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ABSTRAK. Pendugaan parameter untuk model Hidden Markov
Elliott et. al. (1995) dilakukan mengunakan Metode Maximum
Likelihood dan pendugaan ulang menggunakan metode Expectation
Maximization yang melibatkan perubahan ukuran. Dari metode
tersebut diperoleh algoritma untuk menduga parameter model.

Kata kunci: Rantai Markov, model Hidden Markov, perubahan
ukuran. metode Expectation Maximization.

1. PENDAHULUAN

Tulisan ini merupakan kajian pustaka tentang pendugaan parameter untuk
model Hidden Markov Elliott, et. al. (1995). Pendugaan parameter
menggunakan metode Maximum Likelihood dan pendugaan ulangnya
menggunakan metode Expectatition Maximization (Metode EM) yang
melibatkan perubahan ukuran. Dari kedua metode tersebut kemudian diturunkan
suatu algoritma yang dapat dipakai secara umum untuk menduga parameter
model Hidden Markov Elliott, et. al. (1995).

Tulisan ini dimulai dengan definisi model Hidden Markov beserta
karakteristiknya. Pada bagian 3 dibahas Pendugaan Parameter model dan
terakhir pada bagian 4 diturunkan algoritmanya.

*Tulisan ini merupakan bagian dari hasil penelitian yang didanai oleh Hibah Penelitian PHK A2 Departemen 23
Matematika IPB tahun 2006
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2. MODEL HIDDEN MARKOV

2.1 Definisi
Pasangan proses stokastik {(X,,Y,):k €N} yang terdefinisi pada ruang peluang

(Q,F,P) dan mempunyai nilai pada SxY disebut model hidden Markov
apabila {X,} adalah rantai Markov dengan state berhingga dan diasumsikan
bahwa rantai Markov {X,} tidak diamati. Sehingga {X, } tersembunyi (hidden)

di balik proses observasi {Yk} . Banyaknya elemen dari S disebut ukuran (orde)
dari model hidden Markov.

Pada tulisan ini dibahas model hidden Markov Elliot, et. al. (1995) yang
berbentuk:
Xin =AX +V,
Yo=cX)+o(X)a,,
di mana {X,} adalah rantai Markov yang homogen dengan ruang state
S ={e,,e,,....,ey}, dengan e, vektor satuan di R" dan A= (a;)y.y merupakan
matriks transisinya, dengan
aji=P(Xk = ¢j | X1 = ei) ij=1,2,...,N
{w, }adalah barisan peubah acak yang bebas stokastik identik dengan sebaran
N(0,1) dan
c(X)=(c,X,) dan o(X,)=(0.X,)
dengan
c=(c,Cysuscy) €R”, o=(0,,0,,....,0,)€R"
<.,.> = perkalian dalam di R".

Asumsikan o, >0, untuk i =1,2,...,N.

Misalkan ({F, }, adalah filtrasi lengkap yang dibangun oleh {X,},, {Y } adalah
filtrasi lengkap yang dibangun oleh {Y,} dan {G } ,adalah filtrasi lengkap yang
dibangun oleh {X, },dan {Y,}.

Catatan 2.1.1 Karena @,, k €N adalah peubah acak yang bebas stokastik
identik, maka @, bebas dari G, . Akibatnya @, juga bebas dari F, .

2.2 Nilai Harapan Bersyarat

Untuk sebarang 7 € R, berlaku
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Mz

PV, <t|Y) =Y P, <t.X, =¢|Y,)

Il
™M=

P, <I|Xk =¢.Y,) P(X; :eilYk)
1

P( k+]—t|X =e¢) P(X, —e|Y)

P(c(X Y+o (X ), <t| X, =¢) P(X,=¢]|Y,)

Il
M= iM= 1 =

P(c,+o,0,,<t)-P(X,=¢|Y,)

Mz

P(oo,, <t—c)-P(X, =¢|Y,).

i

1
1 ¢ 20 (fungsi kepadatan N(O, O-i))

Misalkan X, == E[X, |Y,] dan ¢,(x) =

maka
n N
<Xk,ei>=<E[Xk|Yk],el.>:<zej.1>(xk:ej|Yk),e,.>
j=1
N
:ZP(Xk:ej|Yk)<ej,e,.>:P(Xk:el.|Yk).
Jj=1
Sehingga diperoleh
P(y, <t]Y)= ZP(ka+l<t ¢)-P(X,=¢|Y,)= Z<Xk,e>j¢(x)dx
i=1 =
2.1)

Jadi fungsi kepadatan bersyarat dari Y, ,, diketahui Y, adalah

N

Z<}2k’€j>¢.i(t_cj)'

J=1

Adapun sebaran gabungan dari X, dan Y,,, diketahui Y, adalah

k+1

P(X, =e,Y,, <t|Y)=P¥,, <t|X,=¢,Y,) P(X, =¢,|Y,)

i k+
= P(c,+ 0,0, <0)-P(X, =€, | Y) =(X,.e) [ ¢,(00dx.

Sehingga diperoleh fungsi kepadatan gabungan bersyarat dari
X, dan ¥, diketahui Y, adalah (X,.¢,)¢,(t~c,).

Berdasarkan aturan Bayes, diperoleh

I:Xk € | k+|:| P —e|Yk+1Y) P(Xk:ei’YkHlYk)_ <

P(Y,, 1Y) ﬁ

Jj=1

)%= Ak
¢)9,¥0—c)

X,
< 3

ibatnya didapat
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Mz

< e>¢(yk+l c)e

1

N
E k+l |:z X, e, |YI\+:| ZE[ X, |Yk+l:| € = :
i-1

Mz

< >¢ (Ve — j

~.
]

Teorema 2.2.1 (Elliot et al. 1995)
>¢i(yk+l —¢)Ae

Xkﬂ [ k+1|Yk+l]_ lle
Z< >¢j(yk+l_cj)
=1
Catatan 2.2.2 Dari persamaan di atas diperoleh bahwa penduga X,

bergantung pada X , secara tidak linear.

2.3 Perubahan Ukuran Pada Model Hidden Markov

Misalkan @(-) adalah peubah acak yang terdefinisi pada (Q,F,P) dengan
fungsi kepadatan ¢(w) dan ¢, o adalah konstanta yang diketahui. Diketahui
Y()=c+o w().

Akan dikonstruksi ukuran peluang baru P pada (Q,F ) sedemikian sehingga:
P

5

b. Dibawah P peubah acak y mempunyai fungsi kepadatan ¢.

a.

Karena

P(Y<;)—j¢(y)dy jlm dP = jlm/ldp jl ,}i(w)qﬁ(w)da)

_ j Koo do= [ 2o~ ds

maka diperoleh ¢(y) =222 o)) u Aw) = U;;(y))
o

Pada (Q,F , P) proses observasi {Yk} mempunyai bentuk

Yin= <C X > <O-’Xk>wk+l
di mana {a)k}bebas stokastik identik menyebar N(0,1). Misalkan ¢(-) adalah
fungsi kepadatan peluang N(0,1) dan

UEELIE) RN | PR
P gy Y e el e
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Definisikan ukuran peluang P pada (Q,F ) sebagai berikut fi_ﬁ =A,.

G
Eksistensi A, dijamin oleh Teorema Radon-Nikodym dan eksistensi P dijamin
oleh Teorema Perluasan Kolmogorov (Wong and Hajek, 1985).

Lemma 2.3.1 (Elliot et. al. 1995) Di bawah P, {Yk} adalah barisan peubah
acak yang bebas stokastik identik menyebar N(0,1).

Sebaliknya, dimulai dengan ukuran peluang P pada (Q,F ), di mana di bawah

P berlaku:

a. {X k} adalah rantai Markov dengan matriks transisi A sehingga
X,,=AX, +V,_,,, dengan E[Vk” |F.]=0

b. {Yk} adalah barisan peubah acak yang bebas stokastik identik menyebar
N(0,1) dan bebas dari X,

akan dikonstruksi P dari P sehingga di bawah P berlaku:
Yin— <C’ X, >

<0',Xk>

adalah barisan peubah acak yang bebas stokastik identik dan menyebar N(0,1).

+1°

@, = . keN ((6.X,)#0)

Untuk mengkonstruksi P dari P, definisikan

c 1 i) o x L Tig e ] s
A=—=———~"]eN;, A =1, A, = , k=21, —| =A,.
' a <O_7X171>¢()71) ’ ‘ 11:111 ap ‘

Lemma 2.3.2 Di bawah P, {@,} adalah barisan peubah acak yang bebas
stokastik identik menyebar N(0,1).

Catatan 2.3.3 Untuk selanjutnya kita akan bekerja pada ruang peluang
(QF.P).

3. PENDUGAAN PARAMETER

Sifat statistik model Hidden Markov ditentukan secara lengkap oleh himpunan
parameter

0={(a;),1<i,j<N; c,1<i<N; 6,1<i<N}.

Pada bagian ini dibahas proses pendugaan parameter tersebut menggunakan
Algoritma EM (Expectation maximization algorithm).

3.1 Pendugaan Rekursif
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Definisi 3.1.1 (Elliot et. al. 1995) Barisan peubah acak {¢k} disebut adapted-
G, atau adapted terhadap filtrasi {G, } , apabila untuk setiap k, ¢, terukur-G .

Definisi 3.1.2 Jika {H k} adalah barisan peubah acak yang adapted terha-dap
{G.}. definisikan y, (H,)=E[AH,|Y,] dan H, =E[H]|Y,].

Menurut Teorema Bayes bersyarat
E[AHY, :l_yk 2

A E[Hk|Y] E[Ak|Yk] 7 (1)

sehingga

)20 :E[X0|Y0:|: yO(XO) =7/O(XO)

70(1)

karena y, (1) =1.

Catatan 3.1.3 Pada proses pendugaan rekursif, y, (X 0) =E [X O] diambil

sebagai nilai awal.

Lemma 3.1.4. (Elliot et. al. 1995)
Misalkan { } adalah barisan peubah acak bernilai skalar, maka

a7 (H)=(y(HX,).T)

b 7 (1)=(r (X,).T).

Catatan 3.1.5 Dari persamaan di atas diperoleh bahwa pendugaan y, ., (H k+,)
bergantung pada y, (H X ) .

Definisi 3.1.6 Barisan peubah acak {¢k} disebut predictable terhadap filtrasi
{G.} . apabila untuk setiap k, ¢, terukur-G_, .

Teorema 3.1.7 Misalkan {H k} adalah proses bernilai skalar yang adapted
terhadap filtrasi {G, } dan mempunyai bentuk
a. H, terukur-F,
b' Hk+l :Hk +ak+l +<ﬂk+l"/k+l>+§k+1f(yk+l)’ kZl
di mana
Vi = X —AX,
= f adalah fungsi bernilai skalar
* «a,f,0 adalah proses yang predictable- G
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= S adalah proses bernilai vektor berdimensi-N
maka

Vi (Hia X)) = Viowsen (Hia)
- ,-Nl {<7k (H X)), (3n)) @+ 70 (@ (X T (300))) @ di
7 (8 (X T (340))) £ G) @ +(ding(@) —aal )7, (B (X, T (ykﬂ)))}
i
0

mana a, = Ae, dan TV (y, )= od () €y

3.2 Penduga Parameter
3.2.1 Penduga untuk State

Teorema 3.2.1 (Elliott et. al. 1995)

N
Vea(Xe) = 2 (1 XD ) - (3.1)
i=1
Bukti:
Dengan mengambil H, = H, = =0, B, =0dan 6, =0 pada Teorema 3.1.7

diperoleh y, ., (X,,,) = Z(h (Xk)’ri(yk+1)> aq;
i=l1

Catatan 3.2.2 Persamaan (3.1) menunjukkan bahwa y,, (X,,,) bergantung
pada y,(X,) secara linear.
3.2.2 Penduga untuk Number of Jumps

Jika rantai Markov melompat dari state e, pada waktu ke-k, ke state e, pada
waktu ke-k+1, 1<r,s <N, maka <Xk,er><Xk+l,es> =1, sehingga banyaknya

lompatan (number of jumps) dari state e, ke state e pada waktu ke-k+1
adalah

J{L;;(Xnn e.)(X,¢,)
e )(Xpae,)
Xk,er><AX +Vne,)
X6, )(AX, e+ (X, ) Ve, )
)

Xk’er sr+<Xk’e ><Vk+l’eS>}'
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Teorema 3.2.2 (Elliott et. al. 1995)

Va5 = ZN:<7k,k d /:S)’Fi(yk+1)> a; + <7/k (Xk)’rr(yk+l)>asres . (3.2)

Bukti: Dengan mengambil
H, =] Hy =0, o, :<Xk’er>asr’ Bia :<Xk’er>es dan 6, ,, =0 pada
Teorema 3.1.7 diperoleh

Vw1 (J kril)zﬁ:{<7k (J krst)’Fi(yk+l)> a,+y, (<Xk’er>asr <kari(yk+1)>) a;

i=1

+0+(diag(ai)—a[.af);/k (<Xk,e,>es <Xk,Fi (yk+1)>)}.

Sedangkan

gn(<X,{,e,>a_yr<Xk,r"(yk+1)>) q, =gn(<Xk,e,><Xk’Fi(yk+l)>) a4,

=7 (<Xk’rr (Yk+1)>) a.a,

dan
N
Z(diag(ai) _aiaiT)yk (<Xk’er>ex <Xkari (yk+l)>)
i1
_ ZN:% ((Xioe, ) (X (7)) (ding(a) —aa] )e,
=7, (<Xk,F’ (yk+1)>)(diag(a,) —ara,T)es
=7k (<Xk’rr (yk+l)>)(asres _asrar)'
Sehingga
Viswast () = Z<7k d ¢ X, )’ri(yk+1)> a;+7; (<Xk’rr(yk+l)>)asres

= Z<7k,k d & )T Vs )> a;, + <}/k X )T (e )> a.e,.

3.2.3 Penduga untuk Occupation Time

Banyaknya kejadian rantai Markov berada pada state e, 1<r<N sampai

waktu ke-k didefinisikan sebagai berikut.
k+1

O =Y (X, .e)=0 +(X,.e,).

n=1
Teorema 3.2.3 (Elliott et. al. 1995)
N
Vst k41 (O, = Z<7/k,k (O T (¥, )> a;, + <7/k (X T (3 )> a. (3.3)

i=l1



JMA, VOL. 4, NO. 1, JULI, 2005, 23-39 31

Bukti: Dengan mengambil
H. =0, H =0, o, =(X,.e), B, =0dan 5, =0 pada Teorema 3.1.7
diperoleh

Vit (01:+1)

Il
Mz

< k(Oerk)9Fi(yk+l)> a; +7 (<Xk’er><Xk7ri(yk+l)>) a;
<7k (Oerk)’Fi(ka)> a; +7 (<Xk’rr(yk+l)>) a,

<7kA (Okr)’ri (Yk+1)> a; +<7/k(Xk)vrr(yk+l)> a,

Il
M- 11

1l
—_

3.2.4 Penduga untuk Proses Observasi

Untuk menduga parameter o =(o0,,0,,...,0, )T dan ¢ =(c,,¢ys.sCy )T pada

proses observasi y,.,, = <c, X, > + <0', X k>a)k+] , definisikan
k+1

7, (f)=> (X .e)f(y) 1<r<N

=1

:TI:(f)+<Xk’er>f(yk+l)
di mana f(y)=y atauf(y)=y".

Teorema 3.2.4 (Elliott et. al. 1995)
Ve Ta UD = 27 @D Gr)) a4 (7 (XO).T ) f e, - Bo4)

Bukti:
Dengan mengambil

H,  =7,f),H,=0¢,=0 B.,=0dano, = <Xk,e > pada Teorema
3.1.7 diperoleh

Vst ks (Tk+l (f))

Mz

< (Tl:(f)Xk)’ri(yk+l)> a, +y, (<Xk’er><Xk’Fi(yk+l)>) S OeDa

< (Tk (HX, ) (Yk+1)> a; ty, (<Xk’rr(yk+l)>)f(yk+l)ar

Il
= 1Mz

_;<7k,k (r[(f)),ri(yk+|)> a; +<7/k(X ) (yk+1)> fOu)a,.

3.3 Expectation Maximization Algorithm (Algoritma EM)

Algoritma EM dikembangkan oleh Baum and Petrie (1966) dengan ide dasar
sebagai berikut.
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Misalkan {Pg :6’6@} adalah koleksi ukuran peluang yang terdefinisi pada

ruang (€2,G) dan kontinu absolut terhadap F,. Misalkan Y < G. Definisikan
fungsi likelihood untuk menentukan penduga parameter 6 berdasarkan
informasi Y sebagai

_g |
L(H)—E{d

A

0

dan penduga maksimum likelihood didefinisikan sebagai
0e argmax L(6) .

0O
Secara umum penduga maksimum likelihood 6 sulit dihitung secara langsung.

A

Algoritma EM memberikan suatu metode iteratif untuk mengaproksimasi &,
dengan prosedur sebagai berikut.

Langkah 1:  Set p =0 dan pilih 6, .
Langkah 2:  [Langkah-E]

. A ) . dP
Set 8" = Hp dan hitung Q(G,Q ): Ee* {log dPH

o

Y}.

Langkah 3:  [Langkah-M]
Tentukan 6 .1 €argmax Q (0, 6" ) .

(=0
Langkah4: p<« p+1
Ulangi langkah 2 sampai kriteria berhenti dipenuhi.

Catatan 3.3.1
1. Barisan {ép ip2 0} memberikan barisan {L(ép ): p= O} yang tak turun.
2. Menurut ketaksamaan Jensen,
0(6,.,,6,)<log L(0,.,)~log L({,).
3. 0(0.0") disebut pseudo-loglikelihood bersyarat.

Model Hidden Markov yang akan diduga parameternya berbentuk
X =AX, +V,,
Yirt = <C’ Xk>+<6’ Xk>a)k+l keN

di mana V,,, adalah martingale increments dan @, adalah peubah acak yang

bebas stokastik identik menyebar N(0,1). Parameter model diberikan oleh
himpunan

0={(a;).1<i,j<N; c,1<i<N; 0,1<i< N}
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N
dimana ) a, =1, 1<i<N.
i=1
Akan ditentukan himpunan parameter baru
Ok) ={(a,(k).1<i, j < N; &,(k).1<i<N; 6,(k).1<i<N|
N
di mana Zfz #(k)=1,1<i<N yang memaksimumkan pseudolog-likelihood
i=1
bersyarat.
Untuk mengubah parameter a; menjadi a,(k) pada rantai Markov X,

N &(k) (Xioe (Xire,)
A, =H{ }

r,s=l1 a,

—

=1 r,s=1

misalkan

a
s

r

k) (Xr.e,XX10.e,)

a.\'r

dan definisikan peluang F; sehingga
A
dP,

k-

Fy

Lemma 3.3.2
Di bawah P, jika X, =e,,maka E;[(X,.¢,)|F, |=a,(k+1).

Teorema 3.3.3 (Elliott et. al. 1995)
" s J s
&sr (k) = J’\kr = yk ( kr ) . (3.5)
O, 7 (Ok )

Bukti: Berdasarkan definisi

=

= >'1 loga, (k)+R(a)

r,s=l1
di mana R(a) tidak bergantung pada a. Sehingga pseudo-loglikelihood
bersyaratnya menjadi
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N ~ A
E[logA, Y. ]= Y1 "loga, (k)+ R(a). (3.6)

r,s=1

Parameter a, (k) harus memenuhi

ﬁ:&n(k) =1

s=1
atau dalam bentuk dinamik

Zklﬁx X me,)a, (k) =k-

=1 s=1
Bentuk dinamik di atas dapat dituliskan dalam bentuk bersyarat

> 0l () =k (3.7)

r,s=1

Masalah optimasinya sekarang menjadi memilih a (k) yang memaksimumkan
(3.7) dengan kendala (3.8). Definisikan fungsi Lagrange
N N
L(a,2)=>Y.1 loga, (k) +/1[ > 0a, (k) —k]

r,s=l1 r,s=l1

Dari aL =0 dan A@L =0 diperoleh
oA oa,, (k)
N
Z a,(k)=k (3.8)
,s=1
J k’ ,
+ /10 =0. (3.9)
a, (k)

Dari persamaan (3.8) dan (3.9) diperolehA=-1. Dari persamaan (3.9)
diperoleh

TP _nG0) [n0) _rnd )

a, (k)= :
‘ kr 7, (D 7D 7:(0;)

Untuk mengubah parameter ¢; menjadi ¢,(k), misalkan

e X, ) =6 X,) =2y (6. X, )+ 2, (6 X, >}j

ﬂ’l:—l(Xk’ Vi) = eXP(

1
2<O‘,Xk>
k
A, :Hﬂ’l*(Xl—l’yl)
=1

dan definisikan peluang P* sehingga ar

‘ :A*.
qu

k

Lemma 3.3.4
Di bawah P", {y, —(¢,X,_,)} k €N adalah barisan peubah acak yang bebas

stokastik identik menyebar N(0, o ).



JMA, VOL. 4, NO. 1, JULI, 2005, 23-39 35

Bukti: Menurut Teorema Bayes bersyarat

E |:Ak+11{}'k+1 *<5-Xk>9} ‘ q :|

P (yk+1 _<é’ Xk > < t|q< ) =E |:I{,Vk+l‘<5'vxk>3’}

G |-

E[A},]G ]
E[AZ)“:HI{}“—(E,XQS/}‘q(:| B AZE|:)“2+11{>vk+17<6,xk>51} C&} _ E[lk**ll{)'kn*@’xﬁg}‘q]
G I Y Y P Y R P Y R

Di bawah P, ykﬂ—<c,Xk>=<c,Xk>a)k+1 dengan ,,, menyebar N(0,1),
sehingga y,,, —(c,X,) menyebar N({c,X,).(c.X,)). Jadi

El:ﬂ’ljﬂ G«] = ]:exp£2<al {<C’ Xy >2 _<6’ X, >2 —2Y0 <c, Xk>+2yk+1 <6’ X, >})

X,)

1 1
X —=—==€XP (—m{ykﬂ _<C’ Xk>}2J dyk+1

27Z'<G,Xk>

1 A
exp(_m{ykﬂ _<C’ X, >}2} dy,, =1.

©

1
:j 2

S27(0X,)
Sehingga

P (3 —(6.X,)<1|G)=E [’1;1’ bra-(ex)=)

)

=]iexp( : {<C,Xk>2_<é’Xk>2_2yk+] <C’Xk>+2yk+l <5’Xk>}J

2<0,Xk>

1 1 2
e ) exp(_2<a, X)bk+1 “{eX) JI{"‘*"*@X@} B

=P (U <t)
:P*

(yk+1_<é’Xk>St)'

Teorema 3.3.5 (Elliott et. al. 1995)

A ALASY) |
' O; 7/1((01:)

(3.10)

Bukti: Dari definisi
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k <C,X_>2—<6,X_>2—2y <c,X_>+2y <6,X_>
1 A*: -1 -1 ! -1 ! -1
o8 Z 2(c.X, )

< 1-1-€ >(c2—52(k)—2y1 c+2y, ér(k))

kN s
=22 2

_3 W ER-0 EB g
r=1 20—,
di mana R(c) tidak bergantung pada ¢.
Jadi
N r f\2
E[logA;|Y, ]= erk(y) & (k; o <@ L Ry
r=I1 r
sehingga
Ad [logA |Y] 287 (y)—20.¢ (k) _0
dc, (k) 20,
memberikan

28 (y)=20;¢,(k) =0

(k)_Tk(y) 7. () [ 7.(O;) 7k(7k()’))
O; 7, (D) 7: (D 7:.(0;)

Untuk mengubah parameter o, menjadi &;(k) (ambil c, tetap), definisikan

1 2

o exp( . {yk+1_<c7Xk>} J
/’tk+l(xk,yk+l)=\/§&§k; 2<o—;xk> 2
eXp[ <G’Xk>{yk+1—<c,Xk>}J

2

k

H X, 0y)

=1

arl .

dan definisikan peluang P sehingga ~—
P
G

Teorema 3.3.6 (Elliott et. al. 1995)
#0A) 25 +C0, 7 (n0h)-26r (W) +r (0F) 3.11)

5.(k) = -
0= ] 7.(00)
Bukti: Dari definisi
~ k 1 . (yl —<C,XH>)2
logA, =) ——1 X, y———— 1 R(c,
08 A ; > 0g<0' /1> 2<6',X1_1> + R(c,0)

di mana R(c,o) tidak bergantung pada & . Karena
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[logA |Y =E y l( e,)log 6, (k) — —<Xl’]’ei>+(y2—2yc.+c.2)Y +R(c,0)
S 2 Xive 26, (k) TR
= %;{0 10go‘(k)+o_i1k)(rk(y) 2crk(y)+czO’)}+Ié(c,0'),
maka
d A _1 Ol 1 S nj 2Ai Y _
d&i(k)E[logAk |Yk] { (k) I.(k)(rk(y )—2¢,7,(y)+c; O, )}—O
memberikan
0";{ _ Al 2 Ai 2 Ai
PGSR L )
atau
| | AR RPN AT YA
6_(]():f;(yz)_zcifli(y)_cz?OIi: yk(l) I 7/k(1) t }/k(l)
’ O 7,(0)

AU

n(rk(y ) =267, (7, (¥) — cn(O)
7,(0})

Catatan 3.3.7 Berdasarkan observasi sampai waktu ke-k, parameter model
yang baru yaitu (a;(k)),1<i,j<N; ¢,(k),1<i<N; 6,(k),1<i<N diberikan
oleh persamaan (3.9), (3.10) dan 3.11). Nilai
7k( ) ’. (0 ) 7k(7k(y)) 7//((7;()’2)) dan y, (X,) kemudian dapat dihitung

kembali menggunakan parameter yang baru dan data pengamatan yang baru.

4. ALGORITMA MENDUGA PARAMETER MODEL

Diketahui parameter berbentuk
0={(a;), 1<i,j<N; ¢, 1<i<N; 0,,1<i<N}.
Akan ditentukan parameter
(k) ={(a,(k)), 1<i, j<N; &,(k), 1<i<N; 6,(k),1<i <N}

yang memaksimumkan pseudo-loglikelihood bersyarat seperti pada bagian 3.

Algoritma untuk memperoleh parameter tersebut adalah sebagai berikut.

Algoritma untuk menentukan parameter é(k)

Langkah 1: Tetapkan N (banyaknya state)
M (banyak data)

Input data {y, }.
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Langkah 2: Tetapkan Nilai awal

7= (7 na
A= (aji)NxN
c=(¢)yx
0 =(0,)ys-

Catatan: 7=F [XO] dan memenuhi Az =7

Langkah 3: Lakukan untuk / =0 sampai dengan M

1. Tetapkan

a, = Ae,
70 (Xo)=7
7l 5)=0
70(05)=0
Yo (7,(»))=0
7o (2,(y")) =0
2. Lakukan untuk k£ =0 sampai dengan /-1

a. Hitung penduga rekursif

7k+1(X1\-+1):i<yk(xk)vri(yk+l)> a;

N .
Ve ) = Z<7k,k d l:s)’rl(yk+l)> a; +<71<(Xk )’rr(yk+l)>axres

i=1

Vind 5= <7k+1,k+1 Jd & T>

Veean (O) = i<7k,k (Okr)’ri()’kn)> a + <7k(Xk )’Fr(yk+])>ar

i=l

Ven(Or) = <7k+1,k+1 (O T>

Veran (T () = i<7k,k (Tkr(y))’ri()’kn» a; + <7k(Xk)’rr(yk+])> Y4y

Ve (T, () = <7k+1,k+1 (T, (), T>

V1,41 (Tl:+l(y2)) = ﬁ<7/k,k (T;(yz))’ri(yk+1)> a; + <7k(xk )vrr(yk+1)> ylfnar

i=1
Ve (Tl )= <7k+1,k+1 (T (), T>
b. Hitung penduga parameter

a, (k+1) = Vi) )
| 7k+1 (OI:H)
& (k+1)= G
Vi (Ol:+l)
6-1‘ (k+1)= Vi (T;H(yz)) _ 2Ci7/k+1 (dﬂ()’))‘F Ci27/k+1 (01i+1 ) .

}/k+l (OIch)
c. Tuliskan
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Atk +1)=(a, (k+1)
ék+1)=(é,(k+1))
S(k+1)=(6,(k+1)).
d. Tentukan
7(k +1) dari persamaan A(k +D)7zk+1)=7z(k+1).
e. Ulangi langkah a sampai dengan d untuk & berikutnya.

3. Beri nilai
A<« Ak)
c <« c(k)
o« o(k).

3. Ulangi langkah 1 s/d 3 untuk [/ berikutnya.

Langkah 4: Untuk k =1 sampai dengan M , cetak
Ak), Z(K), ék), 6(K), 7,(X,)
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