# KARAKTERISASI KATALIS Cu/ZnBr<sub>2</sub>/γ-Al<sub>2</sub>O<sub>3</sub> UNTUK HIDROGENASI SITRONELAL

## Cicilia Shinta Putri Cahyani, Elvina Dhiaul Iftitah\*, Danar Purwonugroho

Jurusan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Brawijaya

Jl. Veteran Malang 65145

\*Alamat korespondensi, Tel: +62-341-575838, Fax: +62-341-575835

Email: vin\_iftitah@ub.ac.id

#### **ABSTRAK**

Penelitian ini dilakukan melalui 3 tahap yaitu preparasi katalis  $Cu/ZnBr_2/\gamma-Al_2O_3$  10%, karakterisasi katalis menggunakan XRD dan SEM-EDX serta uji aktivitas katalis. Katalis  $Cu/ZnBr_2/\gamma-Al_2O_3$  dibuat dengan metode impregnasi  $Cu(NO_3)_2.3H_2O$  ke dalam katalis  $ZnBr_2/\gamma-Al_2O_3$  dalam pelarut metanol. Difraktogram XRD menunjukkan adanya 20  $Cu = 44^{\circ}$ , 50°, 74°. Image SEM dan EDX menunjukkan profil yang medukung spesi aktif Cu dan  $ZnBr_2$  telah terembankan dengan baik. Hidrogenasi sitronelal dengan katalis  $Cu/ZnBr_2/\gamma-Al_2O_3$  pada temperatur 60 °C selama 5 jam memberikan hasil berupa isopulegol sebesar 2,53%.

**Kata Kunci**: katalis Cu/ZnBr<sub>2</sub>/γ-Al<sub>2</sub>O<sub>3</sub>, XRD, SEM-EDX, sitronelal.

#### ABSTRACT

This study goes 3 steps of Cu/ZnBr<sub>2</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 10 % catalyst preparation,and catalyst characterization using XRD and SEM-EDX, and activation test of catalyst. Catalyst Cu/ZnBr<sub>2</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> made with impregnation method of Cu (NO<sub>3</sub>)<sub>2</sub>.3H<sub>2</sub>O into a catalyst ZnBr<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> in a methanol solvent. Then do a comparation catalyst characterization Cu/ZnBr<sub>2</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 2 $\theta$  Cu = 44<sup>0</sup>, 50<sup>0</sup>, 74<sup>0</sup>. SEM-EDX images showing the profiles support active Cu species and ZnBr<sub>2</sub> has well impregnation. Citronellal hydrogenation catalyst with Cu/ZnBr<sub>2</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> in temperatures of 60 °C for 5 hours return results in the form of isopulegol 2,53%.

**Keyword**:  $Cu/ZnBr_2/\gamma-Al_2O_3$  catalyst, catalyst, XRD, SEM-EDX, citronellal.

## **PENDAHULUAN**

Metode sintesis sitronelal dapatdilakukan dengan katalis homogen, namun katalis homogen tidak dapat digunakan kembali untuk melakukan reaksi siklisasi yang dilanjutkan dengan reaksi hidrogenasi. Menurut Sastrohamidjojo, 1981 [1] katalis homogen dapat bekerja spesifik dan tidak membutuhkan temperatur dan tekanan tinggi, sulit dipisahkan dari campurannya. Sehingga penggunaan katalis heterogen lebih menguntungkan karena mudah dipisahkan dari campurannya, bersifat multifungsi, dan efektif sehingga dapat memenuhi kaidah dan prinsip "Green Chemistry".

Aplikasi katalis heterogen sangat banyak digunakan untuk proses sintesis sitronelal. Katalis asam padat yang telah diteliti adalah campuran oksida logam [2]. Katalis asam padat alumina merupakan alumina transisi yang terdiri dari berbagai jenis. Salah satu jenisnya

adalah  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> yang merupakan jenis transisi alumina yang paling sering digunakan, baik sebagai katalis langsung maupun pengemban [3].

Berdasarkan informasi diatas, pada penelitian ini dilakukan karakterisasi katalis heterogen  $\text{Cu/ZnBr}_2/\gamma\text{Al}_2\text{O}_3$  untuk reaksi hidrogenasi terhadap sitronelal.

## **METODA PENELITIAN**

#### Bahan dan Alat

Alat dan bahan yang digunakan adalah Cu (NO<sub>3</sub>)<sub>2</sub>.3H<sub>2</sub>O (*Merck*), ZnBr<sub>2</sub> (*Merck*), γ-Al<sub>2</sub>O<sub>3</sub> (*Merck*), metanol (*Merck*), sitronelal (*Merck*), gas N<sub>2</sub> (*PT. Tira Austenite, Tbk*), gas H<sub>2</sub> (*PT. Tira Austenite, Tbk*). Satu set reaktor gelas modifikasi, tanur modifikasi, neraca analitik, pemanas listrik, stirer, evaporator dengan pengurangan tekanan, microtube 1,5 mL, pipet mikro, termometer raksa, dan alat-alat gelas, Kromatografi Gas, *X-Ray Diffractometer*, dan *Scanning Electron Microscope – Energy Dispersive X-Ray Spectrometer*.

## **Prosedur**

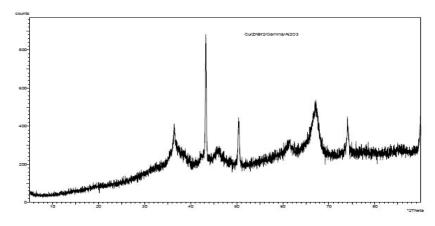
## Pembuatan katalis ZnBr<sub>2</sub>/γ-Al<sub>2</sub>O<sub>3</sub>

Pada pembuatan katalis  $ZnBr_2/\gamma-Al_2O_3$  10%, 1 gram padatan  $ZnBr_2$  dilarutkan dalam metanol hingga 100 mL, kemudian ditambahkan 9 gram  $\gamma-Al_2O_3$  dan dilakukan pengadukan dengan magnetik *stirer* selama 24 jam. Setelah 24 jam dilakukan pengadukan, metanol pada larutan  $ZnBr_2/\gamma-Al_2O_3$  diuapkan dengan *rotary evaporator* pada temperatur 90 °C hingga membentuk serbuk yang kemudian dikeringkan dalam oven selama 1 jam dan dikalsinasi dengan aliran gas  $N_2$ .

## Pembuatan katalis Cu/ZnBr<sub>2</sub>/γ-Al<sub>2</sub>O<sub>3</sub>

Pembuatan katalis Cu/ZnBr $_2$ / $\gamma$ -Al $_2$ O $_3$  10% adalah dengan melakukan impregnasi Cu(NO $_3$ ) $_2$ .3H $_2$ O ke dalam ZnBr $_2$ / $\gamma$ -Al $_2$ O $_3$ . Sebanyak 3,8 gram Cu(NO $_3$ ) $_2$ .3H $_2$ O dilarutkan dalam metanol hingga 100 mL, kemudian ditambahkan 9 gram katalis ZnBr $_2$ / $\gamma$ -Al $_2$ O $_3$  10% dan dilakukan pengadukan dengan magnetik *stirer* selama 24 jam. Setelah 24 jam pengadukan, metanol pada larutan Cu/ZnBr $_2$ / $\gamma$ -Al $_2$ O $_3$  diuapkan dengan *rotary evaporator* pada temperatur 90  $^0$ C hingga membentuk serbuk yang kemudian dikeringkan dalam oven selama 1 jam. Kemudian dikalsinasi dengan aliran gas N $_2$  dan direduksi dengan aliran gas H $_2$ .

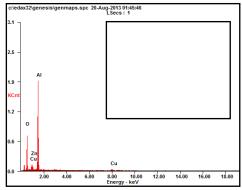
## Hidrogenasi sitronelal dengan katalis Cu/ZnBr<sub>2</sub>/γ-Al<sub>2</sub>O<sub>3</sub>


Sebanyak 3 mL sitronalal dimasukkan dalam labu reaktor gelas. Ditambahkan 0,5 gram katalis Cu/ZnBr<sub>2</sub>/γ-Al<sub>2</sub>O<sub>3</sub>. Sistem dikondisikan pada atmosfer gas H<sub>2</sub>. Kemudian dilakukan

pemanasan pada temperatur 60 °C yang disertai dengan pengadukan. Reaksi hidrogenasi dilakukan selama 5 jam. Hasil yang diperoleh dianalisis menggunakan kromatografi gas.

## HASIL DAN PEMBAHASAN

## Karakterisasi katalis Cu/ ZnBr<sub>2</sub>/γ-Al<sub>2</sub>O<sub>3</sub>


Penentuan kristalinitas katalis dilakukan menggunakan *X-Ray Diffractometer*. Pada gambar 1 ditunjukkan pola difraksi katalis Cu/ZnBr<sub>2</sub>/γ-Al<sub>2</sub>O<sub>3</sub>.



**Gambar 1.** Pola difraksi katalis Cu/ZnBr<sub>2</sub>/γ-Al<sub>2</sub>O<sub>3</sub>

Pada gambar 1 terlihat puncak difraksi untuk  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> yaitu  $2\theta = 36,4^{0}$ ,  $43,3^{0}$  dan  $67,1^{0}$ . Sedangkan puncak difraksi untuk Cu yaitu  $2\theta = 44^{0}$ ,  $50^{0}$  dan  $74^{0}$ . Dengan demikian dapat diduga bahwa dalam katalis Cu/ZnBr<sub>2</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub>, terdapat  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> dengan struktur yang tidak mengalami perubahan setalah ditambahkan dengan Cu/ZnBr<sub>2</sub>.

Karakterisasi katalis Cu/ZnBr<sub>2</sub>/γ-Al<sub>2</sub>O<sub>3</sub> juga dilakukan dengan SEM yang bertujuan untuk mendapatkan gambar (*images*) struktur katalis pada tingkat mikro dengan resolusi yang cukup tinggi. Gambar yang didapatkan menunjukkan interaksi antara elektron dengan sampel yang kemudian ditransmisikan dan ditangkap oleh sebuah layar. Berikut adalah hasil analisis menggunakan SEM-EDX disajikan pada gambar 2.



| Element | Wt%        | At%   |
|---------|------------|-------|
| OK      | 40.08      | 55.37 |
| ZnL     | 05.83      | 01.97 |
| AlK     | 50.61      | 41.45 |
| CuK     | 03.47      | 01.21 |
| Matrix  | Correction | ZAF   |

Gambar 2. Hasil Analisis SEM-EDX

SEM yang dihasilkan menunjukkan adanya agregat atau gumpalan-gumpalan dengan degradasi warna gelap terang. Degradasi warna gelap terang menunjukkan adanya perbedaan lapisan (layer).

## Uji aktivitas katalis Cu/ZnBr<sub>2</sub>/γ-Al<sub>2</sub>O<sub>3</sub> terhadap sitronelal

Uji aktivitas katalis  $\text{Cu/ZnBr}_2/\gamma\text{-Al}_2\text{O}_3$  dilakukan dengan cara menggunakan katalis tersebut dalam reaksi hidrogenasi katalitik terhadap sitronelal. Hasil yang diperoleh dilakukan analisis menggunakan kromatografi gas (KG) dan didapatkan puncak untuk sitronelal yang tidak bereaksi adalah pada  $t_R$  11,53 sebesar 82%, sedangkan pada  $t_R$  11,09 sebesar 2,53%. Puncak pada  $t_R$  11,09 dapat diduga sebagai isopulegol. Hasil yang diperoleh tidak menunjukkan hasil yang tinggi untuk hasil reaksi hidrogenasi. Hal ini dapat disebabkan oleh kerja katalis kurang maksimal, dikarenakan Cu tidak terembankan secara sempurna ke dalam  $\text{ZnBr}_2/\gamma\text{-Al}_2\text{O}_3$ .

## **KESIMPULAN**

Dari hasil penelitian tentang karakterkatalis Cu/ZnBr $_2$ / $\gamma$ -Al $_2$ O $_3$  diketahui bahwa hasil analisis dengan XRD untuk Cu adalah  $2\theta = 44^{\circ}$ ,  $50^{\circ}$ , dan  $74^{\circ}$ . Sedangkan hasil SEM-EDX menunjukkan komposisi Cu dan Zn dalam  $\gamma$ -Al $_2$ O $_3$  relatif kecil. Hal ini memberikan pengahruh terhadap reaksi hidrogenasi, sehingga isopulegol yang dihasilkan memiliki prosentase yang rendah yaitu 2,53%.

## **UCAPAN TERIMAKASIH**

Terimakasih kami sampaikan kepadaDrs. Suratmo, M.Sc selaku kepala Laboratorium Kimia Organik, Universitas Brawijaya. Staff Laboratorium Kimia Organik Universitas Brawijaya, Malang.Staff Laboratorium Material dan Metarulagi dan Laboratorium Energi Institut Sepuluh November, Surabaya.

## **DAFTAR PUSTAKA**

- Sastrohamidjojo, H., 1981, Study of Some Indonesian Essential Oil, *Disertasi*, FMIPA, Universitas Gajah Mada, Yogyakarta.
- 2. Ravasio, N., Poli, N., Psaro, R., Saba, M., dan Zaccharia, F., 2000, Bifunctional Cooper Catalyst, Part II\*, Stereoselective Synthesis Of (-)-Menthol Starting From (+)-Citronellal, *Topic in Catalyst*, No. 13, 195-199.

- Iftitah, E.D., 2011, Kajian Reaksi dan Hidrogenasi (R)-(+)-Sitronelal Menggunakan Katalis Berbasis ZnBr<sub>2</sub>/γ-Al<sub>2</sub>O<sub>3</sub> dan Ni/γ-Al<sub>2</sub>O<sub>3</sub>, *Disertasi*, Program Studi S3 Ilmu Kimia, Universitas Gajah Mada, Yogyakarta.
- 4. Iftitah, E.D., Muchalal, Trisunaryanti, W., Armunanto,R., 2013, Karakterisasi dan Aktivitas Katalitik Berbagai Variasi Komposisi Katalis Ni dan ZnBr<sub>2</sub> dalam Γ-Al<sub>2</sub>O<sub>3</sub> Untuk Isomerisasi dan Hidrogenasi (R)-(+)-Sitronelal, Jurnal MIPA 36 (1) hal 60-69.
- 5. Husin, H., L. Mairiza, dan Zuhra, 2007, Oksidasi Parsial Metana Menjadi Metanol dan Formaldehida Menggunakan Katalis CuMoO<sub>3</sub>./SiO<sub>2</sub>: Pengaruh Rasio Cu:Mo, Temperatur Reaksi dan Waktu Tunggal, *Jurnal Rekayasa Kimia dan Lingkungan*, No. 1, Vol. 6, hal 21-27.