PENGARUH RASA SALING PERCAYA DI ANTARA KOLEGA
TERHADAP PERILAKU BERBAGI PENGETAHUAN:
META-ANALISIS

Yessy Elita
Fakultas Psikologi
Universitas Gadjah Mada
Jl. Humaniora No. 1 Bulaksumur Yogyakarta 55281
yessyelita@yahoo.com

Abstract

Knowledge sharing is crucial for organizations in order to achieve competitive advantage. Recently, several researchers has tested correlation between trust and knowledge sharing, however each of the results found different correlation values. Therefore, it has been committed meta-analysis to get the true correlation value. This meta-analysis collects data from 20 studies that gives statistic information. The result of this study proves the hypothesis that there is relationship between trust and knowledge sharing. Trust always positively correlates with knowledge sharing.

Keywords: Knowledge Sharing, Meta-Analysis, Trust.

Abstrak

Kata kunci: Berbagi Pengetahuan, Meta-Analisis, Kepercayaan.
Pendahuluan

Pada era informasi, teknologi komputer dan jaringan yang lebih luas mendorong sejumlah pengetahuan dan informasi bergerak cepat yang tidak terbayangkan sebelumnya. Informasi diciptakan secara berkelanjutan di berbagai belahan dunia, dan menjadi berlipat ganda setiap tiga sampai empat tahun. Ikujiro Nonaka dengan penuh keyakinan memprediksi bahwa kreasi dan desiminasi pengetahuan akan dapat membedakan sebuah perusahaan mampu untuk bertahan atau tidak. Oleh karena itu, individu pada setiap level dan semua jenis perusahaan akan ditantang untuk mengembangkan pengetahuan baru, mengambil tanggung jawab untuk melaksanakan ide-ide baru dan mengejar ide-ide yang mereka miliki sejauh mungkin (Marquardt & Reynolds, 1994).

Isu yang penting dalam organisasi adalah bagaimana organisasi mentransfer keahlian dari mereka yang memiliki ke mereka yang membutuhkan (Hinds, Patterson, & Pfeffer, 2001). Hal ini mendorong banyak perusahaan untuk membuat suatu sistem manajemen pengetahuan dan berbagai saluran yang diharapkan dapat mendorong perilaku berbagi pengetahuan. Namun sayangnya, teknologi-teknologi tersebut tidak lantas membuat perilaku berbagi menjadi semakin tinggi. Kondisi demikian mendorong para peneliti untuk meneliti lebih lanjut mengenai faktor manusia sebagai pelaku berbagi pengetahuan.

Orang-orang yang memiliki pengetahuan mungkin tidak membagi pengetahuan yang dimiliki kecuali jika mereka merasakan manfaat yang potensial. Sistem penghargaan (reward) yang bersifat monetary (keuangan) tidak cukup mendorong karyawan untuk menurunkan pengetahuan yang dimilikinya karena penentu dalam hubungan pertukaran sosial adalah adanya kepercayaan/trust (Davenport & Prusak, 1998; Wasko & Faraj, 2005). Kepercayaan interpersonal kemudian menjadi faktor yang penting ketika seorang karyawan memutuskan untuk membagi pengetahuan ataupun tidak di tempat kerja.

Berbagi pengetahuan adalah salah satu faktor terpenting yang menjadi perhatian manajerial dalam organisasi karena dapat menciptakan keunggulan kompetitif pada era ekonomi pengetahuan (Quinn, Anderson, & Finkelstein, 1996). Berbagi pengetahuan adalah sebuah kekuatan untuk mendorong pertukaran dan penciptaan pengetahuan serta berdampak meningkatkan performansi yang tinggi pada kapasitas intelektual (Liebowitz, 2001). Performansi-performansi ini dalam berbagai organisasi dapat ditingkatkan secara efisien jika karyawan mengomunikasikan informasi, pengalaman, opini, dan pemahaman mereka satu sama lain (Liebowitz, 2001).
Berbagi pengetahuan dalam organisasi adalah perilaku ekstra dan jarang dikaikan dengan kompensasi karyawan atau evaluasi kinerja. Davenport (1997) menyatakan bahwa berbagi adalah suatu tindakan sukarela dan yang membedakannya dari sekedar memberikan laporan berdasarkan rutinitas atau kebijakan perusahaan. Berbagi mengimplikasikan sebuah aksi atau tindakan yang disadari oleh seseorang individu yang berpartisipasi dalam pertukaran pengetahuan meskipun tidak ada keharusan untuk melakukannya (Davenport, 1997).

Menurut teori pertukaran sosial (Blau, 1964), seorang individu mungkin senang membangun hubungan pertukaran dengan orang lain secara sukarela, memberikan keuntungan kepada orang lain dan kemudian mengharapkan mendapatkan imbalan di masa depan. Secara umum, kepercayaan (trust) adalah komponen penting dalam hubungan pertukaran sosial. Semakin tinggi derajat kepercayaan yang dirasakan oleh pemberi dan penerima, maka semakin kuat hubungan pertukaran sosial yang ada antara mereka (Blau, 1964; Wasko & Faraj, 2005).

Di antara berbagai klasifikasi faktor-faktor yang mempengaruhi kepercayaan (trust), secara umum diterima dua faktor yaitu kepercayaan berdasarkan afeksi dan kepercayaan berdasarkan kognisi. Kepercayaan berdasarkan afeksi (affect-based trust) menekankan pada ikatan emosional yang berperan. Anteseden dari kepercayaan jenis ini adalah level perilaku kewarganegaraan yang ditujukan kepada individu yang percaya terhadap seseorang dan frekwensi interaksi informal di antara kedua belah pihak (McAllister, 1995). Jika seseorang yang dievaluasi menunjukkan level yang tinggi pada perilaku kewarganegaraan dan jika keduanya sering berinteraksi, maka kemungkinan bahwa orang yang mengevaluasi akan percaya terhadap seseorang yang dievaluasi. Interaksi sosial yang sering dan perilaku kewarganegaraan akan memungkinkan orang mengevaluasi percaya pada orang yang dievaluasi atas informasi pribadi, ide-ide dan pengetahuan, sehingga akan membuat orang-orang terbuka satu sama lain.

Anteseden kepercayaan berdasarkan kognisi adalah sejumlah kinerja yang reliabel dan syarat-syarat profesional yang dimiliki oleh seseorang yang dievaluasi (McAllister, 1995). Jika seseorang yang dievaluasi menunjukkan reliabilitas dalam menampilkan peran-peran yang kompleks dan jika ia memiliki syarat profesional yang luar biasa seperti memiliki kualifikasi pendidikan yang sempurna, pelatihan khusus, pengalaman sukses yang relevan, juga akan memungkinkan bahwa orang-orang yang mengevaluasi akan mengembangkan level kepercayaan yang tinggi terhadap orang yang dievaluasi. Tingkat kepercayaan berdasarkan kognisi akan membuat orang yang mengevaluasi untuk percaya pada orang yang dievaluasi dan secara aktif berkolaborasi
dalam pekerjaan dan mencari pengetahuan dari mereka.

Metode Penelitian

Meta-analisis ini memfokuskan pada penelitian kuantitatif dengan menggunakan survei. Artikel yang digunakan harus memenuhi kriteria, yaitu (1) memuat variabel kepercayaan (trust) sebagai variabel independen dan variabel berbagi pengetahuan (knowledge sharing) sebagai variabel dependen, sehingga dalam hal ini dapat diuji korelasi antara kepercayaan dengan berbagi pengetahuan, (2) Penelitian-penelitian yang digunakan dalam meta-analisis ini mengandung informasi statistik atau data yang dapat digunakan untuk menghitung effect size, seperti nilai F, d, t dan r.

Metode meta-analisis ini menggunakan teknik meta analisis dari Hunter dan Schmidt (2004). Langkah-langkah yang digunakan yaitu:

1. Apabila informasi statistik masih berupa nilai F; terlebih dahulu dikonversikan menjadi nilai t,d, dan r.

2. Untuk menghitung kesalahan sampling digunakan barebone dengan langkah-langkah sebagai berikut:
 a. Menghitung statistik deskriptif untuk masing-masing studi dan rerata korelasi populas i
 b. Menghitung variasi antar studi (\bar{r})
 c. Menghitung variasi kesalahan pengambilan sampel (\bar{e})
 d. Membandingkan standar deviasi yang dikoreksi dengan rata-rata (\bar{e}). Jika rata-rata lebih besar 2 SD dari 0, maka dapat diambil kesimpulan hubungan tersebut selalu positif.

3. Menghitung besarnya kesalahan pengukuran dapat dilakukan dengan :
 a. Menghitung rerata gabungan
 b. Menghitung koreksi kesalahan pengukuran pada x dan y, yaitu koreksi yang sesungguhnya dari populasi
 c. Jumlah koefisien kuadrat variasi (V)
 d. Varians yang mengacu variasi artifak
 e. Varians korelasi sesungguhnya
 f. Interval kepercayaan
g. Dampak variasi reliabilitas.

Meta-analisis dapat dilakukan apabila memiliki nilai korelasi atau r, namun bila dari studi-studi primer tersebut diperoleh nilai F, t, dan d, maka harus diterapkan rumus-rumus menjadi r. Berikut adalah rumus-rumus untuk transformasi nilai-nilai tersebut.

\[t = F \]
\[d = 2t / N \]
\[d = 2r / (1 - r^2) \]
\[r = d / (4 + d^2) \]

...Persamaan 1

Dalam tabel 2 lebih lanjut diuraikan nilai r_{xy} dari ke 20 studi dan nilai transformasi dari F.

Jika korelasi populasi diasumsikan konstan pada beberapa studi, maka estimasi yang terbaik untuk korelasi itu bukan rata-rata yang sederhana dari korelasi beberapa studi, akan tetapi rata-rata yang dibobot untuk masing-masing korelasi yang dibagi dengan sejumlah subyek dalam studi tersebut (Hunter & Schmidt, 2004). Estimasi yang terbaik untuk korelasi populasi diformulasikan dalam persamaan 2 berikut ini.

a. Rerata korelasi populasi

\[\tilde{r} = \frac{\sum (N_i r_i)}{\sum N_i} \]

...persamaan 2

Di mana r_i adalah nilai korelasi untuk studi i dan N_i adalah jumlah sampel pada studi i.

Dari perhitungan yang ada pada tabel 3, maka diketahui $1817.608/4264 = 0.426$ sebagai rerata korelasi populasi.

b. Varians r_{xy} (s^2_{r})

Varians di antara studi-studi tersebut bukan varians sampel yang biasa, tapi juga sudah dibobot. Berikut adalah persamaan varians:

\[\sigma^2 r = \frac{\sum N_i (r_i - \tilde{r})^2}{\sum N_i} \]

...persamaan 3
<table>
<thead>
<tr>
<th>Studi</th>
<th>Tahun</th>
<th>Peneliti</th>
<th>Sampel (N)</th>
<th>Karakteristik</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2009</td>
<td>Aulawi, H., Sudirman, I., Suryadi, K., & Govindaraju, R.</td>
<td>125</td>
<td>Karyawan Telkom</td>
</tr>
<tr>
<td>2</td>
<td>2010</td>
<td>Lee, P., Gillespie, N., Mann, L, & Wearing, A.</td>
<td>166</td>
<td>Karyawan perusahaan otomotif di Australia</td>
</tr>
<tr>
<td>3</td>
<td>2006</td>
<td>Mooradian, T., Renzl, B, & Matzler, K</td>
<td>64</td>
<td>Karyawan</td>
</tr>
<tr>
<td>5</td>
<td>2005</td>
<td>Kankahalli, A., Tan, B.C.Y, & Wei, K.K</td>
<td>150</td>
<td>Karyawan di Singapura</td>
</tr>
<tr>
<td>6</td>
<td>2005</td>
<td>Chowdhury, S.</td>
<td>164</td>
<td>Mahasiswa MBA yang bekerja di Michigan</td>
</tr>
<tr>
<td>7</td>
<td>2006</td>
<td>Kim, S & Lee, H.</td>
<td>322</td>
<td>Karyawan di Korea selatan</td>
</tr>
<tr>
<td>8</td>
<td>2006</td>
<td>Lin, C.P.</td>
<td>212</td>
<td>Mahasiswa BA yang bekerja di Taiwan</td>
</tr>
<tr>
<td>9</td>
<td>2008</td>
<td>Rhodes, J., Hung, R., Lok, P, Lien, B.Y & Wu, C.M.</td>
<td>223</td>
<td>Karyawan di China</td>
</tr>
<tr>
<td>10</td>
<td>2008</td>
<td>Huang, Q, Davison, R.M., Liu, H., & Gu, J</td>
<td>151</td>
<td>Mahasiswa MBA yang bekerja di China bagian timur.</td>
</tr>
<tr>
<td>12</td>
<td>2009</td>
<td>Buranaburivast, V.</td>
<td>136</td>
<td>Responden berasal dari seluruh australia</td>
</tr>
<tr>
<td>13</td>
<td>2010</td>
<td>Wu, Y.W & Sukoco, M.B</td>
<td>200</td>
<td>Pengguna i-phone di Thailand</td>
</tr>
<tr>
<td>14</td>
<td>.....</td>
<td>Huang, C.C., Yen, H.C., Chiu, J., Hwang, J.W, & Hsu, H.M.</td>
<td>274</td>
<td>Masyarakat profesional anggota komunitas online</td>
</tr>
<tr>
<td>15</td>
<td>.....</td>
<td>Renzl, B., Matzler, K., & Mader, C.</td>
<td>131</td>
<td>Karyawan perusahaan di Austria</td>
</tr>
<tr>
<td>16</td>
<td>2008</td>
<td>Staples, S.D, & Webster, J</td>
<td>824</td>
<td>Karyawan di Canada</td>
</tr>
<tr>
<td>17</td>
<td>2010</td>
<td>Tan, L.N, Lye, H.Y, Ng, H.T., & Lim, S.Y</td>
<td>195</td>
<td>Karyawan Bank di Malaysia</td>
</tr>
<tr>
<td>18</td>
<td>.....</td>
<td>Cheng, S.B., Wang, H.S, Tsai</td>
<td>220</td>
<td>Karyawan di Taiwan</td>
</tr>
<tr>
<td>19</td>
<td>.....</td>
<td>Hsu, H.M, Chang, M.C, Cheng, L.H, & Yen, H.C</td>
<td>300</td>
<td>Komunitas virtual di Taiwan</td>
</tr>
<tr>
<td>20</td>
<td>.....</td>
<td>Usoro, A., Sharrat, W.M, Tsui, E., & Shekhar, S</td>
<td>75</td>
<td>Komunitas virtual di perusahaan</td>
</tr>
</tbody>
</table>
Tabel 2.
Tranformasi nilai F, t, d, dan r

<table>
<thead>
<tr>
<th>Studi</th>
<th>Sampel</th>
<th>F</th>
<th>t</th>
<th>d</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>125</td>
<td>4.37</td>
<td>0.78</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>166</td>
<td></td>
<td></td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>64</td>
<td></td>
<td></td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>297</td>
<td></td>
<td></td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>150</td>
<td></td>
<td></td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>164</td>
<td></td>
<td></td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>322</td>
<td></td>
<td></td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>212</td>
<td>2.86</td>
<td>0.39</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>223</td>
<td></td>
<td></td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>151</td>
<td></td>
<td></td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>35</td>
<td>2.73</td>
<td>0.92</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>136</td>
<td>3.86</td>
<td>0.66</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>200</td>
<td></td>
<td></td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>274</td>
<td></td>
<td></td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>131</td>
<td></td>
<td></td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>824</td>
<td></td>
<td></td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>195</td>
<td></td>
<td></td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>220</td>
<td></td>
<td></td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>300</td>
<td></td>
<td></td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>75</td>
<td>16.98</td>
<td>4.12</td>
<td>0.95</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Tabel 4 menjelaskan lebih lanjut mengenai perhitungan untuk varians\(r_{xy} \)

c. Varians kesalahan pengambilan sampel

Untuk memperoleh varians kesalahan pengambilan sampel menggunakan persamaan berikut ini

\[
\sigma^2 e = \left(\frac{1}{N} \right) \left(\bar{r}^2 \right)^2
\]

... \(\text{persamaan 4} \)

Varians kesalahan pengambilan sampel ini memerlukan nilai rerata korelasi populasi (\(\bar{r} \)) dan juga jumlah rerata sampel dari keseluruhan studi. Di bawah ini perhitungan lebih lanjut.
\[
\sigma^2e = \frac{(1 \ 0.426^2)}{(213 \ 1)} \\
= \frac{0.669}{212} \\
= 0.003156
\]

Varians kesalahan pengambilan sampel \(\sigma^2e \) sebesar 0.003156.

Tabel 3.
Koreksi kesalahan sampling

<table>
<thead>
<tr>
<th>Studi</th>
<th>Sampel</th>
<th>Subjek</th>
<th>Korelasi (r_{sy}(r_s))</th>
<th>N x (r_{sy})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>125</td>
<td>Karyawan</td>
<td>0.33</td>
<td>41.250</td>
</tr>
<tr>
<td>2</td>
<td>166</td>
<td>Karyawan</td>
<td>0.77</td>
<td>127.820</td>
</tr>
<tr>
<td>3</td>
<td>64</td>
<td>Karyawan</td>
<td>0.5</td>
<td>32.000</td>
</tr>
<tr>
<td>4</td>
<td>297</td>
<td>Karyawan</td>
<td>0.54</td>
<td>160.380</td>
</tr>
<tr>
<td>5</td>
<td>150</td>
<td>Karyawan</td>
<td>0.18</td>
<td>27.000</td>
</tr>
<tr>
<td>6</td>
<td>164</td>
<td>Karyawan</td>
<td>0.63</td>
<td>103.320</td>
</tr>
<tr>
<td>7</td>
<td>322</td>
<td>Karyawan</td>
<td>0.37</td>
<td>119.140</td>
</tr>
<tr>
<td>8</td>
<td>212</td>
<td>Karyawan</td>
<td>0.2</td>
<td>42.400</td>
</tr>
<tr>
<td>9</td>
<td>223</td>
<td>Karyawan</td>
<td>0.596</td>
<td>132.908</td>
</tr>
<tr>
<td>10</td>
<td>151</td>
<td>Karyawan dan mahasiswa</td>
<td>0.492</td>
<td>74.292</td>
</tr>
<tr>
<td>11</td>
<td>35</td>
<td>Manajer</td>
<td>0.43</td>
<td>15.050</td>
</tr>
<tr>
<td>12</td>
<td>136</td>
<td>Masyarakat luas</td>
<td>0.31</td>
<td>42.160</td>
</tr>
<tr>
<td>13</td>
<td>200</td>
<td>Pengguna i-phoe</td>
<td>0.174</td>
<td>34.800</td>
</tr>
<tr>
<td>14</td>
<td>274</td>
<td>Komunitas virtual</td>
<td>0.27</td>
<td>73.980</td>
</tr>
<tr>
<td>15</td>
<td>131</td>
<td>Karyawan</td>
<td>0.236</td>
<td>30.916</td>
</tr>
<tr>
<td>16</td>
<td>824</td>
<td>Karyawan</td>
<td>0.553</td>
<td>455.672</td>
</tr>
<tr>
<td>17</td>
<td>195</td>
<td>Karyawan</td>
<td>0.451</td>
<td>87.945</td>
</tr>
<tr>
<td>18</td>
<td>220</td>
<td>Karyawan</td>
<td>0.29</td>
<td>63.800</td>
</tr>
<tr>
<td>19</td>
<td>300</td>
<td>Komunitas virtual</td>
<td>0.4</td>
<td>120.000</td>
</tr>
<tr>
<td>20</td>
<td>75</td>
<td>Komunitas virtual</td>
<td>0.437</td>
<td>32.775</td>
</tr>
<tr>
<td>Jumlah</td>
<td>4264</td>
<td></td>
<td></td>
<td>8.159 1817.608</td>
</tr>
<tr>
<td>Mean</td>
<td>213</td>
<td></td>
<td></td>
<td>0.426</td>
</tr>
</tbody>
</table>
Tabel 4.

Varians r_{xy}

<table>
<thead>
<tr>
<th>Studi</th>
<th>Sampel (N_i)</th>
<th>Korelasi (r_{xy})</th>
<th>$N \times r_{xy}$</th>
<th>$r_{xy} - r$</th>
<th>$\frac{(r_{xy} - r)^2}{r}$</th>
<th>$N \times (r_{xy} - r)^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>125</td>
<td>0.33</td>
<td>41.250</td>
<td>-0.096</td>
<td>0.009</td>
<td>1.158</td>
</tr>
<tr>
<td>2</td>
<td>166</td>
<td>0.77</td>
<td>127.820</td>
<td>0.344</td>
<td>0.118</td>
<td>19.613</td>
</tr>
<tr>
<td>3</td>
<td>64</td>
<td>0.5</td>
<td>32.000</td>
<td>0.074</td>
<td>0.005</td>
<td>0.348</td>
</tr>
<tr>
<td>4</td>
<td>297</td>
<td>0.54</td>
<td>160.380</td>
<td>0.114</td>
<td>0.013</td>
<td>3.842</td>
</tr>
<tr>
<td>5</td>
<td>150</td>
<td>0.18</td>
<td>27.000</td>
<td>-0.246</td>
<td>0.061</td>
<td>9.097</td>
</tr>
<tr>
<td>6</td>
<td>164</td>
<td>0.63</td>
<td>103.320</td>
<td>0.204</td>
<td>0.042</td>
<td>6.807</td>
</tr>
<tr>
<td>7</td>
<td>322</td>
<td>0.37</td>
<td>119.140</td>
<td>-0.056</td>
<td>0.003</td>
<td>1.019</td>
</tr>
<tr>
<td>8</td>
<td>212</td>
<td>0.2</td>
<td>42.400</td>
<td>-0.226</td>
<td>0.051</td>
<td>10.854</td>
</tr>
<tr>
<td>9</td>
<td>223</td>
<td>0.596</td>
<td>132.908</td>
<td>0.170</td>
<td>0.029</td>
<td>6.424</td>
</tr>
<tr>
<td>10</td>
<td>151</td>
<td>0.492</td>
<td>74.292</td>
<td>0.066</td>
<td>0.004</td>
<td>0.652</td>
</tr>
<tr>
<td>11</td>
<td>35</td>
<td>0.43</td>
<td>15.050</td>
<td>0.004</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>12</td>
<td>136</td>
<td>0.31</td>
<td>42.160</td>
<td>-0.116</td>
<td>0.014</td>
<td>1.838</td>
</tr>
<tr>
<td>13</td>
<td>200</td>
<td>0.174</td>
<td>34.800</td>
<td>-0.252</td>
<td>0.064</td>
<td>12.728</td>
</tr>
<tr>
<td>14</td>
<td>274</td>
<td>0.27</td>
<td>73.980</td>
<td>-0.156</td>
<td>0.024</td>
<td>6.691</td>
</tr>
<tr>
<td>15</td>
<td>131</td>
<td>0.236</td>
<td>30.916</td>
<td>-0.190</td>
<td>0.036</td>
<td>4.742</td>
</tr>
<tr>
<td>16</td>
<td>824</td>
<td>0.553</td>
<td>455.672</td>
<td>0.127</td>
<td>0.016</td>
<td>13.234</td>
</tr>
<tr>
<td>17</td>
<td>195</td>
<td>0.451</td>
<td>87.945</td>
<td>0.025</td>
<td>0.001</td>
<td>0.119</td>
</tr>
<tr>
<td>18</td>
<td>220</td>
<td>0.29</td>
<td>63.800</td>
<td>-0.136</td>
<td>0.019</td>
<td>4.085</td>
</tr>
<tr>
<td>19</td>
<td>300</td>
<td>0.4</td>
<td>120.000</td>
<td>-0.026</td>
<td>0.001</td>
<td>0.207</td>
</tr>
<tr>
<td>20</td>
<td>75</td>
<td>0.437</td>
<td>32.775</td>
<td>0.011</td>
<td>0.000</td>
<td>0.009</td>
</tr>
<tr>
<td>Jumlah</td>
<td></td>
<td></td>
<td>4264</td>
<td>8.159</td>
<td>1817.608</td>
<td>-0.366</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td>213</td>
<td>0.0243</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dari tabel 4 di atas diperoleh varians r_{xy} ($\sigma^2 r$) sebesar 0.0243.
d. Estimasi varians korelasi populasi

 Formulasi $\sigma^2 \rho = \sigma^2 r - \sigma^2 e$ memiliki tiga variasi. Jika dua varians sudah diketahui maka varians yang ketiga dapat dikompunetasikan. Dengan persamaan tersebut, maka persamaan varians korelasi populasi adalah:

 \[
 \sigma^2 \rho = \sigma^2 r - \sigma^2 e = 0.0243 - 0.003156 = 0,021
 \]

 Standar deviasi = $\sqrt{\sigma^2 \rho} = \sqrt{0.021} = 0.145$

e. Interval kepercayaan

 Standar deviasi yang dikoreksi sebesar 0.145 dibandingkan dengan rerata populasi 0.426.

 \[
 0.426/0.145 = 2.94.
 \]

 Korelasi rata-rata menunjukkan hasil 2.9 SD di atas 0, maka dapat disimpulkan bahwa korelasi populasi pada semua studi adalah positif.

f. Dampak kesalahan pengambilan sampel

 Besarnya dampak kesalahan pengambilan sampel dapat diketahui dengan menggunakan persamaan sebagai berikut:

 \[
 \frac{\sigma^2 \rho}{\sigma^2 r} = 0.021/0.0243 = 0.86
 \]

 Reliabilitas korelasi studi adalah 0.86, sehingga persentase varians mengacu kesalahan pengambilan sampel adalah sebesar 1 - 0.86 = 14%

 Variabel dalam ilmu pengetahuan tidak dapat diukur secara sempurna. Setiap pengukuran mengandung error yang akan melemahkan koefisien korelasi. Kesalahan pengukuran mempunyai status yang khusus di antara artifak yang sistematis, karena artifak ini selalu ada di setiap pengukuran.

a. Rerata Gabungan

 Untuk memperbaiki artifak ini, langkah pertama menghitung rata-rata yang mengandung artifak dengan menggunakan persamaan berikut:

 \[
 = \text{Ave} (a) \text{ Ave} (b) \]

 . persamaan 6

 Keterangan:

 = rerata gabungan
 a = akar kuadrat koefisien reliabilitas r_{xx}
 b = akar kuadrat koefisien reliabilitas r_{yy}

 Ave (a) = rerata a
 Ave (b) = rerata b
Dari informasi di atas diperoleh nilai rerata a dan b, sehingga nilai rerata gabungan adalah:

\[b = (0.929) (0.932) = 0.87 \]

Langkah selanjutnya setelah memperoleh rerata gabungan kemudian menghitung korelasi populasi setelah dikoreksi oleh kesalahan pengukuran.

b. Korelasi populasi setelah dikoreksi oleh kesalahan pengukuran.

Persamaan yang digunakan adalah:

\[\rho = \text{Ave} (\rho_i) = \frac{\text{Ave} \ r}{\rho} \]

Dari hasil tersebut dapat disimpulkan bahwa koefisien korelasi populasi setelah dilakukan koreksi kesalahan pengukuran baik yang terdapat pada variabel independen dan dependen adalah 0.49.

c. Jumlah koefisien kuadrat varians (V)

Penghitungan koefisien ini dengan menjumlahkan koefisien kuadrat varians baik yang terdapat pada variabel independen (a) dan dependen (b).

\[V = \frac{SD^2 (a)}{Ave^2 (a)} + \frac{SD^2 (b)}{Ave^2 (b)} \]

\[V = (0.027)^2/0.929^2 + 0.040^2/0.932 = 0.0027 \]

d. Varians yang mengacu variasi artifak

\[\sigma^2 = \rho^2 \cdot V \]

\[= (0.49)^2 (0.87)^2 (0.0027) \]

\[= (0.24) (0.76) (0.0027) \]

\[= 0.00049 \]

e. Varians korelasi sesungguhnya

\[\text{Var} (\rho) = \frac{\text{Var} (\rho_{xy})}{\rho^2} \cdot \frac{\rho^2}{2} \cdot V \]

\[\text{Var} (\rho) = 0.021 - 0.00049 / 0.87 \]

\[= 0.0235 \]

\[\text{SD} = \sqrt{0.0235} = 0.15 \]
Tabel 5. Estimasi Kesalahan Pengukuran

<table>
<thead>
<tr>
<th>Studi</th>
<th>Sample ((N_i))</th>
<th>Reliabilitas Trust ((r_{xx}))</th>
<th>A</th>
<th>Reliabilitas knowledge Sharing ((r_{xy}))</th>
<th>b</th>
<th>(N \times r_{xy})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>125</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>41.250</td>
</tr>
<tr>
<td>2</td>
<td>166</td>
<td>0.95</td>
<td>0.9747</td>
<td>0.96</td>
<td>0.9798</td>
<td>127.820</td>
</tr>
<tr>
<td>3</td>
<td>64</td>
<td>0.81</td>
<td>0.9000</td>
<td>0.88</td>
<td>0.9381</td>
<td>32.000</td>
</tr>
<tr>
<td>4</td>
<td>297</td>
<td>0.85</td>
<td>0.9220</td>
<td>0.93</td>
<td>0.9644</td>
<td>160.380</td>
</tr>
<tr>
<td>5</td>
<td>150</td>
<td>0.85</td>
<td>0.9220</td>
<td>0.85</td>
<td>0.9220</td>
<td>27.000</td>
</tr>
<tr>
<td>6</td>
<td>164</td>
<td>0.81</td>
<td>0.9000</td>
<td>0.87</td>
<td>0.9327</td>
<td>103.320</td>
</tr>
<tr>
<td>7</td>
<td>322</td>
<td>0.81</td>
<td>0.9000</td>
<td>0.89</td>
<td>0.9434</td>
<td>119.140</td>
</tr>
<tr>
<td>8</td>
<td>212</td>
<td>0.89</td>
<td>0.9434</td>
<td>0.88</td>
<td>0.9381</td>
<td>42.400</td>
</tr>
<tr>
<td>9</td>
<td>223</td>
<td>0.92</td>
<td>0.9592</td>
<td>0.71</td>
<td>0.8426</td>
<td>132.908</td>
</tr>
<tr>
<td>10</td>
<td>151</td>
<td>0.8</td>
<td>0.8944</td>
<td>0.84</td>
<td>0.9165</td>
<td>74.292</td>
</tr>
<tr>
<td>11</td>
<td>35</td>
<td>0.81</td>
<td>0.9000</td>
<td>0.81</td>
<td>0.9000</td>
<td>15.050</td>
</tr>
<tr>
<td>12</td>
<td>136</td>
<td>0.928</td>
<td>0.9633</td>
<td>0.925</td>
<td>0.9618</td>
<td>42.160</td>
</tr>
<tr>
<td>13</td>
<td>200</td>
<td>0.841</td>
<td>0.9171</td>
<td>0.909</td>
<td>0.9534</td>
<td>34.800</td>
</tr>
<tr>
<td>14</td>
<td>274</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>73.980</td>
</tr>
<tr>
<td>15</td>
<td>131</td>
<td>0.9</td>
<td>0.9487</td>
<td>0.77</td>
<td>0.8775</td>
<td>30.916</td>
</tr>
<tr>
<td>16</td>
<td>824</td>
<td>0.898</td>
<td>0.9476</td>
<td>0.78</td>
<td>0.8832</td>
<td>455.672</td>
</tr>
<tr>
<td>17</td>
<td>195</td>
<td>0.8</td>
<td>0.8944</td>
<td>0.8</td>
<td>0.8944</td>
<td>87.945</td>
</tr>
<tr>
<td>18</td>
<td>220</td>
<td>0.92</td>
<td>0.9592</td>
<td>0.95</td>
<td>0.9747</td>
<td>63.800</td>
</tr>
<tr>
<td>19</td>
<td>300</td>
<td>0.89</td>
<td>0.9434</td>
<td>0.96</td>
<td>0.9798</td>
<td>120.000</td>
</tr>
<tr>
<td>20</td>
<td>75</td>
<td>0.863</td>
<td>0.9290</td>
<td>0.954</td>
<td>0.9767</td>
<td>32.775</td>
</tr>
<tr>
<td>Total</td>
<td>4264</td>
<td>15.540</td>
<td>16.718</td>
<td>15.668</td>
<td>16.779</td>
<td>1817.608</td>
</tr>
<tr>
<td>Mean</td>
<td>213.200</td>
<td>0.863</td>
<td>0.929</td>
<td>0.870</td>
<td>0.932</td>
<td>0.426</td>
</tr>
<tr>
<td>SD</td>
<td>0.050</td>
<td>0.027</td>
<td>0.074</td>
<td>0.040</td>
<td></td>
<td>95.900</td>
</tr>
</tbody>
</table>
Korelasi populasi sesungguhnya (\(\rho\)) diestimasikan sebesar 0.49 dan standar deviasi (SD) sebesar 0.15.

f. Interval kepercayaan
Interval kepercayaan diperoleh dengan membandingkan korelasi populasi sesungguhnya dengan 1.96 SD.
1.96 SD = 0.29, dan \(\rho = 0.49\)
Hasil interval kepercayaan: \(0.49 > 0.29\)
Kesimpulan: korelasi positif, karena korelasi populasi sesungguhnya lebih besar dari 0.29.

g. Dampak variasi reliabilitas sebesar

\[
\frac{\rho^2 \times 100\%}{\sigma^2(\rho_{xy})}
\]
.. persamaan 12

\[
= \frac{0.00049}{0.021 \times 100\%} = 2.33\%
\]

Dampak variasi reliabilitas sebesar 2.33%. Variasi sebesar ini menunjukkan korelasi yang berbeda antara mean populasi dan mean studi dalam penelitian yang disebabkan adanya kesalahan pengukuran sebesar 2.33%.

Hasil dan Pembahasan

Meta-analisis yang dilakukan ini bertujuan untuk memperoleh nilai korelasi populasi yang sebenarnya dengan mengoreksi kesalahan pengambilan sampel dan juga kesalahan pengukuran dari berbagai studi, sehingga pada akhirnya diperoleh kesimpulan tunggal. Dari hasil meta-analisis yang dilakukan diperoleh kesimpulan bahwa rerata korelasi lebih besar 2 SD dari 0 yaitu sebesar 2.9. Nilai ini menunjukkan bahwa korelasi antara kepercayaan dan berbagi pengetahuan adalah selalu positif, sehingga hipotesis diterima dengan nilai korelasi populasi sebesar 0.49. Ini menunjukkan bahwa variabel kepercayaan selalu berkorelasi positif terhadap meningkatnya perilaku berbagi pengetahuan. Selain dari hipotesis yang diterima diperoleh juga nilai dari kesalahan pengambilan sampel dan juga kesalahan dalam pengukuran. Kesalahan pengambilan sampel sebesar 14 persen ini disebabkan beragamnya subyek penelitian, karakteristik subyek berasal dari masyarakat umum, mahasiswa, dan karyawan. Untuk kesalahan pengukuran diperoleh persentase sebesar 2,2 atau bila dibulatkan sebesar 2 persen, kesalahan pengukuran ini relatif kecil.
Dari hasil analisis di atas menunjukkan bahwa variabel kepercayaan (trust) berkorelasi secara positif dengan perilaku berbagi pengetahuan. Berbagi pengetahuan adalah pertukaran dan komunikasi pengetahuan (Govindarajan & Gupta 2000), salah satu faktor yang memuluskan komunikasi antara pihak yang menyumbangkan dan yang mencari pengetahuan yaitu adanya kepercayaan di antara kedua belah pihak. Menurut teori pertukaran sosial (Blau, 1964), orang-orang yang memiliki pengetahuan mungkin tidak membagi pengetahuan yang dimiliki kecuali jika mereka merasakan manfaat yang potensial. Sistem penghargaan (reward) yang bersifat monetary (keuangan) tidak cukup mendorong karyawan untuk menurunkan pengetahuan yang dimilikinya karena determinan penentu dalam hubungan pertukaran sosial adalah adanya kepercayaan/trust (Davenport & Prusak, 1998; Wasko & Faraj, 2005).

Simpulan

Hasil meta-analisis yang telah dilakukan pada 20 studi primer telah membuktikan bahwa hipotesis ada hubungan antara kepercayaan (trust) dengan perilaku berbagi pengetahuan terbukti. Kedua variabel ini berkorelasi selalu positif. Korelasi-korelasi yang ada dalam studi memiliki variasi yang disebabkan oleh kesalahan dalam pengambilan sampel sebesar 14 persen dan juga kesalahan dalam pengukuran sebesar 2,3 persen. Kesalahan pengambilan sampel lebih besar dibandingkan kesalahan karena pengukuran. Hal ini disebabkan karena sampel dari ke 20 studi primer memiliki karakteristik yang sangat beragam mulai dari masyarakat umum, mahasiswa, dan karyawan. Hal ini tentunya dapat mengurangi nilai korelasi populasi yang sebenarnya.

Dimensi-dimensi kepercayaan yang membangun skala kepercayaan beragam
pada tiap-tiap studi, belum ada skala yang standar mengandung dimensi yang sama. Saran bagi pengembang alat ukur dapat membuat skala kepercayaan yang terstandarisasi. Selain itu, isu mengenai pentingnya berbagi pengetahuan sudah mulai disadari oleh organisasi, saluran-saluran berbagi diciptakan seperti bank data, komunitas virtual, dan lain-lain, namun belum termanfaatkan dengan optimal meskipun reward atau hadiah sudah diberikan. Untuk itu penting bagi organisasi memahami karakteristik manusia sebagai penentu perilaku berbagi pengetahuan. Oleh karena itu selain variabel kepercayaan, bagi para peneliti selanjutnya dapat menguji variabel-variabel lain yang berkaitan dengan karakteristik manusia, misalnya kepribadian, efikasi diri, dan faktor motivasi internal lainnya.

Daftar Pustaka

