laut Flores karena bentuknya 

seperti corong yang menghadap ke selatan. Berdasarkan karakteristik oseanografis 

dan sumber daya ikannya, perairan laut Selat Bali merupakan daerah ruaya dari 

ikan lemuru sehingga perikanan lemuru di Selat Bali dinamakan Sardinella 

lemuru yang sangat spesifik dan satu-satunya di Indonesia [9].  

Ditinjau dari segi lingkungan, di perairan Selat Bali terjadi proses 

penaikan air pada musim timur sehingga perairan ini menjadi kaya akan bahan 

makanan yang sangat dibutuhkan oleh ikan-ikan lemuru. Jenis ikan lemuru ini 

biasanya mendiami daerah-daerah yang mengalami proses penaikan air, sehingga 

dapat mencapai biomassa yang tinggi. Oleh karena itu ikan lemuru tergantung 

sekali kepada perubahan-perubahan lingkungan perairan [9]. 

 

Algoritma Simulasi Numerik 

 

Simulasi numerik yang dilakukan adalah aplikasi pemanenan pada jenis 

ikan lemuru (Sardinella lemuru) yang dijelaskan dalam literatur di atas. Simulasi 

tersebut melibatkan  seperangkat persamaan di bawah ini: 𝑥̇ = 𝜙𝑥(𝑡) (1 − 𝑥(𝑡)𝐾 ) − 𝑟1𝑥(𝑡) + 𝑟2𝑦(𝑡) − 𝑞𝐸(𝑡)𝑥(𝑡), 𝑥(0) = 𝑥0, 𝑦̇ = 𝜃𝑦(𝑡) (1 − 𝑦(𝑡)𝐿 ) + 𝑟1𝑥(𝑡) − 𝑟2𝑦(𝑡), 𝑦(0) = 𝑦0,                                                                        𝛾2̇ = −𝛾1𝑟2 − 𝛾2 (𝜃 − 2𝜃𝑦𝐿 − 𝑟2) ,  𝛾2(𝑇) = 0,                                                                                                                      𝛾1̇ = −𝑒−𝛿𝑡𝑝𝑞𝐸 − 𝛾1 (𝜙 − 2𝜙𝑥𝐾 − 𝑟1 − 𝑞𝐸) − 𝛾2𝑟1,  𝛾1(𝑇) = 0,   

Selain itu, digunakan pula nilai-nilai parameter dari beberapa sumber 

pustaka. Namun, terdapat pula nilai parameter hipotetik tertentu yang dipilih 

sehingga memenuhi beberapa asumsi yang digunakan, yaitu asumsi satu, dua dan 

tiga. Berikut adalah nilai parameter yang disimulasikan: 

 
Tabel 1  

Nilai-nilai Parameter Simulasi Numerik 

No Parameter Nilai Satuan Pustaka 

1 𝜙 50 % per tahun [9] 

2 𝜃 65 % per tahun Hipotetik 

3 𝑟1 20 % per tahun Hipotetik 

4 𝑟2 25 % per tahun Hipotetik 
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5 𝑞 0,0000456 ton per trip [9] 

6 𝐾 416.304,4 ton per tahun [9] 

7 𝐿 450.000 ton per tahun Hipotetik 

8 𝑝 5.000.000 Rp/ton [1] 

9 𝑐 744.456 Rp/trip [11] 

10 𝛿 8 % per tahun [5] 

11 (𝑥0, 𝑦0) (1700, 1900) ton Hipotetik 

12 0 < 𝐸(𝑡) < 𝐸𝑚𝑎𝑥 0 < 𝐸(𝑡) < 1970 trip per tahun Hipotetik 

  

Metode yang dipakai dalam menyelesaikan kendala persamaan diferensial 

adalah metode Runge-Kutta. Berikut ini adalah bentuk algoritmanya [3]: 

1. DEF  𝑓(𝑥, 𝑦)= (masukan fungsi 𝑓(𝑥, 𝑦)) 

2. INPUT “masukan nilai awal 𝑥 and 𝑦”; 𝑥, 𝑦 

3. INPUT “masukan step size dan nilai maksimum dari 𝑥”; ℎ, 𝑥𝑚𝑎𝑥; 𝑛 = 𝑥𝑚𝑎𝑥/ℎ  

4. FOR i = 1 TO 𝑛 STEP ℎ 𝑘1 = 𝑓(𝑥, 𝑦)     𝑥𝑥 = 𝑥 + ℎ/2 𝑦𝑦 = 𝑦 + ℎ 𝑘12   𝑘2 =  𝑓(𝑥𝑥, 𝑦𝑦)   𝑦𝑦 = 𝑦 + ℎ 𝑘22  𝑘3 =  𝑓(𝑥𝑥, 𝑦𝑦)  𝑥𝑥 = 𝑥 + ℎ           𝑦𝑦 = 𝑦 + ℎ 𝑘32  𝑘4 =  𝑓(𝑥𝑥, 𝑦𝑦)              𝑥  = 𝑥 + ℎ 𝑦  = 𝑦 + ℎ ∗ (𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)/6 

PRINT  𝑥, 𝑦 

NEXT 𝑖 
END. 

 

Berikut ini adalah hasil yang diperoleh dari simulasi numerik :  
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Gambar 1 Bidang Solusi Populasi Ikan di Zona Noncadangan 

 

Gambar 1 menunjukan bidang solusi populasi ikan di zona noncadangan. 

Terdapat dua bidang solusi yang dipelajari, yaitu bidang solusi model tanpa 

pemanenan dan bidang solusi model dengan pemanenan. Terlihat bahwa pada 

model tanpa pemanenan solusi populasi ikan di zona noncadangan (𝑥) konvergen 

ke suatu nilai di atas daya dukung lingkungan. Sebaliknya, pada model dengan 

pemanenan, solusi 𝑥 konvergen ke suatu nilai di bawah daya dukung lingkungan. 

Ketika nilai 𝑥 konvergen ke suatu nilai di bawah daya dukung lingkungan, secara 

biologis kondisi tersebut mengartikan bahwa lingkungan mampu mendukung 

pertumbuhan secara optimal.  

Model tanpa pemanenan menunjukan kondisi populasi ikan yang 

konvergen ke suatu nilai di atas daya dukung lingkungan. Secara biologis kondisi 

tersebut menerangkan bahwa lingkungan tidak mampu mendukung pertumbuhan 

populasi ikan secara optimal. Oleh sebab itu, diperlukan upaya pemanenan untuk 

mencegah terjadinya kondisi tersebut. 
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Gambar 2 Bidang Solusi Populasi Ikan di Zona Cadangan 

 

Gambar 2 menunjukan bidang solusi populasi ikan di zona cadangan. 

Terdapat dua bidang solusi yang dipelajari yaitu bidang solusi model tanpa 

pemanenan dan bidang solusi model dengan pemanenan. Terlihat bahwa model 

tanpa pemanenan dan model dengan pemanenan memiliki solusi populasi ikan di 

zona cadangan (𝑦)  yang konvergen ke suatu nilai di bawah daya dukung 

lingkungan. Hal ini menunjukan bahwa secara biologis lingkungan masih mampu 

mendukung pertumbuhan populasi ikan secara optimal.  

Selain itu, dapat dilihat pula bahwa solusi 𝑦  pada model pemanenan 

berada di bawah solusi 𝑦 model tanpa pemanenan. Secara matematis hal ini terjadi 

akibat pengaruh tidak langsung dari zona noncadangan. Ketika dilakukan 

pemanenan, proporsi populasi ikan yang bermigrasi dari zona noncadangan lebih 

sedikit dibandingkan proporsi migrasi pada model tanpa pemanenan. 
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Gambar 3 Solusi Fungsi Switching 𝝉 

 

Berdasarkan (1), solusi fungsi switching pada gambar 3 merupakan 

koefisien dari variabel kontrol 𝑬. Fungsi ini digunakan untuk menentukan interval 

waktu dalam skema pemanenan ikan. Berdasarkan (4), ketika fungsi switching 

bernilai positif maka dilakukan upaya pemanenan sebesar 𝑬𝒎𝒂𝒙 . Sebaliknya, 

ketika bernilai negatif maka pemanenan adalah sebesar nol (tidak ada upaya 

pemanenan). 

 

 

SIMPULAN  

Model pertumbuhan dan pemanenan ikan (logistik) telah mampu 

menggambarkan kondisi populasi ikan di zona cadangan dan noncadangan. Telah 

digunakan pula prinsip maksimum Pontryagin dalam menentukan kebijakan 

penangkapan ikan yang optimal. Solusi populasi ikan di zona noncadangan (𝑥) 

dan di zona cadangan (𝑦)  diselesaikan secara numerik menggunakan metode 

Runge-Kutta. Melalui simulasi numerik, solusi 𝑥  dan 𝑦  ditentukan pada dua 

kondisi yang berbeda, yaitu pada kondisi model tanpa pemanenan dan kondisi 

model dengan pemanenan. 
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Akhirnya, disimpulkanlah bahwa berdasarkan simulasi pemanenan 

Sardinella lemuru di Selat Bali, pada zona noncadangan harus dilakukan upaya 

pemanenan agar populasi ikan tidak melebihi daya dukung lingkungan. Selain itu, 

secara umum model ini bisa dipakai untuk simulasi-simulasi ilustratif lainnya 

asalkan ada dua zona yang dipertimbangkan: zona noncadangan dan zona 

cadangan.  
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