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ABSTRACT. A uniform kernel estimator for intensity of a periodic
Poisson process with unknowm period is presented and a proof of
its consistency is discussed. The result presented in this paper is a
special case of that in [3]. The aim of discussing a uniform kernel
estimator is in order to be able to present a relatively simpler proof
of consistency compared to that in [3]. This is a joint work with
R. Helmers and R. Zitikis.
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1. INTRODUCTION AND MAIN RESULT

In this paper, a uniform kernel estimator for intensity of a periodic
Poisson process with unknowm period is presented and a proof of its
consistency is discussed. The result presented here is a special case of
that in [3] and chapter 3 of [5].

Let X be a Poisson process on [0, 00) with (unknown) locally inte-
grable intensity function A. We assume that A is a periodic function
with unknown period 7. We do not assume any parametric form of A,
except that it is periodic. That is, for each point s € [0,00) and all
k € Z, with Z denotes the set of integers, we have

As + k7) = A(s). (1.1)

Suppose that, for some w € Q, a single realization X (w) of the Pois-
son process X defined on a probability space (2, F,P) with intensity
function A is observed, though only within a bounded interval [0, n].
Our goal in this paper is: (a) To study construction of a uniform kernel
estimator for A at a given point s € [0,n] using only a single realiza-

tion X (w) of the Poisson process X observed in interval [0,n]. (The
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requirement s € [0, n] can be dropped if we know the period 7.) (b) To
determine the minimal conditions for having weak convergence of this
estimator.

Note that, since A is a periodic function with period 7, the problem
of estimating A at a given point s € [0, n] can be reduced into a problem
of estimating A at a given point s € [0,7). Hence, for the rest of this
paper, we assume that s € [0, 7).

Note also that, the meaning of the asymptotic n — oo in this paper is
somewhat different from the classical one. Here n does not denote our
sample size, but it denotes the length of the interval of observations.
The size of our samples is a random variable denoted by X ([0, n]).

Let 7, be any consistent estimator of the period 7, that is, 7, — T,
as n — oo. For example, one may use the estimators constructed in [2]
or perhaps the estimator investigated by [6] and [1]. Let also h,, be a
sequence of positive real numbers converging to 0, that is,

o 10 (1.2)

as n — oo. With these notations, we now define an estimator of A(s)
as

-y ix (s + ki — huy s + ki — ha] N [0,]). (1.3)

Let us now describe the idea behind the construction of the estima-
tor \,(s). Note that, since there is only one realization of the Poisson
process X available, we have to combine information about the (un-
known) value of A(s) from different places of the window [0, n]. For this
reason, the periodicity of A, that is assumption (1.1), plays a crucial

role and leads to the following string of (approximate) equations

1 o0
As) = N—nkz_jooA(s + kT)I{s + kr € [0,n]}
1 < 1 /
N o— — Az)dx
Ny, k:Z:OO 20 J (st kr—ho, stk +ha]N[00]
1 < 1
- N_wz_:oo %EX([S + kT — by, 5+ k7 4+ hy) N[0, 1))
~ LS L Xtk hs 4kt b A [0,n])
~ Nn . 5 - S T nsy S T n ,n
=1
z —X([s+ kT —hy,s +kr+h,)N[0,n]), (1.4)
n 2h,,
where

N, =#{k: s+ kr €[0,n]}.
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We note that, in order to make the first ~ in (1.4) works, we require
the assumptions that s is a Lebesgue point of A\ and (1.2) holds true.
We say s is a Lebesgue point of A, if we have

h

im —
h|0 2h J—hn

(eg. see [7], p.107-108). Thus, from (1.4) we conclude that the quantity

IN(s + ) — A(s)|dz = 0 (1.5)

T — 1
An(s) 1= — > 5 X([s+ b7 = hos +kr + ha] 0 [0,0]), (1.6
k=—o00 n

can be viewed as an estimator of A(s), provided that the period 7 is
known. The estimator (1.3) is obtained by replacing 7 in (1.6) by 7.
The idea described in (1.4) and (1.6) of constructing an estimator for
A(s) resembles that of [4] where in a similar fashion a non-parametric
estimator for an intensity function which, in addition to the periodic
trend, also has a polynomial trend. In [4], just like when constructing
the estimator A, (s) in (1.6), the period 7 is supposed to be known.

Theorem 1.1. Let the intensity function \ be periodic and locally in-
tegrable. Furthermore, let the bandwidth h, be such that (1.2) holds
true, and

nh, — 0o (1.7)
asn — oo. If
n|t, —7|/hy 2 0 (1.8)
as n — 0o, then
An(s) 2 A(s) (1.9)

~

as n — oo, provided s is a Lebesque point of X\. In other words, \,(s)
is a consistent estimator of \(s).

2. PROOFS OF THEOREM 1.1

Let By(z) denotes the interval [z — h, x + h]. To establish Theorem
1.1, first we prove

1 < 1 . p
Fnk;,o T (B, (s + k#) N [0,n]) 2 A(s), (2.1)

as n — oo, where N,, = #{k : s+ k7t € [0,n]}. By Lemma 2.1,
Lemma 2.2, and Lemma 2.3, we obtain that the quantity on the l.h.s.
of (2.1) is equal to A(s) + 0,(1), as n — oo, which of course implies
(2.1). Then, to prove (1.9), it remains to check that A,(s) can be
replaced by the quantity on the Lh.s. of (2.1), i.e. we must show that
the difference between A,(s) and the quantity on the Lh.s. of (2.1)
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converges in probability to zero, as n — oo. To show this, first we
write this difference as

<Tnnﬂ _ 1> Nin 3 Z—;LX (Bp. (s + ki) N [0,n]) (2.2)

k=—o0

that is, the quantity on the Lh.s. of (2.1) multiplied by (7, N,n~! —1).

Since A(s) is finite, by (2.1), we have that the quantity on the Lh.s. of

(2.1) is O,(1), as n — oo. Hence, it remains to check that

TN
n

1 =000 23)
as n — o0o. By the triangle inequality, the quantity on the L.h.s. of
(2.3) does not exceed

1
No= 2|+ =lf—7l. (29)
T T

n T T

+ T—"—l'sT—”
n

Note that |n/7 — N,| < 1, and 7,, = O,(1), as n — oo (by (1.8)).
Hence, the first term on the r.h.s. of (2.4) is O,(n™ '), as n — co. By
(1.8), we have that its second term is o,(n"'), as n — oo. Therefore
we have (2.3). This completes the proof of Theorem 1.1.

In the following lemma we shall show that we may replace the random
centre s + k7,, of the interval By, (s + k7,,) in (2.1) by its deterministic
limit s 4 k7.

Lemma 2.1. Suppose \ is periodic (with period 7) and locally inte-
grable. If, in addition, (1.2) and (1.8) are satisfied, then

I 1 .

N, k:z:oo . {X (B, (s + k7n) N [0,n]) = X (B, (s + k1) N [0,n])}|

= OP(1)7 (25)
as n — 00, provided s is a Lebesque point of .

Proof: First note that the difference within curly brackets on the 1.h.s.
of (2.5) does not exceed

X (By, (s + k7,)ABy, (s + kT) N [0,n]) . (2.6)
Now we notice that
B, (-7 (5 + k) C By, (s + k) C Bhytjk(—r) (s + k7). (2.7)
By (2.6) and (2.7) we have
{X (B, (s + k7,) N [0,n]) = X (By, (s + k)N [0,n])}

<2X (Bhn_t'_'k-(ff-n_T)‘(S + k1) \ Bhn_|k(f-n_7—)‘<s + k7) N |0, n]) .
(2.8)
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Hence, to prove (2.5), it suffices to show that

1« 1

7 2 X (Busikamni(s + A7)\ Buyjig,—n)i (s + k) 1[0, 1)
nog__ oot

= 0p(1), (2.9)

as n — oo. To prove (2.9) we argue as follows. Let A,, denotes the
Lh.s. of (2.9), and let also € > 0 be any fixed real number. Then, for
any fixed 6 > 0, we have that
P([Au] =€) < P({[Au] = e} N {n|7 — 7| < 6hn})
+P(n|7, — 7| > 6hy). (2.10)
By (1.8), the second term on the r.h.s. of (2.10) is o(1), as n — oc.

While the first term on the r.h.s. of (2.10), does not exceed P(|A,,| > ¢),
where

. 1« 1

An = Fn k:ZOO h_nX (Bhn+5hn (S + k’]—) \Bhn,(Shn (S + kT) N [0, TL]) . (211)

Next, by Markov inequality for the first moment, we have that
P(|A,| > €) < e 'E|A, ],
and ¢ 'E|A,| can also be written as
1 1

— A+ kT +2)I(s + kT 4+ x € [0,n])dx
eNy, k= —o0 hn . B(148)hn (\B(1—6)ny, (0)

o

11 /
€N b J By, sy, (ON\Bi_oyn,, (0)

A(s + x) i I(s + k7 + x € [0,n])dz.
k=—o00

(2.12)

Now we can easily see that

[e.e]

> Is+kr+ae0,n]) <N, + 1

k=—o00

Then, the r.h.s. of (2.12) does not exceed

1 1
— (— + 1) / A(s + x)dz. (2.13)
€hp \ Nn B(148)hy (0\B(1—8)hy, (0)

We also can see that N, '+ 1 < 2. Furthermore, the quantity in (2.13)
can be bounded above by

2
— [A(s +2) — A(s)|dx
€hn, B(146)n, (0)
2
o= 1Baron, (0) \ B-opn, (0)[A(s). (2.14)

Since s is a Lebesgue point of A, the first term of (2.14) converges to
zero as n — o0o. While the second term of (2.14) does not exceed
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8¢ 16A(s). By taking 6 = 6, | 0 as n — oo, we also have that this
term converges to zero as n — co. Then we get that P(|A,| > ¢€) — 0
as n — oo, which is equivalent to (2.9). This completes the proof of
Lemma 2.1.

To complete our proof of Theorem 1.1 we also need the following
lemma.

Lemma 2.2. Suppose \ is periodic (with period ) and locally inte-
grable. If, in addition, (1.2) and (1.7) are satisfied, then

NL 3 % |X (B, (s + k) N [0,n]) — EX (By, (s + k7) N [0,n])]
" k=—c0 m

= 0p(1), (2.15)
as n — 0o, provided s is a Lebesque point of \.
Proof: First note that, for large n, the random variables
X (B, (s + k)N [0,n]),

for all k& € Z, are independent. Then, by Chebyshev’s inequality, to
prove (2.15) its suffices to check that

<2Nihn> Z Var{X (B, (s+kr)N[0,n])} =o0(1), (2.16)

as n — o0o. Since X is a Poisson random variable, Var(X) = EX, and
for each k, we can write

EX (B, (s + kt)N[0,n])
:/ Ms+ kT + 2)I(s + kT + 2 € [0,n])dx. (2.17)
B, (0)

Because A is periodic (with period 7), we have that A(s + k7 + ) =
A(s+x), and we also have that Y 7> I(s+kr+z € [0,n]) < N,+ 1L
Then, to prove (2.16), its suffices to show

%<N,;V:1> <anhn> (2}1“1 /Bhn(o))\(s+$)dx> =o(1), (2.18)

as n — 00. Because s is a Lebesgue point of A, we have

(2hn)_1/B o A(s+z)dz = \(s) + o(1),

as n — oo, which is finite. Because N,h, — oo as n — oo, (by (1.7)),
then we get (2.18). This completes the proof of Lemma 2.2.

It remains to evaluate a non-random sum.
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Lemma 2.3. Suppose \ is periodic (with period T) and locally inte-
grable. If in addition, (1.2) is satisfied, then

— Z —EX (B, (s +kr)N[0,n]) = A(s) +o(1),  (2.19)

as n — 0o, pmmded s is a Lebesque point of \.

Proof: Using the fact that X is Poisson, the L.h.s. of (2.19) can be
written as

1 OO hn
F Z / As+ kT +2)I(s+ kT + 2 € [0,n])dx

hn

(e 9]

1 i
= I . (2.2
QNnhn/_hnMsm)Z (s + kr+x € [0,n])dz. (2.20)

k=—o00

Now note that

(N, —1) < i I(s+kr+x€[0,n]) <(N,+1),

k=—o00

which implies N, 1372 I(s + kr + 2 € [0,n]) can be written as

(1+ O(n™1)), as n — oo, uniformly in . Then, the quantity on the
r.h.s. of (2.20) can be written as

<1+0< >> 2}1L " s+ o) (2.21)

By (1.2) together with the assumptlon that s is a Lebesgue point of A,
we have that (2h,)~! j_h;n A(s + x)dz = A(s) + o(1), as n — oo. Then
we get this lemma. This completes the proof of Lemma 2.3.
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