KAJIAN BILANGAN CLIQUE GRAF GEAR G_n dan GRAF BARBEL B_n

Muhlishon Darul Ihwan¹, Ana Rahmawati², Sumargono³

Universitas Pesantren Tinggi Darul 'Ulum (Unipdu) Jombang Kompleks Ponpes Darul 'Ulum Rejoso Peterongan – Jombang Jatim 61481 <u>Ihwanyonghwa1@gmail.com</u>

Abstrak

Teori Graf merupakan salah satu cabang ilmu matematika. Graf itu sendiri adalah himpunan berhingga yang tak kosong dari objek-objek yang disebut titik, dengan himpunan (mungkin kosong) pasangan yang tak berurutan dari titik yang berbeda (u dan v) dari G yang disebut sisi. Himpunan titik dinotasikan dengan V(G), sedangkan himpunan sisi dinotasikan dengan E(G). Salah satu kajian dari Graf adalah Clique dan Bilangan Clique. Clique dari Graf Gadalah sebuah subgraf komplit di graf G. Bilangan Clique dari Graf G adalah order dari subgraf komplit maksimum yang dapat dibentuk dari suatu graf G dan dinotasikan dengan $\omega(G) = n$, n bilangan asli, sedangkan graf komplit adalah graf sederhana dimana setiap 2 titik yang berbeda terhubung langsung. Sebuah graf komplit dinotasikan dengan K_n , $n \ge 1$ dan n bilangan asli. Pada penelitian ini akan dikaji bilangan clique dari 2 jenis graf yaitu Graf Gear G_n dan Graf Barbel B_n . Graf Gear G_n adalah graf roda dengan tambahan satu titik diantara tiap-tiap pasangan titik pada sikel luar. Graf barbel B_n adalah graf sederhana yang dibentuk dengan menghubungkan 2 tiruan/jiplakan graf komplit K_n dan dihubungkan oleh sebuah jembatan/sisi dengan $n \geq 3$ dan n adalah bilangan asli. Pada penelitian ini akan dicari bilangan clique pada graf gear G_n dan pada graf barbel B_n yang menghasilkan kesimpulan bahwa bilangan clique pada graf gear G_n atau dinotasikan $\omega(G_n)$ adalah 2, sedangkan untuk bilangan clique pada graf barbel B_n atau dinotasikan $\omega(B_n)$ adalah K_n .

Kata Kunci: Graf, Clique, Bilangan Clique, Graf Gear, Graf Barbel

Abstarct

Theory Graph represent one of the mathematics science branch. Itself graph is gathering till which do not is empty the than objects of is so-called dot, with gathering (empty possible) couple which do not is successive the than different dot (u and v) from G of is so-called side. Dot notation gathering with V(G), while notation side gathering with E(G). One of the study of Graph is Clique and Number of Clique. Clique of Graph of G is a komplit subgraf in graph G. Number of Clique of Graph of G is order of maximum komplit subgraf able to be formed of by a n graph of G and notation with $\omega(G) = n$, original number n, while graph of komplit is simple graph where each; every 2 direct different dot incircuit. A graph of komplit notation with K_n , and $n \ge 1$ of n original number. At this research will study by number of clique from 2 graph type

that is Graph of Gear G_n and Graph of Barbel B_n . Graph of Gear G_n is wheel graph with addition one dot among every dot couple at external sikel. graph of Barbel B_n is simple graph which formed by connecting 2 imitating / graph rubbing of komplit K_n and connected by a bridge / side with and $n \ge 3$ of n is original number. At this research will look for by number of clique at graph of gear G_n and at graph of barbel B_n yielding conclusion that number of clique at graph of gear G_n or notation $\omega(G_n)$ is 2, while for the number of clique at graph of barbel B_n or notation $\omega(B_n)$ is K_n .

Keyword: Graph, Clique, Clique Number, Gear Graph, Barbell Graph

1. Pendahuluan

Matematika merupakan salah satu cabang ilmu dunia dari sekian banyak ilmu yang di dalamnya mempelajari ilmu perhitungan, pengukuran,analisis dan lain lain. Teori graf sebagai salah satu cabang matematika sebenarnya sudah ada sejak 200 tahun silam. Jurnal pertama tentang teori graf muncul pada tahun 1736, oleh matematikawan terkenal dari swiss bernama Euler. Pada awalnya teori graf kurang signifikan, karena kebanyakan dipakai untuk memecahkan teka teki (puzzle), namun akhirnya mengalami perkembangan pesat yaitu terjadi pada beberapa puluh tahun terakhir karena aplikasinya luas diberbagai bidang ilmu seperti ilmu komputer, teknik, sains, bahkan bisnis dan ilmu sosial (Budayasa, 2007:1).

Clique adalah salah satu bagian dari graf, lebih tepatnya adalah Subgraf. Graf H dikatakan subgraf dari graf G jika setiap titik di graf H adalah titik di Graf G dan setiap sisi di Graf H adalah sisi di Graf G, sedangkan Clique dari Graf Gadalah sebuah subgraf komplit di graf G. Bilangan Clique dari graf G adalah order dari subgraf komplit maksimum yang dapat dibentuk dari suatu graf G dan dinotasikan dengan $\omega(G) = n$, n bilangan asli. Untuk penerapan Clique ini sendiri akan diambil 2 macam graf yang diambil dari jenis-jenis graf yang ada dalam materi teori graf yaitu Graf Gear dan Graf Barbel. Graf Gear (G_n) adalah graf roda dengan tambahan satu titik diantara tiap-tiap pasangan titik pada sikel luar. Sedangkan $Graf Barbel (B_n)$ adalah graf sederhana yang dibentuk dengan menghubungkan 2 tiruan/jiplakan graf komplit K_n dan dihubungkan oleh sebuah jembatan/sisi dengan $n \ge 3$ dan n adalah bilangan asli. Pemilihan *clique*, graf gear, dan graf barbel dikarenakan materi materi tersebut tidak begitu banyak dibahas di berbagai buku maupun jurnal-jurnal ilmiah dan berdasarkan uraian di atas penulis tertarik untuk mengkaji materi tersebut melalui penelitian yang berjudul "Kajian Bilangan Clique Graf Gear (G_n) Dan Graf Barbel (B_n) ".

2. Kajian Teori

Definisi 2.1:

Graf Gadalah pasangan terurut dari dua himpunan(V(G), E(G)), dimana sedangkan V(G) adalah himpunan berhingga tak kosong dari obyek-obyek yang disebut titik (vertex) dan E(G) himpunan berhingga (boleh kosong) sedemikian hingga setiap elemen E(G) yang disebut sisi (edge) merupakan pasangan titik-titik yang ada di V(G).

Definisi 2.2:

Misal G Graf. Order dari Graf G adalah banyaknya elemen di V(G)

Definisi 2.3:

Misal G Graf. Jika G tidak memiliki sisi, maka graf G disebut Graf Kosong.

Definisi 2.4:

Sebuah sisi graf G yang menghubungkan sebuah titik dengan titik itu sendiri disebut Loop.

Definisi 2.5:

Sebuah Graf G yang menpunyai lebih dari satu sisi yang menghubungkan 2 titik yang sama di G, maka sisi tersebut disebut $Sisi\ Rangkap$.

Definisi 2.6:

Graf Sederhana adalah graf yang tidak mempunyai sisi rangkap dan tidak memiliki gelung (Loop).

Definisi 2.7:

Misalkan u dan v adalah dua titik di G dan $e = \{u, v\}$ (sering ditulis e = uv) adalah sebuah sisi di G. Kita katakan : titik u dan titik v berhubungan langsung(adjacent) di G; sisi e menghubungkan (joining) titik u dan titik v di G; u dan v titik e titik akhir sisi e; sisi e terkait (incident) dengan titik v dan juga dengan titik v.

Definisi 2.8:

Misal G graf dan $v \in V(G)$. **Derajat dari titik**v di graf G, dinotasikan dengan $deg_G(v)$ atau d(v), adalah banyaknya sisi di G yang terkait langsung dengan v, dengan catatan setiap loop dihitung dua kali.

Teorema Jabat Tangan:

Jika G sebuah graf, maka $\sum_{v \in V(G)} d(v) = 2 |E(G)|$

Akibat teorema jabat tangan:

Jika G sebuah graf, maka banyaknya titik G berderajat ganjil adalah genap.

Definisi 2.9:

Misal G adalah sebuah graf. **Jalan** adalah sebuah barisan berhingga (tak Kosong) $W = (v_0, e_1, v_1, e_2, v_2, ..., e_k, v_k)$ yang suku-sukunya bergantian titik dan sisi,

sedemikian hingga v_{i-1} dan v_i adalah titik-titik akhir sisi e_i , untuk $1 \le i \le k$. Kita katakan W adalah sebuah jalan dari titik v_0 ke titik v_k , atau jalan- $(v_0 - v_k)$. Titik v_0 dan v_k berturut-turut disebut titik awal dan titik akhir W. Sedangkan untuk titik $v_1, v_2, ..., v_{k-1}$ disebut titik-titik internal W, dan perlu diperhatikan juga, sebuah titik dan sisi di G mungkin saja muncul lebih dari satu kali (pengulangan).

Definisi 2.10:

Jejak adalah sebuah jalan yang semua sisinya berbeda (tidak berulang).

Definisi 2.11:

Lintasan adalah sebuah jalan yang semua titiknya berbeda (tidak ada pengulangan).

Definisi 2.12:

Sirkit adalah sebuah jejak tutup (*close trail*).

Definisi 2.13:

Sebuah *Sikel (cycle)* adalah sebuah jejak tertutup (close trail) yang titik awal dan semua titik internalnya berbeda.

Definisi 2.14:

Sebuah Graf G dikatakan Terhubung (connected) jika untuk setiap dua titik G yang berbeda terdapat sebuah lintasan yang menghubungkan kedua titik tersebut. Sebaliknya, jika hal tersebut tidak dipenuhi maka graf G disebut tak terhubung. Sebuah komponen graf G adalah sebuah graf bagian terhubung maksimal (titik dan sisi) dari G. Graf G dikatakan graf bagian terhubung maksimal dari graf G, jika tidak ada graf bagian lain dari graf G yang terhubung dan memuat G.

Definisi 2.15:

Graf Komplit adalah graf sederhana dimana setiap 2 titik yang berbeda terhubung langsung. Sebuah graf komplit dinotasikan dengan K_n , $n \ge 1$ dan n bilangan asli.

Definisi 2.16:

Graf sikel (C_n) adalah graf terhubung yang mempunyai n titik yang setiap titiknya berderajat 2. Dengan $n \geq 3$.

Definisi 2.17:

 $Graf Roda (W_n)$ adalah Graf yang disusun dari penjumlahan sebuah graf sikel dan graf komplit K_1 dimana setiap titik pada sikel tersebut terhubung langsung pada titik pusat (graf komplit (K_1)). Jadi

$$W_n = C_n + K_1$$

Teorema 2.18

 $Graf rodaW_n mempunyain + 1 titik dan 2 nsisi.$

Bukti: Karena graf roda W_n mempunyai n titik pada sikel luar dan 1 titik pada titik pusat, maka |v| = n + 1. Karena graf roda W_n mempunyai n titik pada sikel luar maka banyaknya sisi pada sikel luar adalah n dan karena semua titik pada sikel luar terhubung langsung pada titik pusat sehingga mengakibatkan adanya tambahan n sisi lagi, jadi |E| = n + n = 2n.

Definisi 2.19:

Graf H dikatakan *Subgraf* dari graf *G* jika setiap titik di *H* adalah titik di *G* dan setiap sisi di H adalah sisi di G. Dengan kata lain, graf *H* adalah subgraf dari *G* jika $V(H) \subseteq V(G)$ dan $E(H) \subseteq E(G)$. Jika H adalah subgraf dari *G* maka dapat ditulis $H \subseteq G$.

Definisi 2.20:

Gabungan (*Union*) dari graf G_1 dan G_2 dinotasikan dengan $G = G_1 \cup G_2$ adalah graf yang mempunyai himpunan titik yaitu $V(G) = V(G_1) \cup V(G_2)$ dan himpunan sisi yaitu $E(G_1) \cup E(G_2)$. Jika Graf G merupakan gabungan dari sebanyak n graf H dibentuk dari $n \ge 2$, maka dinotasikan G = nH.

Definisi 2.21:

Penjumlahan (**Join**) **pada graf** G dinotasikan dengan $G = G_1 + G_2$ adalah graf yang mempunyai himpunan titik $V(G) = V(G_1) \cup V(G_2)$ dan himpunan sisi $E(G_1) \cup E(G_2) \cup \{uv | u \in V(G_1) \text{ dan } v \in V(G_2)\}.$

Definisi 2.22:

Clique dari Graf G adalah sebuah subgraf komplit di graf *G*.

Definisi 2.23:

Bilangan Clique dari graf G adalah order dari subgraf maksimum yang dapat dibentuk dari suatu graf G dan dinotasikan dengan $\omega(G) = n$, n bilangan asli.

Definisi 2.24:

Graf gear adalah graf roda dengan tambahan satu titik diantara tiap-tiap pasangan titik pada sikel luar.

Teorema 2.25:

Graf Gear G_n memiliki 2n + 1 titik dan 3n sisi.

Bukti: Karena graf gear G_n memiliki 2n titik pada sikel luar dan 1 titik pada titik pusat maka |V| = 2n + 1. Karena graf gear G_n memuat graf roda W_n yang mempunyai 2n sisi dan ada tambahan satu titik diantara tiap-tiap pasangan dari titik-titik graf yang terhubung langsung pada sikel luar maka akan ada n sisi lagi, jadi |E| = 2n + n = 3n.

Definisi 2.26:

Graf Barbel (B_n) adalah graf sederhana yang dibentuk dengan menghubungkan 2 tiruan/jiplakan graf komplit K_n dengan sebuah jembatan/sisi dengan $n \ge 3$ dan n adalah bilangan asli.

3. Metodologi Penelitian

Metode yang digunakan dalam penelitian ini adalah studi literatur yaitu penelitian yang dilakukan dengan mengambil data atau informasi dari berbagai buku literatur ataupun mengambil secara *online* dari internet. Terdapat 3 buku utama yang dijadikan acuan penulis yaitu Teori Graf(Abdussakir, 2009), Teori Graph Dan Aplikasinya (Budayasa, 2007), Graph And Digraph (Chartrand G Dan Lesniak L, 1996), dan beberapa buku pendukung lainnya serta beberapa referensi yang di ambil secara *online* dari internet.

4. Pembahasan

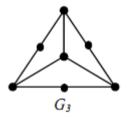
A. Bilangan *Clique* Pada Graf Gear G_n

Berikut akan dibahas mengenai bilangan *clique* pada graf gear G_n :

1. Graf Gear G_n dengan n = 3

Berdasarkan teorema 2.4, Graf gear G_3 adalah graf gear yang mempunyai7 titik dan 9 sisi.

Contoh:



Gambar 4.1 Graf Gear G_n dengan n = 3

Selanjutnya untuk menentukan bilangan *clique* pada graf gear G_3 , caranya adalah mencari order dari subgraf komplit maksimum dari graf gear G_3 . Subgraf komplit dari graf gear G_3 adalah:

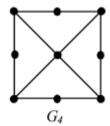
$$K_1$$
: • K_2 : • Gambar **4.2** Subgraf komplit Graf Gear G_3

Subgraf komplit maksimum dari graf gear G_3 adalah K_2 , karena subgraf komplit maksimum adalah K_2 , maka order dari K_2 adalah 2, sehingga $\omega(G_3) = 2$.

2. Graf Gear G_n dengan n = 4

Berdasarkan teorema 2.4, Graf Gear G_4 adalah graf gear yang memiliki 9 titik dan 12 sisi.

Contoh:



Gambar 4.3Graf Gear G_n dengan n = 4

Selanjutnya untuk menentukan bilangan *clique* pada graf gear G_4 , caranya adalah mencari order dari subgraf komplit maksimum dari graf gear G_4 . Subgraf komplit graf gear G_4 adalah:

 K_1 : • K_2 : •

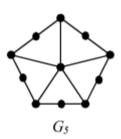
Gambar 4.4 subgraf komplit Graf gear G_4

Subgraf komplit maksimum dari graf gear G_4 adalah K_2 , karena subgraf komplit maksimum adalah K_2 , maka order dari K_2 adalah 2, sehingga $\omega(G_3) = 2$.

3. Graf Gear G_n dengan n = 5

Berdasarkan teorema 2.4 Graf gear G_5 adalah graf gear yang memiliki 11 titik dan 15 sisi.

Contoh:



Gambar 4.5 Graf Gear G_n dengan n = 5

Selanjutnya untuk menentukan bilangan *clique* pada graf gear G_5 , caranya adalah mencari order dari subgraf komplit maksimum dari graf gear G_5 . Subgraf komplit graf gear G_5 adalah:

 K_1 : • K_2 : •

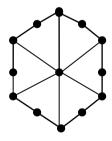
Gambar 4.6 Subgraf Komplit Graf Gear G₅

Subgraf komplit maksimum dari graf gear G_5 adalah K_2 , karena subgraf komplit maksimum adalah K_2 , maka order dari K_2 adalah 2, sehingga $\omega(G_3) = 2$.

4. Graf Gear (G_n) dengan n = 6

Berdasarkan teorema 2.4, Graf gear G_6 adalah graf gear yang mempunyai 13 titik dan 18 sisi.

Contoh:



Gambar 4.7 Graf Gear G_n dengan n = 6

Selanjutnya untuk menentukan bilangan *clique* graf gear G_6 , caranya adalah mencari order dari subgraf komplit maksimum dari graf gear G_6 . Subgraf komplit graf gear G_6 adalah:

 K_1 : • K_2 : •

Gambar 4.8 Subgraf Komplit Graf Gear G₆

Subgraf komplit maksimum dari graf gear G_6 adalah K_2 , karena subgraf komplit maksimum adalah K_2 , maka order dari K_2 adalah 2, sehingga $\omega(G_3) = 2$.

Berdasarkan beberapa penjelasan contoh diatas dapat dituliskan kembali sebagai berikut :

T-L-1 4 1	D:1	α_1 .	D - 1 -	C C	C	\sim
Tabel 4.1	Buangan	(11 <i>aue</i>	Paga	Cirat	Ctear	(T
I WOUL III	Dilaingan	Cuque	1 aaa	Orui	Ocui	$\sim n$

Graf Gear	Bilangan <i>Clique</i>			
G_3	$\omega(G) = 2$			
G_4	$\omega(G) = 2$			
G_5	$\omega(G) = 2$			
G_6	$\omega(G) = 2$			
•	•			
G_n	$\omega(G_n)=2$			

Dari beberapa contoh yang di kerjakan dan berdasarkan tabel 4.1 maka dapat diambil kesimpulan sementara bahwa graf gear G_n memiliki pola $\omega(G_n) = 2$. Dengan demikian dapat dibuat teorema sebagai berikut:

Teorema 4.1

Jika G sebuah graf gear (G_n) , maka bilangan clique pada graf gear $\omega(G_n)$ adalah 2

Bukti:

Diketahui G adalah graf gear (G_n) .

Andaikan $\omega(G_n) \neq 2$ artinya $\omega(G_n) < 2$ dan $\omega(G_n) > 2$

Kasus 1: $\omega(G_n) < 2$

Hal ini berarti $\omega(G_n) = 0$ atau $\omega(G_n) = 1$

Berdasarkan definisi 2.22 dan teorema 2.4, pada graf gear terdapat titik dan sebuah sisi. Berdasarkan definisi *clique*, maka pada graf gear terdapat subgraf komplit yaitu K_1 dan K_2 . Ditinjau dari definisi bilangan *clique* maka subgraf komplit maksimum dari graf gear tersebut adalah K_2 , dan penyataan tersebut kontradiksi dengan pengandaian $\omega(G_n) = 0$ atau $\omega(G_n) = 1$.

Kasus 2
$$\omega(G_n) > 2$$

Hal ini berarti
$$\omega(G_n) = 3, \forall \omega(G_n) = 4, \forall \omega(G_n) = 5, \dots, \forall \omega(G_n) = n$$

Sesuai definisi 2.22, graf gear adalah graf roda dengan penambahan satu titik diantara tiap-tiap pasangan titik pada sikel luar, ini berarti ada minimal 1 titik dimana titik itu tidak terhubung langsung dengan titik berbeda lainnya, hal tersebut kontradiksi dengan kenyataan graf komplit bahwa setiap 2 titik yang berbeda berhubungan langsung sehingga tidak terdapat subgraf komplit maksimum ≥ 3 . Jadi pengandaian salah.

Dari kasus 1 dan kasus 2 maka dapat disimpulkan bahwa bilangan *clique* pada graf gear $\omega(G_n) = 2.\blacksquare$

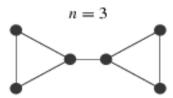
B. Bilangan Clique Pada Graf Barbel (B_n)

Berikut akan dibahas mengenai bilangan clique pada graf barbel (B_n) :

1. Graf Barbel (B_n) dengan n = 3

Berdasarkan definisi 2.23, Graf barbel (B_n) dengann=3 adalah graf barbel yang disusun dari 2 graf komplit K_3 dan kedua graf tersebut dihubungkan dengan sebuah jembatan (sisi).

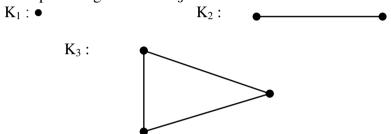
Contoh:



Gambar 4.9 Graf Barbel (B_n) Dengan n=3

Selanjutnya untuk menentukan bilangan *clique* dari graf barbel B_3 , caranya adalah mencari order dari subgraf komplit maksimum dari graf barbel B_3 .

Subgraf komplit dari graf barbel B_3 adalah :



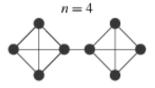
Gambar 4.10 Subgraf Komplit Graf Barbel Dengan n = 3

Subgraf komplit maksimum dari graf barbel B_3 adalah K_3 , karena subgraf komplit maksimum adalah K_3 , maka order dari K_3 adalah 3, sehingga $\omega(B_3) = 3$.

2. Graf Barbel (B_n) dengan n = 4

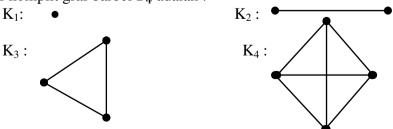
Berdasarkan definisi 2.23,Graf barbel (B_n) dengann=4 adalah graf barbel yang disusun dari 2 graf komplit K_4 dan kedua graf tersebut dihubungkan dengan sebuah jembatan (sisi).

Contoh:



Gambar 4.11 Graf barbel (B_n) Dengan n = 4

Selanjutnya untuk menentukan bilangan *clique* dari graf barbel B_4 , caranya adalah mencari order dari subgraf komplit maksimum dari graf barbel B_4 . Subgraf komplit graf barbel B_4 adalah :



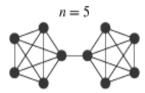
Gambar 4.12 Subgraf Komplit Graf Barbel Dengan n = 4

Subgraf komplit maksimum dari graf gear B_4 adalah K_4 , karena subgraf komplit maksimum adalah K_4 , maka order dari K_4 adalah 4, sehingga $\omega(B_4) = 4$.

3. Graf Barbel (B_n) dengan n = 5

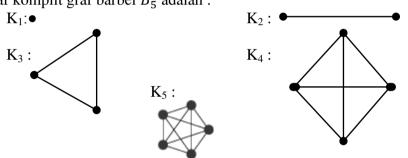
Berdasarkan definisi 2.23,Graf barbel (B_n) dengann = 5 adalah graf barbel yang disusun dari 2 graf komplit K_5 dan kedua graf tersebut dihubungkan dengan sebuah jembatan (sisi).

Contoh:



Gambar 4.13 Graf Barbel (B_n) Dengan n = 5

Selanjutnya untuk menentukan bilangan *clique* dari graf barbel B_5 , caranya adalah mencari order subgraf komplit maksimum dari graf barbel B_5 . Subgraf komplit graf barbel B_5 adalah :



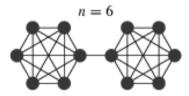
Gambar 4.14 Subgraf Komplit Graf Barbel Dengan n = 5

Subgraf komplit maksimum dari graf gear B_5 adalah K_5 , karena subgraf komplit maksimum adalah K_5 , maka order dari K_5 adalah 5, sehingga $\omega(B_5) = 5$.

4. Graf barbel (B_n) dengan n = 6

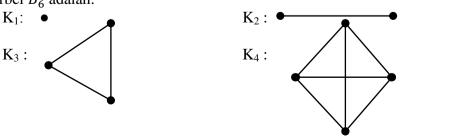
Berdasarkan definisi 2.23,Graf barbel (B_n) dengann=6 adalah graf barbel yang disusun dari 2 graf komplit maksimum K_6 dan kedua graf tersebut dihubungkan dengan sebuah jembatan (sisi).

Contoh:



Gambar 4.15 Graf barbel (B_n) Dengan n = 6

Selanjutnya untuk menentukan bilangan *clique* dari graf barbel B_6 , caranya adalah mencari order dari subgraf komplit maksimum graf barbel B_6 . Subgraf komplit graf barbel B_6 adalah:



Gambar 4.16 Subgraf Komplit Graf Barbel Dengan n = 6

Subgraf komplit maksimum dari graf gear B_6 adalah K_6 , karena subgraf komplit maksimum adalah K_6 , maka order dari K_6 adalah K_6 , sehingga $\omega(B_6) = 6$.

Berdasarkan beberapa penjelasan contoh diatas dapat dituliskan kembali sebagai berikut:

Tabel 4.2 Bilangan *Clique* Pada Graf barbel B_n

Graf Barbel	Bilangan Clique
B_3	3
B_4	4
B_5	5
B_6	6
	•
•	•
B_n	K_n

Dari tabel 4.2 dapat diambil kesimpulan sementara bahwa bilangan *clique* pada graf barbel B_n mempunyai rumusan $\omega(B_n) = K_n$, untuk setiap n adalah bilangan asli.

Teorema 4.2

Jika G sebuah graf barbel (B_n) , maka bilangan clique pada graf barbel $\omega\left(B_n\right)=K_n$

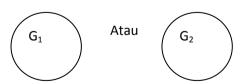
Bukti:

Subgraf yang mungkin dari graf Barbel B_n adalah :

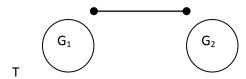
I. $K_1: \bullet$

 K_1 merupakan subgraf dari B_n dan K_1 subgraf komplit dari B_n tetapi K_1 bukan subgraf komplit maksimum dari B_n .

II.



Misal G_1 dan G_2 merupakan graf komplit K_n yang sama dari graf barbel B_n . G_1 dan G_2 merupakan subgraf dari B_n . Subgraf komplit yang mungkin dari G_1 atau G_2 adalah $\{K_1, K_2, K_3, \ldots, K_n\}$, sehingga subgraf komplit maksimum dari G_1 atau G_2 adalah K_n atau (graf G_1 atau G_2 itu sendiri). Jadi G_1 atau G_2 yaitu K_n merupakan subgraf komplit maksimum B_n .



Graf T adalah subgraf dari B_n , dengan G_1 dan G_2 merupakan graf komplit K_n yang sama. Subgraf T tersebut bukan subgraf komplit dari B_n , karena terdapat 2 titik berbeda yang tidak terhubung langsung. Sehingga T bukan subgraf komplit dari B_n .

Berdasarkan pernyataan di atas, pernyataan II yang memenuhi syarat bilangan clique, sehingga dapat disimpulkan bahwa bilangan clique pada graf barbel B_n adalah K_n .

5. Penutup

Berdasarkan hasil analisa pada pembahasan dapat di ambil kesimpulan sebagai berikut :

- 1. Bilangan *Clique* pada Graf Gear G_n adalah 2, atau dapat ditulis $\omega(G_n) = 2$.
- 2. Bilangan *Clique* pada graf barbel B_n adalah K_n , atau dapat ditulis $\omega(B_n) = K_n$.

Daftar Pustaka

Abdussakir. 2009. Teori Graf Topik dasar Untuk Tugas Akhir/Skripsi. UIN-MALANG PRESS: Malang

Bondy, J. A. & Murty, U. S. R. 1976. Graf Theory with Applications. London: The Macmillan, Inc.

Budayasa, Ketut. 2007. *Teori Graph Dan Aplikasinya*. UNESA: Departemen Pendidikan Nasional

Chartrand, Gery And Linda Lesniak. 1996. *Graph and Digraph Third Edition*. CHAPMAN AND HALL/CRC: Florida

Gafur, Abdul. 2008. Eksentrik Digraf dari Graf Star, Graf Double Star, GrafKomplit Bipartit dan Pelabelan Konsekutif pada Graf Sikel dan GrafBipartit Komplit. (Online): (http://www.combinatoric.com. Diaksestanggal 20 maret 2013).

Gallian, Joseph. A. 2007. *A Dynamic Survey Of Graph labeling*. (Online): (http://www.combinatorics.com). Diakses tanggal 20 Maret 2013.

Ghosh, A.; Boyd, S.; and Saberi, A. 2006. "Minimizing Effective Resistance of a Graph." Proc. 17th Internat. Sympos. Math. Th. Network and Systems, Kyoto, Japan. (Online): (http://mathworld.wolfram.com/BarbellGraph.html). Diakses tanggal 20 Maret 2013.

Harary, F. Graph Theory. Reading, MA: Addison-Wesley, 1994.

Herbster, M. and Pontil, 2006. M. "*Prediction on a Graph with a Perception*." Neural Information Processing Systems Conference, (Online): (http://mathworld.wolfram.com/BarbellGraph.html). Diakses tanggal 20 Maret 2013. Purwanto, 1998. *Matematika Diskrit*. Malang: IKIP Malang.