Deteksi *Edwardsiella tarda* Secara Imunohistokimia Pada Ikan Patin (*Pangasius pangasius*)

Saat ini tersedia beberapa metode pemeriksaan untuk mengidentifikasi penyakit ikan yang disebabkan oleh bakteri *E. tarda*. Deteksi penyakit bakterial pada ikan yang disebabkan oleh bakteri *E. tarda* sejak ini masih mengandalkan teknik isolasi dan identifikasi secara mikrobiologis. Pengujian ini dirasakan membutuhkan waktu yang cukup panjang, sehingga diperlukan metode deteksi yang lebih akurat, cepat dan mempunyai sensitivitas yang tinggi. Salah satu teknik peka dan akurat dalam deteksi infeksi *E. tarda* yang dapat digunakan adalah teknik immunohistokimia (IHK).

Teknik immunohistokimia mempunyai sensitivitas, spesificitas yang tinggi dan cepat; metode ini mampu mendeteksi antigen pada sediaan jaringan dengan menggunakan antibodi spesifik yang diberi tanda sehingga lokasi ikatan antibodi-antigen dapat diamati dengan menggunakan mikroskop (Ramos & Vara, 2005), namun demikian teknik ini hingga saat ini masih belum digunakan dalam membantu deteksi dan diagnosis penyakit akibat infeksi *E. tarda* di lapangan karena ketersediaan antibodi spesifik terhadap *E. tarda* yang masih sulit didapat. Berkaitan dengan kendala di atas, maka tujuan dari studi ini adalah untuk mengetahui deteksi *E. tarda* secara immunohistokimia pada ikan patin yang terinfeksi *E. tarda*.

Bahan Dan Metode

Isolat Bakteri

Bakteri *E. tarda* yang digunakan dalam penelitian ini adalah isolat yang berasal dari Balai Besar Karantina Ikan (BBKI) Soekarno Hatta, yang didapat dari hasil isolasi dari sampel ikan patin yang dilalulintaskan melalui BBKI Soekarno – Hatta tahun 2007. Bakteri disolisasi pada media Trptic Soy Broth (TSB) dengan inkubasi selama 24 jam pada suhu 25°C. Selain karakterisasi berdasarkan morfologi dan biokimia juga dilakukan sequencing gen 16S rRNA bakteri *E. tarda* dan dibandingkan dengan sequen yang sama dari bakteri *E. tarda* yang tersimpan di genbank.

Ikan Percobaan

Ikan patin (*Pangasius pangasius*) yang digunakan berasal dari lokasi budidaya ikan "Mina Tirta" yang terdapat di daerah Cimanggis – Depok yang dipelihara dalam kombok jaring apung dengan sistem perairan tertutup (waduk). Sebanyak 20 ekor patin (*Pangasius sp.*) berukuran 15 – 20 cm dibagi dalam dua kelompok yaitu kelompok infeksi dan kelompok non-infeksi (kontrol negatif), semua ikan dipelihara dalam akuarium susuai standar pemeliharaan yang berukuran 70 x 40 x 50 cm. Air yang digunakan adalah air tanah bervolume 70 liter yang telah melalui proses penyaringan (filtrasi). Selama pengujian ikan diberikan pakan dan aerasi cukup untuk kelangsungan hidupnya.

Pada kelompok infeksi (I), ikan diinfeksi dengan bakteri *E. tarda* secara intraperitoneal dengan konsentrasi bakteri 10⁶ sel/ml; sedangkan kelompok kontrol negatif (K) tidak diinfeksi. Gejala klinis yang timbul diamati pada hari ke-3, 5 dan 7 pasca infeksi (PI). Pada hari ke 7 PI seluruh ikan baik ikan kelompok infeksi dan kontrol negatif dibunuh, kemudian dilakukan nekropsi dan diamati semua perubahan patologi anatomi (makroskopis) yang terjadi. Organ target (insang, ginjal, hati, limpa, isi perut) diambil secara asepis dengan ketebalan 0.5 cm guna proses lebih lanjut untuk pengujian PCR dan histopatologis. Untuk pengujian histopatologis semua jaringan dari organ target difiksi dalam larutan 10% Neutral Buffer Formalin (NBF).

Teknik Histopatologi

Teknik Immunohistokimia (IHK)

Preparasi slide sebelum digunakan untuk IHK mulai dari deparafinisasi hingga redheidrasi dilakukan sesuai cara Humason (1967). Jaringan organ target dari sediaan histologi direaksikan dengan antibodi primer terhadap *E. tarda* yang berasal dari AbCam Cat ab 54204 selama 30 – 60 menit. Reaksi positif berwata coklat divisualisasikan dengan sistem komplek IHK yang berasal dari Zymed Invitrogen Cat 95-9643. Semua prosedur IHK yang dilakukan sesuai dengan petunjuk dari Kit yang digunakan (Zymed Invitrogen). Sediaan jaringan kemudian diwarnai dengan Hematoxilin sebagai counter stain. Setelah melalui proses dehidrasi dan penjemuran sediaan siap untuk diamati dengan menggunakan mikroskop.

Hasil Dan Pembahasan

Pemeriksaan Awal Isolat

Pada pemeriksaan awal, isolat bakteri *E. tarda* (biotype 2) yang didapat dari BBKI Soekarno – Hatta dikultur kembali pada media tumbuh *Trptic*

Hasil sequencing gen 16S rRNA bakteri *E. tarda* keruudan dibandingkan dengan seben yang sama dari bakteri *E. tarda* yang tersimpan di genbank, dan berdasarkan sequen gen 16S rRNA menunjukkan bahwa isolate *E. tarda* yang didapat dari BKKI Soekarno - Hatta memiliki tingkat kesamaan sequen 99-100% dengan strain *E. tarda* yang tersimpan di genbank (Tabel 1). Dari hasil penelusuran dalam pohon filogenetik juga diketahui bahwa kekerabatan dari *E. tarda* yang digunakan dalam uji coba ini sangat dekat dengan *Edwardsiella* sp. dan strain *E. tarda* yang sudah ada di dunia. Hal ini menunjukkan bahwa bakteri yang digunakan dalam penelitian ini adalah benar *E. tarda*, baik dari segi fenotif maupun molekurnya. Menurut Madigan & Martindo (2006) dengan tingkat kesamaan (similititas) sequen gen 16S rRNA lebih dari 97% sudah dapat diterima sebagai satu spesies.

Tabel 1. Homologi sequen gen 16S RNA bakteri *E.tarda* dalam ujicoba ini dengan sequen bakteri sejenis yang tersimpan di genbank

<table>
<thead>
<tr>
<th>No.</th>
<th>Sampel</th>
<th>Max Ident</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E. tarda 16S ribosomal RNA gene</td>
<td>99%</td>
</tr>
<tr>
<td>2</td>
<td>E. tarda strain TXI 16S ribosomal RNA gene</td>
<td>99%</td>
</tr>
<tr>
<td>3</td>
<td>E. tarda strain SMW7 16S ribosomal RNA gene</td>
<td>99%</td>
</tr>
<tr>
<td>4</td>
<td>E. tarda strain QL-S 16S ribosomal RNA gene</td>
<td>99%</td>
</tr>
<tr>
<td>5</td>
<td>E. tarda strain HC010907-1 16S ribosomal RNA gene</td>
<td>99%</td>
</tr>
<tr>
<td>6</td>
<td>E. tarda CW-7 16S ribosomal RNA gene</td>
<td>99%</td>
</tr>
<tr>
<td>7</td>
<td>E. tarda isolate LH031120-1 16S ribosomal RNA gene</td>
<td>100%</td>
</tr>
<tr>
<td>8</td>
<td>E. tarda gene for 16S rRNA strain: E381</td>
<td>99%</td>
</tr>
<tr>
<td>9</td>
<td>E. tarda gene for 16S rRNA strain: NE8003</td>
<td>99%</td>
</tr>
<tr>
<td>10</td>
<td>E. tarda gene for 16S rRNA strain: NB8031</td>
<td>99%</td>
</tr>
<tr>
<td>11</td>
<td>E. tarda 16S ribosomal RNA gene</td>
<td>99%</td>
</tr>
<tr>
<td>12</td>
<td>E. tarda strain LT-6 16S ribosomal RNA gene</td>
<td>99%</td>
</tr>
<tr>
<td>13</td>
<td>E. tarda strain LH-202 16S ribosomal RNA gene</td>
<td>99%</td>
</tr>
<tr>
<td>14</td>
<td>E. tarda strain WY-28 16S ribosomal RNA gene</td>
<td>99%</td>
</tr>
<tr>
<td>15</td>
<td>E. tarda strain WY37 16S ribosomal RNA gene</td>
<td>99%</td>
</tr>
</tbody>
</table>

Gejala Klinis Gambaran Patologi Anatomi pada Ikan Percobaan

Gejala klinis baru mulai muncul pada hari ke-5 pasca infeksi hingga akhir pengamatan (hari ke-7) dengan d-tandai timbulnya luka-luka (ulcer) dari "muscula" sampai "peduncle", pendarahan pada sirip anus, perut membesar, sirip geripis, ulcer yang terjadi menimbbulkan bau (Gambar 1). Gejala klinis tampak semakin parah dengan bertambahnya waktu. Hasil ini sesuai dengan yang lakukan oleh Ismail et al. (2005) pada *Oreocromis niloticus* yang diinfeksi oleh *E. tarda*, yang melaporkan bahwa gejala klinis mulai muncul setelah hari ke-7. Lesi patologi anatomi yang terjadi tampak bahwa organ interna (hati ginjal dan limpa) bengkak dan pucat (Tabel 2) dan lesi patologis yang terjadi tampak semakin hebat dengan bertambahnya waktu.

Tabel 2. Gejala klinis dan Lesio Patologi Anatomi (PA)

<table>
<thead>
<tr>
<th>Hari ke-</th>
<th>Gejala klinis & Lesio PA organ tubuh bagian luar</th>
<th>Lesio PA organ tubuh bagian dalam</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Respon mulai melemah, hemoragi pada sirip anus</td>
<td>Tidak ada lesio pada organ interna</td>
</tr>
<tr>
<td>5</td>
<td>Respon lemah, bengkak, terdapat ulcer diatas linea lateralis, hemoragi pada sirip perut, sirip anal, dan sirip ekor</td>
<td>Organ interna bengkak dan pucat</td>
</tr>
<tr>
<td>7</td>
<td>Respon lemah, bengkak, terdapat ulcer yang lebar pada caudal peduncle, hemoragi pada sirip anus</td>
<td>Organ interna bengkak dan pucat</td>
</tr>
</tbody>
</table>

Gambar 1. Gambaran klinis dan patologis ikan yang terinfeksi E. tarda. 3 hari pasca infeksi menunjukkan perdarahan pada pangkal sirip anus (panah) (A); pasca infeksi hari ke-5 menunjukkan adanya ulcer dibagian linea lateralis, perdarahan pada pangkal sirip anus, sirip perut dan sirip ekor (panah) (B); pasca infeksi hari ke-7 menunjukkan adanya ulcer yang lebar pada caudal peduncle dan perdarahan pada sirip anus (C); lesi patologis anatomi organ dalam membengkak dan warna agak pucat (D).

Gambaran Histopatologi dan Imunohistokimia

Pengamatan histopatologi dengan menggunakan pewarnaan H&E menunjukkan bahwa perubahan patologis akibat infeksi E. tarda pada jaringan otot tampak adanya area nekrotik disertai dengan infiltrasi sel-sel radang yang hebat, demikian pula pada organ internal seperti hati, ginjal dan otot sudah mulai muncul pada hari ke-3 (Tabel 3). Hal ini ditunjukkan dengan munculnya nekrosis pada hati, nekrosis sel epitel tubulus dan melanomakrofag pada ginjal. Pada hari ke-5 dan ke-7 kerusakan jaringan hati ditandai dengan area nekrosis serta

Tabel 3. Lesio Histopatologi dan Hasil Imunohistokimia Pada Organ Internal.

<table>
<thead>
<tr>
<th>Hari ke-</th>
<th>Organ target</th>
<th>Lesio Histopatologi</th>
<th>Reaksi Imunohistokimia</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Ginjal</td>
<td>Nekrosis sel epitel dan melanomakrofag.</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Hati</td>
<td>Nekrosis dan melanomakrofag.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Otot</td>
<td>Peradangan dan nekrosis</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ginjal</td>
<td>Nekrosis sel epitel, melanomakrofag dan eosinofilik</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Hati</td>
<td>Nekrosis, degenerasi hidrofik dan melanomakrofag pada pankreas.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Otot</td>
<td>Nekrosis dan infiltrasi limfosit</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Ginjal</td>
<td>Nekrosis sel epitel, melanomakrofag dan eosinofilik.</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Hati</td>
<td>Nekrosis dan melanomakrofag.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Otot</td>
<td>Nekrosis dan infiltrasi limfosit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limpa</td>
<td>Hemorage dan melanomakrofag</td>
<td></td>
</tr>
</tbody>
</table>

Gambaran hasil analisis imunohistokimia tampak bahwa reaksi positif dengan ditandai adanya warna coklat pada jaringan sedian histopatologis otot dan organ internal lainnya. Reaksi yang intens terdeteksi hampir pada semua jaringan ikan yang terinfeksi mulai pada pasca infeksi hari ke-3 hingga hari ke-7 (Gambar 3). Gambaran ini menunjukkan bahwa terjadi reaksi spesifik antara antibodi yang digunakan dengan antigen *E. tarda* yang berada di dalam jaringan. Hasil pengamatan imunohistokimia kami sejalan dengan hasil studi yang dilakukan oleh Pirat et al. (2007) pada ikan Tilapia dengan menggunakan metode IHK untuk mendeteksi adanya *E. tarda*.
Gambar 3. Reaksi positif imunohistokimia (IHK) pada jaringan otot pasca infeksi hari ke-7, tampak reaksi berwarna coklat (panah) (A); antigen E. tarda terdeteksi di dalam sel hati pasca infeksi hari ke-5 (panah) (B); reaksi positif dalam jaringan ginjal pasca infeksi hari ke-3 (C); (Bar 40 μm).

Berdasarkan hasil keseluruhan data yang diperoleh maka dapat ditarik kesimpulan bahwa E. tarda dapat dideteksi menggunakan metode histopatologi terutama imunohistokimia yang dapat digunakan sebagai metode standar dalam menentukan diagnosis penyakit edwardsiellosis pada ikan akibat infeksi bakteri Edwardsiella tarda.

Daftar Pustaka

