

 JMA, VOL. 2, NO. 1, JULI, 2003, 45-59 45

ALGORITMA ROCC

FAHREN BUKHARI

Departemen Matematika,
Fakultas Matematika dan Imu Pengetahuan Alam,

Institut Pertanian Bogor
Jln. Meranti, Kampus IPB Dramaga, Bogor 16680, Indonesia

SULASNO

Pusat Pengembangan Informatika Nuklir,
Badan Tenaga Nuklir Nasional (BATAN)

Jakarta, Indonesia

Abstrak: Algoritma concurrency control merupakan algoritma pengendalian
akses konkurensi pada sistem sehingga objek yang diakses bersifat konsisten.
Penelitian tentang concurrency control sudah dilakukan sejak 30 tahun lalu dan
sudah banyak algoritma yang dihasilkan. Algoritma yang dihasilkan umumnya
menggunakan asumsi bahwa Transaction Manager adalah satu-satunya modul
yang digunakan pengguna untuk mengakses objek. Sekarang ini akses terhadap
objek dilakukan orang tidak hanya melalui Transaction Manager, tetapi juga
melalui aplikasi internet. Pola tingkah laku transaksi melalui aplikasi internet
berbeda dengan aplikasi tradisional. Algoritma concurrency control yang ada
seperti two phase locking kurang tepat dan berkinerja buruk pada aplikasi
internet. Untuk itu dibutuhkan suatu algoritma concurrency control baru yang
sesuai dengan aplikasi internet. Shi dan Perizzo memperkenal algoritma ROCC
(Read-commit Order Concurrency Control). Banyak peneliti menilai algoritma
ini sangat sesuai dengan aplikasi internet, tetapi algoritma ini melakukan restart
yang tidak perlu. Penulis mencoba memperbaiki algoritma proses validasi
sehingga restart dilakukan hanya pada akses atau transaksi yang tidak konsisten.
Penelitian ini juga melakukan simulasi dalam upaya melihat perbedaan kinerja
antara algoritma ROCC dan algoritma ROCC yang sudah diperbaiki.

Keyword: concurrency control, algoritma, ROCC, simulasi,.

1. PENDAHULUAN

Sistem berbasis objek menjadi banyak perhatian para peneliti di bidang
komputasi, dan banyak produk yang sudah dihasilkan. Salah satu faktor utama
yang membuat menarik para peneliti terhadap system berbasis objek adalah
kesesuaian sistem tersebut terhadap aplikasi lanjut. Dengan berkembangnya

46 FAHREN BUKHARI DAN SULASNO
teknologi internet, jaringan komputer, dan perangkat keras pendukungnya,
orang dapat bekerja bersama-sama dalam lingkungan cooperative work

environment dan computer assisted design. Kedua hal lingkungan kerja ini
melayani banyak orang atau pengguna yang bekerjasama untuk mencapai tujuan
bersama, sehingga seringkali komponen-komponen atau objek-objek yang
mereka akses saling tumpang tindih. Objek dalam hal ini dapat berupa data
item, gambar, file, atau multi media objek (suara, photo, atau video).

Agar akses terhadap objek-objek tersebut dapat dilakukan recovery bila
terjadi sesuatu, maka didefinisikan transaksi, yaitu kumpulan operasi-operasi
terhadap objek (write dan read). Eksekusi transaksi secara concurrence
(simultan) dibolehkan dalam sistem untuk meningkatkan kinerja. Semakin
tinggi tingkat concurrence semakin baik kinerja sistem. Tetapi eksekusi
transaksi yang tumpang tindih (interleaving) tidak dibolehkan, karena akan
membuat objek dalam keadaan tidak konsisten. Untuk itu diperlukan
concurrency control yang berfungsi untuk menata atau mengatur eksekusi
transaksi yang simultan agar tidak saling tumpang tindih.

Banyak algoritma concurrency control yang sudah dipublikasikan.
Algoritma-algoritma yang dipublikasikan umumnya dibuat khusus untuk sistem
database. Pada sistem database tradisional, modul untuk mengakses data disebut
Transaction Manager (suatu modul yang diinstalasi pada komputer user) adalah
satu-satunya modul yang digunakan user untuk mengakses data. Selain itu
algoritma yang ada mengasumsikan bahwa pola tingkah laku transaksi
(pengguna) dapat diantisipasi. Salah satu algoritma tersebut dan banyak
digunakan adalah two phase locking. Algoritma ini menggunakan mekanisme
locking untuk mengatur eksekusi transaksi yang simultan. Algoritma ini dinilai
kurang tepat atau berkinerja buruk bila digunakan pada sistem berbasis objek
yang menggunakan aplikasi internet (aplikasi berbasis web) untuk mengakses
objek, karena pola tingkah laku transaksi pada aplikasi internet sangat sulit
diantisipasi. Suatu transaksi pada aplikasi berbasis web bisa saja tanpa diakhiri
oleh commit atau abort, atau kalau diakhiri oleh commit atau abort mungkin
dalam waktu yang cukup lama.

Shi dan Perizzo [10] memperkenalkan algoritma ROCC (Read-commit

Order Concurrency Control) . Algoritma ini menggunakan struktur RC-queue
untuk mengurut transaksi atau akses terhadap objek. Tetapi algoritma ini masih
terdapat kelemahannya, yaitu algoritma ROCC melakukan restart atau abort

pada suatu transaksi walaupun eksekusi transaksi tersebut tidak tumpang tindih
dengan transaksi lain. Penelitian ini melakukan perbaikan terhadap algoritma
ROCC sehingga restart atau abort hanya pada transaksi yang eksekusinya
tumpang tindih dengan yang lain. Penelitian ini juga melakukan kajian simulasi
untuk mengevaluasi kinerja algoritma yang diperbaiki dengan algoritma ROCC
dan two-phase locking.

2. MODEL SISTEM BERBASIS OBJEK

Sistem berbasis objek dapat didefinisikan sebagai suatu kumpulan objek
yang tersimpan secara terstruktur pada sistem komputer. Objek dicatat sebagai
x, y, z, dst. Objek dapat berupa data, file, gambar, suara, atau potongan video.

 JMA, VOL. 2, NO. 1, JULI, 2003, 45-59 47
Kumpulan objek tersebut seringkali saling berhubungan dan berkaitan satu
dengan objek lainya, sehingga pada sistem tersebut terdapat suatu kendala
integritas (integrity constraints) yang harus selalui dipenuhi oleh setiap objek.
Sistem yang memenuhi kendala integritas disebut consistent. Sehingga akses
terhadap sistem dapat dianggap sebagai proses transformasi sistem dari satu
consistent ke consistent yang lain. Tetapi, sering kali ketika user mengakses
objek untuk melakukan transformasi database ke consistent yang baru, kendala-
kendala tersebut dilanggar secara temporer. Contohnya, bila user ingin
melakukan transfer dana dari suatu rekening bank ke rekening bank yang lain,
maka pelanggaran kendala konsistensi (bahwa jumlah saldo semua rekening
sama dengan jumlah liabilitas bank) secara temporer tidak dapat dihindari, yaitu
pada saat suatu rekening bank sudah didebit dan rekening bank yang lain belum
di kredit. Atas dasar ini akses-akses terhadap sistem dikelompokkan menjadi
suatu kesatuan konsistensi yang disebut transaksi (transaction). Dengan
perkataan lain, transaksi memetakan sistem dari keadaan konsisten ke keadaan
konsisten yang baru.

Untuk meningkatkan kinerja sistem, eksekusi transaksi-transaksi
diperbolehkan simultan (concurrence). Tetapi eksekusi transaksi-transaksi yang
tumpang tindih (intervening) tidak dibolehkan, karena eksekusi transaksi yang
tumpang tindih ini akan membuat sistem tidak konsisten. Untuk itu sistem
membutuhkan suatu mekanisme yang memantau dan mengendalikan eksekusi
transaksi yang simultan sehingga tidak ada eksekusi transaksi yang tumpang
tindih. Mekanisme tersebut dikenal sebagai concurrency control. Tujuan utama
concurrency control adalah menjaga konsistensi sistem dan menjamin setiap
transaksi dieksekusi tanpa melanggar propertisnya, yaitu Automicity,
Consistency, Isolation, dan Durability (ACID).

Sistem terpusat terdiri dari lima komponen utama, yaitu transaksi,
Transaction Manager (TM), Scheduler, Objek Manager (OM), dan Storage.
TM berfungsi sebagai front end object processing. Eksekusi setiap transaksi
dipandu oleh TM. Hal ini berarti transaksi dan operasi-operasinya diisukan oleh
TM, kemudian TM mengirimnya ke Scheduler. Bentuk dan rancangan TM
berorientasi pada aplikasi. Scheduler berada antara TM dan OM. Scheduler
adalah modul yang mengatur urutan operasi pada objek yang diisukan oleh TM,
dan Scheduler bertanggung jawab menjadwalkan operasi transaksi ke OM. OM
adalah modul yang mengeksekusi operasi objek yang dikirim oleh Scheduler.
OM bertanggung jawab bahwa operasi yang disampaikan kepadanya terekam
pada storage. Sedangkan storage adalah kumpulan objek yang terintegrasi dan
saling berhubungan.

3. ALGORITMA READ COMMIT ORDER

CONCURRENCY CONTROL (ROCC)

Shi dan Perrizo ([10]) memperkenal suatu metode baru dalam
concurrency control, yaitu metode yang menggunakan Read commit queue (RC

queue) suatu struktur yang digunakan untuk mengurut transaksi yang konflik.

48 FAHREN BUKHARI DAN SULASNO
Concurrency control ini dirancang untuk sistem terpusat. Setiap request yang
disampaikan oleh transaksi ke scheduler direpresentasikan oleh sebuah elemen
pada RC queue. Scheduler menggunakan struktur RC queue untuk melakukan
validasi transaksi yang akan melakukan commit. Transaksi yang gagal melalui
proses validasi akan dibatalkan (abort) atau diulang (Restart)
eksekusinya.

Figur 1 Model Sistem Berbasis Objek Secara Terpusat

Elemen-elemen pada RC queue terdiri diri dari empat jenis, yaitu elemen
Read, Commit, Validated, dan Restart. Elemen Read merepresentasikan pesan
yang dikirim oleh transaksi sebagai request untuk membaca objek. Elemen
Commit merepresentasikan pesan request untuk commit dari transaksi. Elemen
Commit dilengkapi dengan himpunan identitas objek dan perubahannya yang
disimpan pada storage. Suatu transaksi diperbolehkan memiliki lebih dari satu
elemen Read. Semua objek yang akan diubah oleh transaksi tersimpan pada
elemen Commit. Object Manager mengeksekusi setiap operasi dengan urutan
yang sesuai dengan urutan elemen pada RC queue. Dengan demikian urutan
elemen di RC queue merepresentasikan urutan eksekusi yang sebenarnya,
sehingga RC queue dapat digunakan untuk proses validasi transaksi. Proses
validasi terhadap suatu transaksi akan dilakukan/dieksekusi bila transaksi
tersebut mengirim request untuk commit. Bila validasi eksekusi transaksi gagal
dan pengguna (user) masih ingin melanjutkan proses, maka sistem akan
membuat elemen Restart. Elemen Restart ini berisikan semua identitas objek
yang akan diakses dan diubah. Elemen Validated merepresentasikan transaksi
yang berhasil melewati proses validasi atau transaksi yang tidak memerlukan
proses validasi (static atau restarted transaction). Static transaction adalah
transaksi yang mendeklarasikan semua objek yang akan diakses pada awal
eksekusi transaksi, sehingga transaksi ini hanya memiliki satu elemen, yaitu
elemen Commit pada RC queue. Bentuk umum elemen adalah sebagai
berikut:

Figur 2. Format Elemen RC queue

Storage

OM

LAN

TM

TM

TM

S

Tid V C R Reads Writes Next

 JMA, VOL. 2, NO. 1, JULI, 2003, 45-59 49
Tiap elemen berisikan atribut Transaction id (Tid), atribut jenis elemen,

himpunan objek yang akan dibaca (Reads), himpunan objek yang akan ditulis
(Writes), dan atribut untuk menyimpan pointer ke elemen berikutnya. Atribut
Tid berisikan nomor identitas transaksi yang merupakan asal dari elemen.
Atribut jenis elemen terdiri dari tiga bit, yaitu V bernilai 1 untuk elemen yang
berhasil divalidasi, C bernilai 1 untuk elemen Commit, dan R bernilai 1 untuk
elemen Restart.

Ketika Scheduler menerima pesan request dari transaksi Ti maka suatu
elemen yang sesuai akan ditambahkan pada RC queue, kemudian operasi-
operasi yang terkandung pada request atau elemen tersebut dikirim ke Object

Manager untuk dieksekusi. Scheduler menjamin bahwa Object Manager
mengeksekusi elemen dengan urutan yang sesuai dengan RC queue terutama
untuk elemen yang konflik. Dua elemen dari transaksi yang berbeda dikatakan
konflik bila terdapat paling sedikit satu operasi konflik dengan operasi yang
terkandung pada elemen lain. Dua buah operasi dikatakan konflik bila paling
sedikit satu operasi write.

Bila scheduler menerima pesan commit dari transaksi Ti, scheduler akan
membuat elemen commit dan menambahkan di belakang RC queue. Selanjutnya
scheduler akan melakukan proses validasi terhadap transaksi Ti. Proses validasi
transaksi Ti dilakukan dengan menelusuri (mengamati) elemen-elemen transaksi
lain pada RC queue yang berada diantara elemen Read pertama transaksi Ti dan
elemen commit transaksi Ti. Bila ada elemen-elemen lain yang tumpang tindih
eksekusinya (interleaving) dengan elemen transaksi Ti maka validasi transaksi
Ti gagal, scheduler akan menghapus semua elemen transaksi Ti dan
menempatkan elemen Restart. Elemen Restart berisikan semua objek yang akan
diakses dan diubah. Atribut V (validated) dan atribut R (Restart) bernilai 1.
Elemen ini tidak memerlukan proses validasi, sehingga setiap transaksi paling
banyak hanya mengalami satu kali restart. Tetapi bila tidak ada elemen-elemen
transaksi lain yang berada diantara elemen Read dan elemen Commit transaksi
Ti yang tumpang tindih, maka proses validasi sukses, dan scheduler akan
menghapus semua elemen-elemen transaksi Ti kecuali elemen Commit. Atribut
V elemen Commit transaksi Ti diberi nilai 1, hal ini menunjukan elemen tersebut
sudah berhasil divalidasi. Selanjutnya Scheduler mengirim operasi tulis (bila
ada) transaksi Ti ke Object Manager. Agar Object Manager mengeksekusi
operasi transaksi dengan urutan yang sesuai dengan urutan pada RC queue,
maka Scheduler perlu menunda pengiriman operasi transaksi berikutnya yang
konflik dengan transaksi Ti sampai Object Manager mengirim pesan
acknowledge bahwa operasi tulis transaksi Ti sudah dieksekusi, dan Scheduler
mengirim pesan ke transaksi bahwa Commit sudah dilakukan.

Elemen Commit transaksi Ti akan dihapus oleh Scheduler pada RC queue
bila elemen ini berada pada posisi di depan (front) queue. Tetapi bila elemen
Commit tidak (belum) berada diposisi depan pada RC queue, penghapusan
elemen ini ditunda. Hal ini dilakukan karena elemen Commit transaksi Ti
diperlukan keberadaannya pada RC queue untuk proses validasi bagi transaksi
lain.

Shi dan Perizzo juga mengembangkan algoritma yang mereka sebut
³LQWHUYHQLQJ´�YDOLGDWLRQ�DOJRULWKP. Algoritma ini digunakan untuk melakukan

50 FAHREN BUKHARI DAN SULASNO
proses validasi suatu transaksi yang akan commit. Bila transaksi berhasil
melewati proses validasi, maka proses commit akan dieksekusi. Tetapi bila
transaksi gagal melewati proses validasi, maka transaksi akan dilakukan proses
restart terhadap transaksi tersebut. Proses restart suatu transaksi adalah
Scheduler akan memerintahkan Object Manager untuk membaca ulang semua
objek yang diakses oleh transaksi tersebut, dan Scheduler mengirimnya ke
Transaction Manager serta menawarkan ke user apakah proses akan dilanjutkan
atau abort, dan Scheduler menghapus semua elemen milik transaksi tersebut
dan menambahkan elemen Restart pada RC queue. Operasi perubahan objek
oleh transaksi belum ada yang dieksekusi hanya operasi pembacaan objek yang
sudah dieksekusi, sehinggak eksekusi restart tidak perlu melalui proses yang
roll back yang rumit.

&RQIOLFW ��³�)LUVW´ 18//�³�6HFRQG´ 18//��6XFFHVV ��

6HDUFK�5&�TXHXH�IRU�WUDQVDFWLRQ¶V�ILUVW�5HDG�LQ�TXHXH��

If (Such is not found) Return Validated = success;

³)LUVW´� �WKH�ILUVW reached Read element;

While (1)

^�&RPSDUH�³)LUVW´�ZLWK�DOO�HOHPHQWV�RI�RWKHU�

 transactions behind it until it reaches an

 element of the same transaction;

 If (There is no element conflict)

 ^�$GG�³)LUVW´�WR�UHDFKHG�HOHPHQW�RI�VDPH�WUDQV�

 5HPRYH�WKH�³)LUVW´�HOHPHQW�IURP�WKH�5&�TXHXH�

 If (the Reached element is the commit element)

 Return Validated = success;

 ³)LUVW´� �WKH�UHDFKHG�HOHPHQW�

 }

 Else

 ^,QVHUW�³)LUVW´�LQ�5&�TXHXH�EHIRUH�FRQIOLFWLQJ�HOW�

 RemovH�WKH�RULJLQDO�³)LUVW´�IURP�WKH�5&�TXHXH�

 Conflict=1;

 ³6HFRQG´� �&RPPLW�HOHPHQW�

 While (1)

 ^&RPSDUH³�QG´�ZLWK�DOO�HOWV�RI�RWKHU�WUDQV�EHIRUH�

 it until it reaches an elt of same trans;

 If (There is no element conflict)

 ^$GG�³�QG´�HOW�WR�UHDFKHG�HOW�RI�VDPH�WUDQV�

 5HPRYH�³6HFRQG´�HOHPHQW�IURP�5&�TXHXH�

 ,I��UHDFKHG�HOHPHQW�LV�³)LUVW´�

 Return Validated = success;

 ³6HFRQG´� �WKH�UHDFKHG�HOHPHQW�

 }

 Else

 { If (Conflict==1)

 { Remove all elements of trans from RC queue;

 return validated = failure;

} } } } }

Figur 3. $OJRULWPD�YDOLGDVL�³,QWHUYHQLQJ´

 JMA, VOL. 2, NO. 1, JULI, 2003, 45-59 51
$OJRULWPD� YDOLGDVL� ³LQWHUYHQLQJ´� PHQJJXQDNDQ� NRQVHS� NRQIOLN� HOHPHQ��

Dua buah elemen dari transaksi yang berbeda dikatakan konflik bila paling
sedikit terdapat satu buah operasi konflik dengan operasi elemen lainnya.

Proses validasi dilakukan algoritma ³LQWHUYHQLQJ´� dengan menelusuri
(traversal) struktur RC queue. Suatu transaksi akan gagal melewati proses
validasi bila ada elemen-elemennya yang konflik dengan dua elemen dari
transaksi lain (tidak harus berasal dari transaksi yang sama). Misalkan terdapat
tiga buah transaksi yaitu T1 = {r1(x), w1(y)} dan transaksi statik T2={w2(x)} dan
T3={r3(y)}. Transaksi T1 pertama kali datang dan mengirim Read Request untuk
membaca objek x dan y. Kemudian datang transaksi statik T2 melakukan
perubahan sehingga transaksi T2 hanya mengirim pesan commit dan nilai objek
x yang akan diubah. Operasi transaksi T2 langsung dieksekusi oleh Scheduler.
Selanjutnya datang transaksi T3 yang hanya membaca atau mengakses objek y.
Terakhir transaksi T1 mengirim commit request, sehingga struktur RC queue
akan berisi seperti pada figur 4.

Figur 4. Struktur RC queue

Proses validasi transaksi T1 dinyatakan gagal, karena dari front elemen transaksi
T1 konflik dengan elemen transaksi T2; operasi read objek x (r1(x)) konflik
dengan operasi tulis objek x (w2(x)). Kemudian dari rear, elemen transaksi T1
konflik dengan elemen T3 ; operasi tulis objek y (w1(y)) konflik operasi baca y
(r3(y)). Sehingga transaksi T1 mengalami restart. Padahal eksekusi transaksi-
transaksi tidak ada yang tumpang tindih. Eksekusi transaksi-transaksi tersebut
setara dengan eksekusi serial, yaitu T3 Æ T1 Æ T2. Banyak contoh kasus yang

T1 0 1 0 - y

rear

T3 1 1 0 y -

T2 1 1 0 - x

T1 0 0 0 x,y

front

52 FAHREN BUKHARI DAN SULASNO
diberikan untuk menunjukan bahwa algoritma ROCC melakukan restart yang
tidak perlu. Bila masalah ini bisa diatasi tentu akan diperoleh algoritma yang
menghasilkan restart yang minimum dan throughput yang lebih baik.

4. PERBAIKAN ALGORITMA VALIDASI

Perbaikan algoritma ROCC dilakukan dengan mengubah prosedur
validasi yang dilakukan oleh algoritma validasi intervening yang akan diuraikan
dalam penjelasan di bawah ini. "First" adalah elemen operasi read dari transaksi
yang melakukan commit. "Combine" adalah kumpulan elemen yang operasinya
konflik dengan elemen commit ("Second") maupun operasinya konflik dengan
elemen "Combine" sebelumnya. Sebagai inisialisasi awal "Combine" = 0.
Langkah melakukan validasi setelah suatu transaksi mengirimkan commit
request, pada ROCCM selengkapnya adalah sebagai berikut :

1. Bandingkan "First" dengan elemen dari transaksi lain yang terdapat
diantara "First" sampai elemen commit. Bila pada saat penelusuran
menemukan elemen read dari transaksi yang sama (first-down reached
element) maka gabungkan elemen "First" ke dalam elemen transaksi
yang sama berikutnya. Kemudian bandingkan "First" hasil gabungan
tersebut, dengan elemen dari transaksi lain yang terdapat diantara "First"
sampai elemen commit. Proses penelusuran dilakukan terus untuk
menemukan elemen yang konflik atau elemen read berikutnya. Bila
transaksi berikutnya yang ditemukan, adalah elemen commit dari
transaksi yang sama, dan tidak terdapat konflik maka validasi
dinyatakan sukses.

2. Jika "First" konflik dengan elemen dari transaksi lain, pindahkan elemen
"First" ke posisi transaksi sebelum elemen dari transaksi lain yang
konflik. Hapus elemen "First" yang asli dari RC-queue.

3. Bandingkan "Second" atau "Combine" dengan elemen dari transaksi lain
yang terdapat diantara "Second" sampai ditemukan elemen dari transaksi
yang sama ("First up reached element"). Setiap elemen yang konflik,
lakukan insert ke "Combine".

4. Bandingkan "Combine" dengan "First up reached element" Jika terdapat
konflik maka validasi dinyatakan gagal. Jika tidak terdapat konflik
lakukan pengecekan apakah "First up reached element" adalah "First",
jika merupakan "First maka validasi dinyatakan sukses, tetapi jika bukan
elemen "First" lanjutkan langkah 5.

5. Gabungkan "Second" dengan "First up reached element" hapus
"Second" asli dari RC-queue. Lanjutkan langkah 3.

 JMA, VOL. 2, NO. 1, JULI, 2003, 45-59 53
Langkah-langkah prosedur validasi bagi algoritma ROCC yang diperbaiki
(disebbut algoritma ROCCM) lebih rincinya ditulis pada pseudo-code yang
diperlihatkan pada figur 5.

Conflict=0; Combine = Null; Success=1;

)LUVW� �7KH�WUDQVDWLRQ¶V�ILUVW�UHDG�HOHPHQW�LQ�UF�TXHXH�

6HFRQG� �7KH�WUDQVDFWLRQ¶V�FRPPLW�HOHPHQW�

NextElement = get next element in rc queue before First;

IF (First==Null) Return Validated = success;

WHILE (1)

 IF (NextElement is the next read element of the transaction)

 Remove First read in the rc queue;

 First = Merge First and NextElement;

 Replace NextElement with First in the rc queue;

 ELSE IF (NextElement == Second)

 Return Validated = success;

 ELSE IF (First conflict with NextElement)

 NextElement = get previous element of WKH� WUDQVDFWLRQ¶V�

commit

 element in the rc queue;

 WHILE (1)

 IF (NextElement is First)

 IF (Combine conflict with First)

 Return Validated = Failure;

 ELSE

 Remove Second in the rc queue

 Second = Merge Second with First;

 Replace First with Second;

 Return Validate = Success;

 END IF

 ELSE IF (NextElement is read-up element)

 IF (Combine conflict with NextElement)

 Return Validated = Failure;

 ELSE

 Remove Second in the rc queue;

 Second = Merge NextElement and Second;

 Replace NextElement with Second;

 NextElement = get previous element in the rc

queue;

 END IF

 ELSE IF (NextElement conflict with Combine or Second)

 Insert NextElement into Combine;

 NextElement = get previous element;

 END IF

 END WHILE

 ELSE

 NextElement = get next element in the rc queue;

 END IF

END WHILE

Figur 5. AlgorLWPD�YDOLGDVL�³LQWHUYHQLQJ´�52&&0�

Kinerja algoritma ROCC yang sudah diperbaiki (ROCCM) dibandingkan
dengan algoritma ROCC dan Two-phase Locking melalui simulasi.

54 FAHREN BUKHARI DAN SULASNO

5. MODEL SIMULASI ROCC

5.1. Asumsi-asumsi simulasi. Simulasi dilakukan dengan melihat throughput;
yaitu banyaknya transaksi yang dapat diselesaikan per satuan waktu, restart

ratio; yaitu ratio banyaknya transaksi yang mengalami restart per satuan waktu,
dan response time; yaitu waktu diantara ketika sebuah terminal mengirim
sebuah transaksi baru dan ketika hasil transaksi baru tersebut dikembalikan ke
terminal. Kajian simulasi dilakukan pada beberapa level multiprograming..
Level multiprogramming adalah level yang menunjukan maksimum banyaknya
transaksi yang dilayani server, bila suatu transaksi melakukan request awal, dan
ternyata jumlah transaksi yang dilayani server sudah maksimum, maka transaksi
tersebut diblok sampai jumlah transaksi yang dilayani berkurang.

Simulator yang digunakan untuk mengukur kinerja algoritma
concurrency control (CC) tersebut, menggunakan model antrian tertutup pada
suatu sistem basis data terpusat yang diambil dari penelitian sebelumnya (Shi &
Perrizo 2003). Simulator tersebut diperlihatkan pada Figur 6 dan Figur 7. Pada
simulator terdapat sejumlah terminal, untuk membangkitkan transaksi.

Selanjutnya terdapat batasan transaksi yang aktif pada suatu saat di
dalam sistem, mpl. Apabila transaksi yang digenerasi oleh sejumlah terminal
melebihi transaksi yang aktif, yang diijinkan oleh sistem (melebihi mpl), maka
transaksi tersebut diletakkan dalam ready queue untuk menunggu transaksi
dalam sistem selesai atau ada yang diabort. Sebaliknya apabila transaksi yang
aktif dalam sistem tidak melebihi mpl, maka transaksi yang digenerasi oleh
terminal atau transaksi yang antri di ready queue, masuk ke cc queue
(concurrency control queue) dan membuat permintaan operasi akses basis data
melalui CC. Jika lolos dari seleksi yang dilakukan oleh CC, selanjutnya
transaksi tersebut mengakses data. Jika data tersebut ada di buffer maka
eksekusi dilanjutkan ke CPU. Tetapi jika data tersebut tidak terdapat di buffer
maka eksekusi akan dilewatkan ke disk untuk mengakses data yang seterusnya
dilanjutkan ke CPU. Untuk menuju ke disk dan cpu harus melalui antrian di disk
dan CPU yaitu disk_queue dan cpu_ queue.

Pada simulasi juga diasumsikan bahwa sebuah transaksi melakukan
operasi read terlebih dahulu sebelum melaksanakan operasi write. Diasumsikan
juga jaringan yang digunakan adalah jaringan Local Area Network (LAN)
dalam keadaan handal pada saat transmisi data dari terminal ke server. Jalur
think memberikan nilai random delay pada waktu mengakses item data. Pada
Strict 2PL, jika hasil dari CC memutuskan bahwa suatu transaksi harus di block
maka transaksi tersebut dimasukkan dalam block queue sampai permintaan
akses data dapat diproses. Jika CC menetapkan untuk melakukan restart pada

suatu transaksi, maka transaksi tersebut akan direstart dan selanjutnya
dimasukan ke dalam ready queue. Jika suatu transaksi telah komplit (selesai)
maka CC akan memberikan commit pada transaksi tersebut dan mengirimkan
commit succes message ke terminal.

 JMA, VOL. 2, NO. 1, JULI, 2003, 45-59 55
Pada simulator terdapat dua model logical queuing yaitu yang pertama model
antrian untuk ROCCM dan ROCC yang diambil dari penelitian sebelumnya
(Shi & Perrizo 2003), serta yang kedua model antrian untuk Strict 2PL.

Figur 6 di bawah ini memperlihatkan model antrian yang pertama pada
simulator.

Figur 6. Model logical queuing untuk ROCCM dan ROCC pada simulator

 (Shi & Perrizo 2003).

Pada figur 6 diperlihatkan sejumlah terminal untuk membangkitkan transaksi.
Ketika suatu transaksi baru dibangkitkan, sistem akan melewatkan transaksi
pada ready queue untuk diteruskan ke cc queue. Transaksi yang lolos validasi
akan dilanjutkan untuk mengakses data di buffer atau disk. Setelah mendapatkan
data operasi transaksi diteruskan ke cpu. Setelah dieksekusi oleh cpu terdapat
pemberian nilai int_think dan ext-think diantara transaksi untuk selanjutnya
masuk ke cc queue. Transaksi yang gagal validasi akan dilakukan restart dan
kembali masuk ready queue. Eksekusi transaksi yang telah komplit akan
dilaporkan ke terminal.

Figur 7 memperlihatkan model antrian untuk Strict 2PL pada simulator. Model
tersebut merupakan modifikasi dari model logical queuing penelitian
sebelumnya dan ditambahkan dengan jalur transaksi yang mengalami blocked

serta blocked queue untuk menampung transaksi yang mengalami blocked.
Eksekusi antrian hampir sama dengan model antrian pada ROCC dan

ROCCM. Perbedaannya pada model antrian Strict 2PL adalah terdapat block

queue untuk menampung transaksi yang mengalami blocked untuk kemudian
diteruskan ke cc queue.

cc queue

ready

queue

object

queue cpu

cpu

disk

cc

terminals

RESTART

COMMIT

ACCESS

Yes

No

Is in

Buffer?

think disk

queue

disk

56 FAHREN BUKHARI DAN SULASNO
5.2 Input Simulasi. Parameter input yang digunakan pada pelaksanaan
simulasi diperlihatkan pada Tabel 4. Nilai parameter input yang terdapat pada
table 2 adalah nilai default yang terdapat pada simulator (Shi & Perrizo 2003).
Pada pelaksanaan simulasi dilakukan perubahan beberapa nilai dari nilai default

untuk beberapa parameter, guna mendapatkan hasil simulasi yang maksimal.

Figur 7. Model logical queuing untuk Strict 2PL pada simulator,
 modifikasi dari model Shi dan Perrizo (2004).

 Tabel 2. Nilai parameter input default pada pelaksanaan simulasi

No Parameter Nilai Keterangan

1 db_size 1000 pages Ukuran database
2 max_trans 12 pages Ukuran maksimum transaksi
3 min_trans 4 pages Ukuran minimum transaksi

4 write_prob 0,25
Peluang banyaknya data item yang
diupdate

5 int_think 1 ms Rata-rata lamanya internal think

6 xt_think 1 ms Rata-rata eksternal think

7 max_req 3 Maksimum request suatu transaksi
8 mean_time 3 Rata-rata antar kedatangan transaksi

9 commit_num 800
Akhir simulasi, setelah 800 transaksi
melakukan commit

10 hit_ratio 0,5 Peluang suatu objek ada di buffer

11 obj_io 35 ms
Lamanya mengakses suatu objek pada
hard disk

12 obj_cpu 15 ms
Lamanya menggunakan cpu untuk satu
objek

No

cc queue

ready

queue

object

queue cpu

cpu

disk

cc

terminals

RESTART

COMMIT

ACCESS

Yes Is in

Buffer?

think

blocked

queue blocked

disk

queue

disk

 JMA, VOL. 2, NO. 1, JULI, 2003, 45-59 57
13 num_cpu 4 Banyaknya cpu
14 num_disk 8 Banyaknya hard disk

15 Mpl
5,10,25,50,
75,100,200

Tingkat multiprogramming

Hasil simulasi menunjukkan bahwa secara umum algoritma ROCCM lebih baik
dari algoritma ROCC atau strict 2pl. dapat dilihat pada figur 8. Pada tingkat mpl
150 keatas perbedaan algoritma ROCCM dan ROCC berbeda nyata, sedangkan
untuk tingkat mpl 150 kebawah walaupun terlihat throughput ROCCM lebih
baik dari yang lain, tetapi tidak berbeda nyata. Bentuk kecenderungan grafik
ROCCM maupun ROCC akan menurun disekitar tingkat mpl 200 atau lebih,
karena banyaknya transaksi yang mengalami restart.

Figur 8. Throughput masing-masing algoritma pada berbagai tingkat mpl.

Figur 9 memperlihatkan restart-ratio (banyaknya transaksi yang direstart

persatuan waktu) tiap-tiap algoritma. Terlihat dengan jelas bahwa hampir pada
tiap tingkat mpl, restart-ratio algoritma ROCCM lebih rendah dibanding
restart-ratio algoritma ROCC. Artinya banyak transaksi yang direstart pada
algoritma ROCC lebih banyak daripada algoritma ROCCM.

Algoritma ROCCM dan ROCC memberikan response time (waktu antara
transaksi dibangkitkan dan transaksi selesai) yang lebih baik dibanding
algoritma strict 2pl (figur 10). Hal ini berkenaan dengan bahwa algoritma strict

2pl cenderung melakukan penundaan eksekusi transaksi, bila lock objek yang
diinginkan transaksi tersebut tidak tersedia. Sedangkan algoritma ROCCM atau
ROCC cenderung mengeksekusi setiap transaksi dan validasi dilakukan pada
saat transaksi tersebut ingin melakukan commit. Bila eksekusi transaksi tersebut
tumpang tindih, maka transaksi tersebut direstart.

58 FAHREN BUKHARI DAN SULASNO

Figur 9. Restart-ratio masing-masing algoritma pada berbagai tingkat mpl.

Figur 10. Response time masing-masing algoritma pada beberapa tingkat mpl.

 JMA, VOL. 2, NO. 1, JULI, 2003, 45-59 59
6. PENUTUP

Setelah dilakukan perbaikan terhadap prosedur validasi algoritma ROCC
yang diperkenalkan oleh Shi dan Perrizo terbukti algoritma ROCC memberikan
hasil yang lebih baik. Hasil kajian simulasi juga menunjukan bahwa algoritma
ROCC lebih baik kinerjanya dibanding algoritma strict 2pl.

Pada saat ini algoritma ROCC hanya dirancang untuk sistem database
terpusat. Sehingga rancangan algoritma ROCC untuk sistem database
terdistribusi (distributed database system) adalah suatu yang perlu dilakukan.

DAFTAR PUSTAKA

[1]. Agrawal, R., M.J. Carey, and M�� /LYQ\�� ³&RQFXUUHQF\� &RQWURO� 3HUIRUPDQFH�0RGHOOLQJ��
$OWHUQDWLYHV� DQG� ,PSOLFDWLRQV´, ACM Transactions on Database Systems, vol. 12, no. 4,
December 1987, p.609-654.

[2]. Bernstein, P.A., V. Hadzilacos, dan N. Goodman, Concurrency Control and Recovery in

Database Systems, Addison-Wesley, 1987
[3]. Bukhari, Fahren, Two Fully Distributed Concurrency Control Algorithms, Department of

Computer Science, Univeristy of Western Ontario, 1990.
[4]. %XNKDUL��)DKUHQ� GDQ� 6�/�� 2VERUQ�� ³7ZR�)XOO\� 'LVWULEXWHG� &RQFXUUHQF\� &ontrol

$OJRULWKPV´�� ,(((� 7UDQVDFWLRQV� RI� .QRZOHGJH� DQG� 'DWD� (QJLQHHULQJ�� ������ ���� ± 882,
1993.

[5]. Franaszek, P.A., J.T. Robinson, dan A. Thomasian�� ³&RQFXUUHQF\� &RQWURO� IRU� +LJK�
&RQWHQWLRQ�(QYLURQPHQWV´��ACM Transactions on Database Systems, vol. 17, No. 2, June
1992, p.304-345.

[6]. Peter Graham dan Ken Barker��³(IIHFWLYH�2SWLPLVWLF�&RQFXUUHQF\�&RQWURO�LQ�0XOWLYHUVLRQ�
2EMHFW� %DVHV´�� 'HSDUWPHQW� RI� &RPSXWHU� 6FLHQFH�� 8QLYHUVLW\� RI� 0DQLWRED�� :LQQLSHJ��

Manitoba, 1994
[7]. .XQJ�� +�7�� GDQ� -RKQ� 7�� 5RELQVRQ�� ³2Q 2SWLPLVWLF� 0HWKRGV� IRU� &RQFXUUHQF\� &RQWURO´��

ACM transactions on Database Systems, vol. 6, No. 2, June 1981, pages 213-226.
[8]. M.T. Özsu dan P. Valduriez, Principles of distributed database systems, Prentice Hall,

1999.
[9]. Papadimitriou, C., The Theory of Database Concurrency Control, Computer Science Press,

1986.
[10]. Shi, Victor T. S. & William P. ³A New Method for Concurrency Control in Centralized

Database Systems�´� http://www.cs.ndsu.nodak.edu/~perrizo/classes/766/rocc.doc. [14 Juni
2003]

[11]. %DVX��6DPLGLS��³$SSOLFDWLRQ�RI�6QDSVKRW�,VRODWLRQ�DQG�52&&�LQ�$'2�$63�1(7´�

