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Abstract² Given edge weighted graph G (all weights are non-

negative), The Degree Constrained Minimum Spanning Tree 

Problem is concerned with finding the minimum weight 

spanning tree T satisfying specified degree restrictions on the 

vertices. This problem arises naturally in communication 

networks where the degree of a vertex represents the number of 

line interfaces available at a terminal (center). The 

applications of the Degree Constrained Minimum Spanning 

Tree problems that may arise in real-life include: the design of 

telecommunication, transportation, and energy networks. It is 

also used as a subproblem in the design of networks for 

computer communication, transportation, sewage and 

plumbing. Since, apart from some trivial cases, the problem is 

computationally difficult (NP-complete), a number of 

heuristics have been proposed. In this paper we will discuss the 

modification of CW1 Algorithm that already proposed by 

Wamiliana and Caccetta (2003). The results on540 random 

table problems will be discussed. 
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I. INTRODUCTION 

Typically, the DCMST can be applied in cases where n 

vertices (or terminals/servers/road intersections) need to 

be connected with a minimum length of an underlying 

transportation mode (wires, pipes, canals or roads). 

However, the handling capacity of each of the vertices 

imposes a restriction on the number of edges (or 

wires/roads) that can be connected to a vertex. The 

DCMST may be used in the design of the road system, 

which has to serve a collection of suburbs/towns, and has 

the additional restriction that no more than certain number 

of roads (example: four roads) are allowed to meet at an 

intersection. A degree constraint in a communication 

network also limits the liability in the case of vertex 

failure. In computer networks, the degree restrictions can 

be used to cater for the number of line interfaces available 

at a server/terminal [19]. 

 

Garey and Johnson [7] showed that, apart from some 

trivial cases, the DCMST problem is computationally 

difficult (NP-complete) by reducing it to an equivalent 

symmetric Traveling Salesman Problem (TSP).  Notice 

that if the degree bound bi = 2, �i�V, the problem reduces 

to a TSP. Thus, it is unlikely a polynomial bounded 

algorithm exists for solving general DCMST problems. 

 

In this paper we will discuss the comparative modification 

of CW1 algorithm that already proposed by Wamiliana 

and Caccetta [18] to solve the DCMST problem. This 

paper is organized as follows: Section 2 briefly reviews 

some of the solution methods available in the literature; 

Section 3 discusses about modification we made from 

CW1 algorithm, Section 4 shows the implementation and 

in Section 5 derives the conclusion. 

 

II. METHODS AVAILABLE IN LITERATURE 

The DCMST problem has been considered by a number of 

authors and both heuristic and exact methods have been 

proposed. We give a brief account of some of this work 

below. 

)RU� KHXULVWLFV�� PDQ\� YDULDWLRQV� RI� WKH� 3ULP¶V� DQG�

.UXVNDO¶V� DOJRULWKPV� KDYH� EHHQ� GHYHORSHG�� IRU� H[DPSOH��

by Narula and Ho [12]. A Genetic Algorithm was 

proposed by Zhou and Gen [20]. They use the Prufer [13] 

number to uniquely code the spanning tree. In the method 

they adopt uniform crossover and perturbation mutation 

operators as the genetic operators, and tested the 

algorithm on problems with up to 50 vertices. 
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Simulated Annealing was proposed by Krishnamoorthy et 

al. [11]. Further, they also proposed a hybrid method 

called Problem Space Search, which is a blend between 

the Genetic Algorithm approach and a simple constructive 

search method. The algorithms were implemented and 

tested on problems with 30, 50, 70 and 100 vertices. 

 

Boldon et al. [1] and Deo and Kumar [6] proposed an 

Iterative Refinement Method. In this method, the 

construction starts with finding a MST and then the edges 

incident to a degree violated vertex are penalized, except 

the smallest one. With the new weighted edges, the 

process of calculating a MST is repeated, and it continues 

until a spanning tree without degree violation is found. 

This method was implemented using parallel computing 

on a computer with 8192 processors. This can be done 

because the nature of the algorithm/method, where every 

vertex can be assigned a processor and the computational 

process of penalizing edges is independent (non 

sequential). Problems with up to 5934 vertices were 

solved. 

 

Caccetta and Wamiliana [3] and Wamiliana [17], 

proposed Modified Penalty Methods (MP1 and MP2) as 

variants of Iterative Refinement methods. Implemented on 

some benchmark problems, the methods perform better 

than Simulated Annealing method. 

 

Wamiliana and Caccetta [18], [19] proposed Tabu Search 

method for solving the DCMST problem. They solved up 

to 2160 problems with n ranging from 10 to 500. The 

methods are quite competitive. 

 

Exact methods include branching algorithms and the 

Lagrangean relaxation procedure. The branch and bound 

method for solving the DCMST problem has been 

investigated by Narula and Ho [12],Savelsbergh and 

Volgenant [15], and Volgenant [16]. 

 

Narula and Ho [12] used a branching procedure which is 

an adaptation of the method due to Held and Karp [9, 10] 

for the traveling salesman problem. They solved 

Euclidean and random table problems with up to 100 

vertices.  

 

Savelsbergh and Volgenant [15] used 2 heuristics (AH 

and CH) in a branch and bound method. The heuristic AH 

(Analysis Heuristic) is based on the edge exchange 

analysis, and the CH heuristic is a generalization of the 

one used by Volgenant and Jonker[15] for the traveling 

salesman problem. The CH heuristic is related to a 

heuristic developed by Christofides [5]. Both heuristics 

are used once in each subset of the branch and bound tree. 

This branch and bound method was implemented and 

tested on Euclidean and random table problems with up to 

70 vertices. 

 

The application of the Lagrangean Relaxation method has 

been investigated by Gavish[8] and Volgenant[16].Gavish 

[8] solved Euclidean problems with up to 200 vertices. 

Volgenant [16] in addition to using Lagrangean relaxation 

also used the ascent procedure to define the value of the 

multiplier. He solved Euclidean and random table 

problems with up to 150 vertices.  

Caccetta and Hill [2] proposed a method based on Branch 

and Cut method. The relaxed LP subproblems are solved 

using the CPLEX package. The violating constraints of 

type (3) and the connectivity constraints are found by two 

search procedures, one a local search and the other a 

global search. They used depth-first search strategy in the 

branching and the best bound found so far is updated 

using the standard sensitivity analysis procedure. They 

tested their algorithms to 3150 random table problem with 

n ranging from 100 to 800.  

 

2.The modified CW1 algorithm. 

As in Wamiliana and Caccetta [18], the CW1 algorithm 

starts by first finding the MST. This gives us a lower 

bound (LB) whilst The Modified Kruskal algorithm gives 

the initial feasible solution, which is Degree Constrained 

Spanning Tree (DCST), and also acts as an upper bound 

(UB). CW1 starts from the upper bound, which is feasible 

and work towards optimality. The moves are the set of 

edges that are incident with the leaves (vertices of degree 

1) in the G\T. Tabu tenure is set to be 0.1 n, where n is the 

number of vertices in the graph.  The maximum number 

of iterations is 0.2n. The stopping criteria are the 

tolerance and maximum number of iterations, where 

tolerance = 1 % of gap (gap = UB ± LB). Note UB is 

revised as better feasible solutions are obtained. 

The aspiration condition is applied if a degree violation is 

detected. All possible edge exchanges among the edges of 

T incident to the violated vertex i and the edges of G not 

in T involving the neighbors of i, are examined. If the 

VHDUFKLQJ� GRHVQ¶W� \LHOG� D� EHWWHU� VROXWLRQ�� WKHQ�ZH� UHFRUG�

the current best solution, put the currently used moves into 

tabu status and restarted again.  

 

Modified CW1 algorithm (MCW1) in general uses the 

same terminology as the basic algorithm CW1.  In this 

algorithm all steps in CW1 are adapted with some slight 

modifications, where the two initial basics feasible 

solutions are generated using Modified Prim and Modified 

Kruskal. The initial basic feasible solution that has the 

best quality solution will be chosen first as the upper 

bound. Then, after a certain number of iterations, if the 

search could not gain a solution within the tolerance 

specification, we restart the process and use the other 

feasible solution generated. The best solution is recorded.  

 

 

In addition to changing the way of finding the initial basic 

feasible solutions, MCW1 modifies CW1 by introducing 

comparative routine as follow:   
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begin 

Put the recently used edges in the set Tabu move. 

Check the Tabu tenure.  

if 

              The requirement satisfies, remove first two 

elements 

fromTabumove 

else 

continue. 

if 

The TobjdTcontrolobj,  

setT as Tcontrol and Tobj as Tcontrolobj.  

Put the recently used edges in Tabu tenure.  

Goto the  main algorithm 

else 

Put recent used edges in Tabu tenure 

continue. 

if 

The number of iteration is t number for restart with  

other solution, 

               Keep the current solution , print thesolution,  

Set Tcontrol= T(DIV) ,  Tcontrolobj =T(Div)obj.  

Increase the iteration number by 1  

Go to the  main algorithm 

else continue. 

Select the next move. 

If  

            The move is empty, remove i from vertex 

list,   

           Check the vertex list.  

 ,I�YHUWH[�OLVW�LV�HPSW\��JLYH�PHVVDJH��³� 

QRWKLQJ�FDQ�EH�LPSURYHG´��� 

end 

else (vertex list z� ),  

                           Increase the iteration number by 1  

                Do the  Moves Selection Strategy Routine in  

                           CW1 main algorithm  

end 

end 

III. COMPUTATIONAL RESULTS. 

 

We implemented our heuristic using the C 

programming language on a Silicon Graphic Indy 

machine, running in 150MHz. In the implementation 

we do make the assumption that the degree restriction 

for every vertex is the same.  

 

For all vertex orders we run the program using the gap 

value of 1 % and maximum iteration number as min 

{0.20n, 50}. For the degree condition, we restrict our 

implementation only for degree bound 3. We choose 

this bound, since our early computational work 

revealed that for degree bound greater than 3 the MST 

is usually feasible and hence optimal. We provide 

results on 2160 random problems generated as follows: 

 

 x Number of vertices range from 10 to  

500 with an increment of 10 for  up to  

100vertices and an increment of 50 for 

larger graphs. 

 

xThe edge weights are generated 

Randomlyfrom uniform distribution 

from 1 to 1000.   

 

x For a given n, graphs are generated  

withdensity p = 1 which mean that we    

use   complete  graph of order n. 

 

x For a given n, 30 random problems are  

generated.  

 

 

Test Data  

For all simulation problems, first we generate 30 problems 

for every vertex order.  We use time as the seed when 

generating a problem (data) and assign that data a name so 

that next time when we will retest, we use the same data. 

This is very important step because otherwise we will lose 

the same data since our seed is time, which will never be 

the same. 

 

The following tables detail the computational results for 

MCW1 algorithms. The average performance of MCW1 

improves the results of CW1, in terms of the statistic

LB

LBH �
 by approximately 0.3 %. The following tables 

and figures detail the results. 

 

 

TABLE 1. 

THE PERFORMANCE OF CW1 FOR THE GRAPHS WITH 10 TO 

100 VERTICES WITH INCREMENTS IN 10, P = 1,TOLERANCE 1%, 

BI = 3  �I 

 

 

Number of 

vertices 

Average 

(MK-LB)/LB  (CW1-LB)/LB 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0.131578 

0.066052 

0.076046 

0.070054 

0.073348 

0.075702 

0.087226 

0.075585 

0.085593 

0.074109 

0.066067 

0.057933 

0.067111 

0.063430 

0.061223 

0.067070 

0.074880 

0.070758 

0.077978 

0.065123 
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TABLE 2. 

THE PERFORMANCE OF CW1 FOR THE GRAPHS WITH 50 TO 

500 VERTICES WITH INCREMENTS IN 50, P = 1, TOLERANCE 

1%, BI = 3  �I 

 

Number of 

vertices 

Average 

(MK-LB)/LB  (CW1-LB)/LB 

50 

100 

150 

200 

250 

300 

350 

400 

450 

500 

0.073348 

0.074109 

0.080862 

0.077879 

0.091188 

0.085995 

0.085866 

0.088672 

0.090023 

0.087555 

0.061223 

0.065123 

0.065292 

0.066724 

0.074507 

0.074507 

0.074589 

0.074669 

0.083421 

0.081576 
 

TABLE 3. 

THE PERFORMANCE OF MCW1 FOR THE GRAPHS WITH 10 TO 

100 VERTICES WITH INCREMENTS IN 10,P = 1, TOLERANCE 1%, 

BI =�I 

Number of 

vertices 

Average 

(MK-LB)/LB  (CW1-LB)/LB 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0.098559 

0.066052 

0.076046 

0.071673 

0.073348 

0.075702 

0.087226 

0.075585 

0.085593 

0.074109 

0.0657 

0.0538 

0.0651 

0.0616 

0.0568 

0.0657 

0.0732 

0.0693 

0.0753 

0.0622 

 

 
TABLE 4. 

THE PERFORMANCE OF MCW1 FOR THE GRAPHS WITH 50 TO 

500 VERTICES WITH INCREMENTS IN 50, P = 1, TOLERANCE 

1%, BI = 3  �I 

Number of 

vertices 

Average 

(MK-LB)/LB  (CW1-LB)/LB 

50 

100 

150 

200 

250 

300 

350 

400 

450 

500 

0.073348 

0.074109 

0.080862 

0.077879 

0.091188 

0.085995 

0.085866 

0.088672 

0.090023 

0.087555 

0.0568 

0.0622 

0.063076 

0.063765 

0.073438 

0.072527 

0.073528 

0.072438 

0.07991 

0.07953 
 

 

IV. CONCLUSION 

In terms of effectiveness of the Tabu Search aspects of the 

algorithm we note that on average CW1 improves the 

initial upper bound in terms of the statistic 
LB

LBH �  by 

approximately 1.5%. However, the computational results 

show that employing a different initial feasible solution 

improves the quality of the solution. The MCW1 

algorithm improves the CW1 results, in terms of the 

statistic
LB

LBH �  by an average of approximately 0.3% 

with the highest improvement of 0.5% occurring at n=50. 
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