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Abstract. A uniform kernel estimator for intensity of a periodic
Poisson process with unknowm period is presented and a proof of
its consistency is discussed. The result presented in this paper is a
special case of that in [3]. The aim of discussing a uniform kernel
estimator is in order to be able to present a relatively simpler proof
of consistency compared to that in [3]. This is a joint work with
R. Helmers and R. Zitikis.
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1. Introduction and main result

In this paper, a uniform kernel estimator for intensity of a periodic
Poisson process with unknowm period is presented and a proof of its
consistency is discussed. The result presented here is a special case of
that in [3] and chapter 3 of [5].
Let X be a Poisson process on [0;1) with (unknown) locally inte-

grable intensity function ¸. We assume that ¸ is a periodic function
with unknown period ¿ . We do not assume any parametric form of ¸,
except that it is periodic. That is, for each point s 2 [0;1) and all
k 2 Z, with Z denotes the set of integers, we have

¸(s+ k¿) = ¸(s): (1.1)

Suppose that, for some ! 2 −, a single realization X(!) of the Pois-
son process X de¯ned on a probability space (−;F ;P) with intensity
function ¸ is observed, though only within a bounded interval [0; n].
Our goal in this paper is: (a) To study construction of a uniform kernel
estimator for ¸ at a given point s 2 [0; n] using only a single realiza-
tion X(!) of the Poisson process X observed in interval [0; n]. (The
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requirement s 2 [0; n] can be dropped if we know the period ¿ .) (b) To
determine the minimal conditions for having weak convergence of this
estimator.
Note that, since ¸ is a periodic function with period ¿ , the problem

of estimating ¸ at a given point s 2 [0; n] can be reduced into a problem
of estimating ¸ at a given point s 2 [0; ¿). Hence, for the rest of this
paper, we assume that s 2 [0; ¿).
Note also that, the meaning of the asymptotic n!1 in this paper is

somewhat di®erent from the classical one. Here n does not denote our
sample size, but it denotes the length of the interval of observations.
The size of our samples is a random variable denoted by X([0; n]).

Let ¿̂n be any consistent estimator of the period ¿ , that is, ¿̂n
p! ¿;

as n!1. For example, one may use the estimators constructed in [2]
or perhaps the estimator investigated by [6] and [1]. Let also hn be a
sequence of positive real numbers converging to 0, that is,

hn # 0 (1.2)

as n ! 1. With these notations, we now de¯ne an estimator of ¸(s)
as

^̧
n(s) :=

¿̂n
n

1X
k=¡1

1

2hn
X ([s+ k¿̂n ¡ hn; s+ k¿̂n ¡ hn] \ [0; n]) : (1.3)

Let us now describe the idea behind the construction of the estima-
tor ^̧n(s). Note that, since there is only one realization of the Poisson
process X available, we have to combine information about the (un-
known) value of ¸(s) from di®erent places of the window [0; n]. For this
reason, the periodicity of ¸, that is assumption (1.1), plays a crucial
role and leads to the following string of (approximate) equations

¸(s) =
1

Nn

1X
k=¡1

¸(s+ k¿)Ifs+ k¿ 2 [0; n]g

¼ 1

Nn

1X
k=¡1

1

2hn

Z
[s+k¿¡hn;s+k¿+hn]\[0;n]

¸(x)dx

=
1

Nn

1X
k=¡1

1

2hn
EX([s+ k¿ ¡ hn; s+ k¿ + hn] \ [0; n])

¼ 1

Nn

1X
k=¡1

1

2hn
X([s+ k¿ ¡ hn; s+ k¿ + hn] \ [0; n])

¼ ¿

n

1X
k=¡1

1

2hn
X([s+ k¿ ¡ hn; s+ k¿ + hn] \ [0; n]); (1.4)

where

Nn = #fk : s+ k¿ 2 [0; n]g:
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We note that, in order to make the ¯rst ¼ in (1.4) works, we require
the assumptions that s is a Lebesgue point of ¸ and (1.2) holds true.
We say s is a Lebesgue point of ¸, if we have

lim
h#0

1

2h

Z h

¡h
j¸(s+ x)¡ ¸(s)jdx = 0 (1.5)

(eg. see [7], p.107-108). Thus, from (1.4) we conclude that the quantity

¸n(s) :=
¿

n

1X
k=¡1

1

2hn
X([s+ k¿ ¡ hn; s+ k¿ + hn] \ [0; n]); (1.6)

can be viewed as an estimator of ¸(s), provided that the period ¿ is
known. The estimator (1.3) is obtained by replacing ¿ in (1.6) by ¿̂n.
The idea described in (1.4) and (1.6) of constructing an estimator for

¸(s) resembles that of [4] where in a similar fashion a non-parametric
estimator for an intensity function which, in addition to the periodic
trend, also has a polynomial trend. In [4], just like when constructing
the estimator ¸n(s) in (1.6), the period ¿ is supposed to be known.

Theorem 1.1. Let the intensity function ¸ be periodic and locally in-
tegrable. Furthermore, let the bandwidth hn be such that (1.2) holds
true, and

nhn !1 (1.7)

as n!1. If

nj¿̂n ¡ ¿ j=hn
p! 0 (1.8)

as n!1, then
^̧
n(s)

p! ¸(s) (1.9)

as n!1, provided s is a Lebesgue point of ¸. In other words, ^̧n(s)
is a consistent estimator of ¸(s).

2. Proofs of Theorem 1.1

Let Bh(x) denotes the interval [x¡ h; x+ h]. To establish Theorem
1.1, ¯rst we prove

1

Nn

1X
k=¡1

1

2hn
X (Bhn(s+ k¿̂n) \ [0; n])

p! ¸(s); (2.1)

as n ! 1, where Nn = #fk : s + k¿ 2 [0; n]g. By Lemma 2.1,
Lemma 2.2, and Lemma 2.3, we obtain that the quantity on the l.h.s.
of (2:1) is equal to ¸(s) + op(1), as n ! 1, which of course implies
(2:1). Then, to prove (1.9), it remains to check that ^̧n(s) can be
replaced by the quantity on the l.h.s. of (2:1), i.e. we must show that

the di®erence between ^̧n(s) and the quantity on the l.h.s. of (2:1)
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converges in probability to zero, as n ! 1. To show this, ¯rst we
write this di®erence asμ

¿̂nNn
n

¡ 1
¶
1

Nn

1X
k=¡1

1

2hn
X (Bhn(s+ k¿̂n) \ [0; n]) ; (2.2)

that is, the quantity on the l.h.s. of (2:1) multiplied by (¿̂nNnn
¡1 ¡ 1).

Since ¸(s) is ¯nite, by (2:1), we have that the quantity on the l.h.s. of
(2:1) is Op(1), as n!1. Hence, it remains to check that¯̄̄̄

¿̂nNn
n

¡ 1
¯̄̄̄
= op(1); (2.3)

as n ! 1. By the triangle inequality, the quantity on the l.h.s. of
(2:3) does not exceed¯̄̄̄

¿̂nNn
n

¡ ¿̂n
¿

¯̄̄̄
+

¯̄̄̄
¿̂n
¿
¡ 1
¯̄̄̄
· ¿̂n
n

¯̄̄
Nn ¡

n

¿

¯̄̄
+
1

¿
j¿̂n ¡ ¿ j : (2.4)

Note that jn=¿ ¡ Nnj · 1, and ¿̂n = Op(1), as n ! 1 (by (1.8)).
Hence, the ¯rst term on the r.h.s. of (2:4) is Op(n¡1), as n ! 1. By
(1.8), we have that its second term is op(n

¡1), as n ! 1. Therefore
we have (2:3). This completes the proof of Theorem 1.1.

In the following lemma we shall show that we may replace the random
centre s+ k¿̂n of the interval Bhn(s+ k¿̂n) in (2:1) by its deterministic
limit s+ k¿ .

Lemma 2.1. Suppose ¸ is periodic (with period ¿) and locally inte-
grable. If, in addition, (1.2) and (1.8) are satis¯ed, then

1

Nn

1X
k=¡1

1

2hn
jfX (Bhn(s+ k¿̂n) \ [0; n])¡X (Bhn(s+ k¿) \ [0; n])gj

= op(1); (2.5)

as n!1, provided s is a Lebesgue point of ¸.

Proof: First note that the di®erence within curly brackets on the l.h.s.
of (2:5) does not exceed

X (Bhn(s+ k¿̂n)¢Bhn(s+ k¿) \ [0; n]) : (2.6)

Now we notice that

Bhn¡jk(¿̂n¡¿)j(s+ k¿) μ Bhn(s+ k¿̂n) μ Bhn+jk(¿̂n¡¿)j(s+ k¿): (2.7)

By (2.6) and (2.7) we have

jfX (Bhn(s+ k¿̂n) \ [0; n])¡X (Bhn(s+ k¿) \ [0; n])gj
· 2X

¡
Bhn+jk(¿̂n¡¿)j(s+ k¿) nBhn¡jk(¿̂n¡¿)j(s+ k¿) \ [0; n]

¢
:

(2.8)
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Hence, to prove (2.5), it su±ces to show that

1

Nn

1X
k=¡1

1

hn
X
¡
Bhn+jk(¿̂n¡¿)j(s+ k¿) nBhn¡jk(¿̂n¡¿)j(s+ k¿) \ [0; n]

¢
= op(1); (2.9)

as n ! 1. To prove (2:9) we argue as follows. Let ¤n denotes the
l.h.s. of (2:9), and let also ² > 0 be any ¯xed real number. Then, for
any ¯xed ± > 0, we have that

P(j¤nj ¸ ²) · P(fj¤nj ¸ ²g \ fnj¿̂n ¡ ¿ j · ±hng)
+P(nj¿̂n ¡ ¿ j > ±hn): (2.10)

By (1.8), the second term on the r.h.s. of (2.10) is o(1), as n ! 1.
While the ¯rst term on the r.h.s. of (2:10), does not exceedP(j¹¤nj ¸ ²),
where

¹¤n =
1

Nn

1X
k=¡1

1

hn
X (Bhn+±hn(s+ k¿) nBhn¡±hn(s+ k¿) \ [0; n]) : (2.11)

Next, by Markov inequality for the ¯rst moment, we have that

P(j¹¤nj ¸ ²) · ²¡1Ej¹¤nj;
and ²¡1Ej¹¤nj can also be written as
1

²Nn

1X
k=¡1

1

hn

Z
B(1+±)hn (0)nB(1¡±)hn(0)

¸(s+ k¿ + x)I(s+ k¿ + x 2 [0; n])dx

=
1

²Nn

1

hn

Z
B(1+±)hn(0)nB(1¡±)hn(0)

¸(s+ x)
1X

k=¡1
I(s+ k¿ + x 2 [0; n])dx:

(2.12)

Now we can easily see that
1X

k=¡1
I(s+ k¿ + x 2 [0; n]) · Nn + 1:

Then, the r.h.s. of (2:12) does not exceed

1

²hn

μ
1

Nn
+ 1

¶Z
B(1+±)hn(0)nB(1¡±)hn(0)

¸(s+ x)dx: (2.13)

We also can see that N¡1
n +1 · 2. Furthermore, the quantity in (2.13)

can be bounded above by

2

²hn

Z
B(1+±)hn(0)

j¸(s+ x)¡ ¸(s)jdx

+
2

²hn
jB(1+±)hn(0) nB(1¡±)hn(0)j¸(s): (2.14)

Since s is a Lebesgue point of ¸, the ¯rst term of (2:14) converges to
zero as n ! 1. While the second term of (2.14) does not exceed
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8²¡1±¸(s). By taking ± = ±n # 0 as n ! 1, we also have that this
term converges to zero as n!1. Then we get that P(j¤nj ¸ ²)! 0
as n ! 1, which is equivalent to (2.9). This completes the proof of
Lemma 2.1.

To complete our proof of Theorem 1.1 we also need the following
lemma.

Lemma 2.2. Suppose ¸ is periodic (with period ¿) and locally inte-
grable. If, in addition, (1.2) and (1.7) are satis¯ed, then

1

Nn

1X
k=¡1

1

2hn
jX (Bhn(s+ k¿) \ [0; n])¡EX (Bhn(s+ k¿) \ [0; n])j

= op(1); (2.15)

as n!1, provided s is a Lebesgue point of ¸.

Proof: First note that, for large n, the random variables

X(Bhn(s+ k¿) \ [0; n]);
for all k 2 ZZ, are independent. Then, by Chebyshev's inequality, to
prove (2:15) its su±ces to check thatμ

1

2Nnhn

¶2 1X
k=¡1

V ar fX (Bhn(s+ k¿) \ [0; n])g = o(1); (2.16)

as n!1. Since X is a Poisson random variable, V ar(X) = EX, and
for each k, we can write

EX (Bhn(s+ k¿) \ [0; n])

=

Z
Bhn(0)

¸(s+ k¿ + x)I(s+ k¿ + x 2 [0; n])dx: (2.17)

Because ¸ is periodic (with period ¿), we have that ¸(s + k¿ + x) =
¸(s+x), and we also have that

P1
k=¡1 I(s+k¿ +x 2 [0; n]) · Nn+1.

Then, to prove (2:16), its su±ces to show

1

2

μ
Nn + 1

Nn

¶μ
1

Nnhn

¶Ã
1

2hn

Z
Bhn(0)

¸(s+ x)dx

!
= o(1); (2.18)

as n!1. Because s is a Lebesgue point of ¸, we have

(2hn)
¡1
Z
Bhn (0)

¸(s+ x)dx = ¸(s) + o(1);

as n!1, which is ¯nite. Because Nnhn !1 as n!1, (by (1.7)),
then we get (2.18). This completes the proof of Lemma 2.2.

It remains to evaluate a non-random sum.
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Lemma 2.3. Suppose ¸ is periodic (with period ¿) and locally inte-
grable. If, in addition, (1.2) is satis¯ed, then

1

Nn

1X
k=¡1

1

2hn
EX (Bhn(s+ k¿) \ [0; n]) = ¸(s) + o(1); (2.19)

as n!1, provided s is a Lebesgue point of ¸.
Proof: Using the fact that X is Poisson, the l.h.s. of (2:19) can be
written as

1

Nn

1X
k=¡1

1

2hn

Z hn

¡hn
¸(s+ k¿ + x)I(s+ k¿ + x 2 [0; n])dx

=
1

2Nnhn

Z hn

¡hn
¸(s+ x)

1X
k=¡1

I(s+ k¿ + x 2 [0; n])dx: (2.20)

Now note that

(Nn ¡ 1) ·
1X

k=¡1
I(s+ k¿ + x 2 [0; n]) · (Nn + 1);

which implies N¡1
n

P1
k=¡1 I(s + k¿ + x 2 [0; n]) can be written as

(1 + O(n¡1)), as n ! 1, uniformly in x. Then, the quantity on the
r.h.s. of (2:20) can be written asμ

1 +O
μ
1

n

¶¶
1

2hn

Z hn

¡hn
¸(s+ x)dx: (2.21)

By (1.2) together with the assumption that s is a Lebesgue point of ¸,

we have that (2hn)
¡1 R hn

¡hn ¸(s + x)dx = ¸(s) + o(1), as n!1. Then
we get this lemma. This completes the proof of Lemma 2.3.
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