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ABSTRACT

A canonical polarization of symplectic product of two symplectic manifolds with polarization is
constructed from the polarizations of each symplectic manifold. The polarizationsisreferred to
as product polarization. The structure of quantizable algebras of symplectic products of two
symplectic manifolds with respect to the product polarization in the sense of the geometric
quantization is studied. The so-called GQ-consistent kinematical algebras of the products are

extracted fromthe quantizable algebras.

Keywords : Quantization, Differential Geometry

Makalah diterima 3 Agustus 2007

1. INTRODUCTION

Physicsis the attempt to find out the
patterns of natura phenomenon. The
patterns under question are modeled by
suitable mathematical objects and the
relations among them. Therefore, physics
can be understood also asthe attempt to pick
or to construct (new) mathematical models
suitable for describing the patterns of
natural  phenomenon. Thus, physics is an
attempt to represent physical redities in
mathematical  redlities. In  somewhat
provocative words, it could be said that
physicsis a branch of mathematics in which
experimental data play an essentia role as
congtraints.

The
mathematical

auitable  and
model for

rigorously
classica

mechanics is symplectic geometry (Libermann,
and Marle, 1987). On the other side, Hilbert
spaces and operator algebras in the spaces are
appropriate mathematical models for quantum
mechanics (Emch, 1984). Then, with a
guantization we mean an attempt to make the
classical description of naturd phenomenon
accessiblefrom the quantum mechanical one, or
viceversa.

The present work is dtuated in the
tradition of (Rosyid, 2003; Rosyid, 2005g;
Rosyid, ®05b, Rosyid, 2005c; Rosyid, 2007a;
Rosyid, 2007b), namely in the “junction” area
between geometric and Borel quantization. A
canonical polarization of symplectic product of
two symplectic manifolds with reducible
polarization is constructed from the
polarizations of each symplectic manifold. The

! Classical Mechanicsis proposed as the pattern of
macroscopic phenomenon while quantum mechanicsis
understood as the pattern of microscopic ones.
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polarization is referred to as product
polarization. The structure of quantizable
algebras of symplectic products of two
symplectic manifolds with respect to the
product polarization in the sense of the
geometric quantization is studied. The
structure of the so caled GQ-consistent
kinematical algebra of symplectic product of
symplectic manifolds is investigated. The
above mentioned scheme can be applied for
instance to a physical system consisting of a
massive particle with spin.

2. GQ-CONSISTENT
KINEMATICAL ALGEBRA

Lee (MW be a quantizable
symplectic manifold of dimension 2 and P
a strong integrable complex polarization so
that 0 £ dim(D) £n, whereD° =P C P is
the isotropic distribution associated with
P(see Rosyid, 2003). In the -(1/2+ig)-P-
densities quantization, a function f 1
C*M,R) is sad to be quatizeble if the
Hamiltonian vector field X; generated by f
preserves the polarization P in the sensé of
[X,P] 1 P.Let Fo(M,R) bethe set of all real
quantizable functions and

F(MRD) := {fT F(MR) [[X, D] I
D}

as the set of al quantizable functions
preserving the distribution D.

Let Z be a vector field on M. The
maping pp-Z defined by po-Z(ppo(M) =
Po|mZ determines a smooth vector field on
M/D if and only if Z preserves the
distribution D, i.e. [ZD] | D (see Rosyid,
2005c). It is clear therefore that a
quantizable function f belongsto F(M, R; D)
if and only if there exists a differentiable
vector field X on M/D, so that X; and X are

2 The expression [X; , P] 1 P means that [X.Y] isa
cross section of P for every cross section Y of P. A
cross section Y of P isavector field on M so that Y(m)
T P(m) forevery m1 M.
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po-related, i.e. pp-X% is a differentiable vector
field on M/D.

The sat X(M;D) of al vector fields on
M preserving the distribution D forms a Lie

subalgebra of X(M), the set of al smooth vector
fieldson M. Now let X(M;D) denote the set of
al Hamiltonian vector fields on M generated by

the functions in the set F((M,RD) and p [, be
defined as the redtriction of the Lie
homomorphism p . : X(M;D) ® X(M/D) to
Xe(M;D). The set X<(M;D) is clearly a Lie
subalgebra of X(M;D) and p[, is a Lie
homomophism.

Let X (M;D) denote the quotient
algebra of X(M;D) relative to the kernel
K(pi) of pf. and [.]7 be the quotient
bracketin X" (M;D). If Xz".(M;D) is the subset
of Xg (M;D) defined by

Xeo(MD) ={[X]T Xe(M;D)| p o [X] T
X(M/D)},

where X.(M/D) is the set of al complete vector
fields on M/D, then, in generd, the identity
P o Xe (M;D) = X(M/D), is not respected,
where p . [X{] isdefined as p . X¢ for arbitrary

Xe 1 [X¢]. Furthermore, the maping
P& X o(M;D) ® X(M/D)

which is defined by pg.[X] = pp X for
arbitrary X T [X{] is an injective partia Lie
homomorphism.

Define now X as the assignment X; 1
Xe(M;D) to f in F(M,RD) and let K(p}.)
denote the kernel of the Lie homomorphism
p L. inthe set Xe(M;D). Further, let F(M,R;D)
be the inverse image of K(pf.) under the
maping X. If giscontained in F«(M,R;D), then
pi. X, vanishes. Therefore, there exists

uniquely areal smooth function z; 1 C*(M/D,R)
so that g = z,?pp. However, the converse isin
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general not correct. If C*,(M R) is the set of
all real smooth functions on M which are
constant on every leaf of D and P isreal (so
that D = D"), then F(M,R.D) = C*'5,(M,R).
Since, C'5(M,R) is equal to
p,C(MDR) =

{z7po1 C(MR)|z1 C*M/DRY},

it follows aso that
F«(MRD) = p,C*(M/DR.

Now let X : Fx(M,R,D) ® C*(M/D,R) be
the injection defined by X(g) = z, and define
for every equivalent class [X] 1 X (M;D)
a linear operator L on the agebra
F«(M,RD) so that

[X¢]

I—[xf] = Xf’(g),

forevery g1 Fu(M,RD) and arbitrary X 1
Xq.

Let Sgo(M;D) be the semidirect sum
F(M,RD)A X ((M;D) with Lie bracket
[} defined by

[(@u[X]), @[X1)T =
( L[xf] O~ I—[xf,]gl! [[Xf] 1[Xf’]]~)1

for al [X], [X] T X&(M;D) with
[XLIX1T T Xe(M:D) and dl gy, g 1
F«(M,RD). The par (Seo(M;D), [}’ is
called GQ-consistent kinematical algebrain
(M,w,P).

Define a maping, denoted by XA p ¢, ,
from the agebra Sgo(M;D) into the
kinematical algebra S(M/D) = C*(M/D,RA
X(M/D) through

XA & @, [X]) = X@). p & [X),

for every (g, [X]) T Sco(M;D). The maping
XAsp o+ IS clearly a partia Lie homomor-

phism. The GQ-consistent kinematical algebra
Sco(M;D) is said to be amost complete

whenever the maping XA.p ¢, is a partia Lie
isomorphism. Furthermore, Sgo(M;D) is said to
be complete if it is admost complete and
X «(M;D) isequa to X (M;D).

The ided Fx(M,RD) in the agebra
Sco(M;D) is associated with the localization of
the physicad sysem or particle in its
configuration space. Then, the elements of
F«(M,R;D) represent position of the physica
system.

Symplectic Product

Lete (Myw) and (Mpw,) be two
symplectic manifolds of dimension 2h; and 2n,
respectively. Furthermore, let p; : My~ M, ®
M: and p2 :Mi1 " M2 ® M: be the canonical
projectiors.

Definition 1: The symplectic manifold (M,w),
whereM = M; " Myand w= p; W, + p, W, is
called symplectic product of (Miwi) and
(MoWs).

Let P, be a reducible polarization on (M;,w;)
and P, areducible polarization on (M,,ws). Let
P,” P, denotethe distribution defined by

I:)l ’ PZ |(ml,mz)= Pl |ml A P2 |m2’

for every (m, m) 1 M.

Proposition 1 : The distribution R~ P, isa
reducible polarization of M = M, © M, The
polarization is referred to as product
polarization.

Now we mention an example of
physicadl systems which admits the above

structure. Let G denote the Poincaré group, i.e.
the symmetry group of relativistic eementary

particles and G the Lie agebra of G. The
agebra G is spanned by the generators{P, ; n =
0,1,2,3} of trandations and {J.,; mn =0,1,2,3}
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of Lorentz transformations. Define now P?
and w? as P> = h™ PP, and W = hpy, WW",
where W = (1/2)d ™JP; and h™ isthe
Lorentz metric. The orbit of G in G* which
plays the role of classica phase space of
relativistic  elementary  particles s

characterized by P* and w” (see Landsman,
1998; Simms and Woodhouse, 1976). If P? >0

and w” does not vanish, i.e. if the particles
under consideration are massive, the orbit of
G in G* is diffeomorphic to R © S The
canonical symplectic structure wg on each
orbit is given by Def.1, i.e. Wws = pg W +
PsWs, Where wg and ws is the canonical
symplectic structure of R° and &,
respectively.

3. GQ-CONSISTENT
KINEMATICAL ALGEBRA IN
SYMPLECTIC PRODUCT

Let X(M;P) and X(M;;P) (i = 1, 2)
derote the set of dl vector fiedlds on M and
M; which preserve P and P;, respectively.
Furthermore, le¢ D = PCP*CTM, D, =
P,CP.*CTM,;, and D, = P,CP,*CTM..
Finaly, let X(M;D) and X(M;;D;) (i = 1, 2)
denote the st of dl vector fiedds on M and
M; which preserve D and D;, respectively.

Let Fo(M,R denote the set of dl
quantizeble functions on (M,w) relative to the
polarization P = P,"P, and F (M;,R) denote
the set of al quantizable functions on M;w)
relative to the polarization P; (i = 1,2). Now
define X{(M;P) as the set of al Hamiltonian
vector fields generated by al functions
contained in Fp(M,R) and X((M;;P;) asthe set of
al Hamiltonian vector fields generated by all

functions contained in F  (M;,R).

Proposition 3 : The set Xg(My;P1)” Xe(M2;Py)
is contained in Xg(M;P). Every function f 1

Fe(M,R) sothat X T Xe(My;P1)” Xe(Mg;P2) can
be written as the sumf =f,?p, +f;?p,, where
fil Fy(MuR)andfi F, (M2R).

Proposition 2 : The cartesian product
X(My;Py)" X(M,;P,) is contained in the set
X(M;P) and X(M1;D;)" X(M;;D,) contained
in X(M;D)

LetX(M;D;) be the set of al vector fields on

M of the form (X;,0) with X; | X(My;D,)
and X(M;D,) the set of al vector fieldson M

of theform (0, X,) with X, T X(My;D>).

Remark 1 : X(M;D;) and X(M;D,) arelLie
subalgebra of X(M;D). Moreover, the
algebra X(M;;D,) X(M,;D,) is equal to
X(M;D) A X(M;D,).
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Next, let X«(M:D) and Xe(M;:D) (i =
1,2) be the set defined by

Xe(M;D) = Xe(M;P) C X(M;D)
and
Xe(Mi;Di) = Xe(M;;P) C X(M;;D)

(i=1,2), respectively. It is then straight-forward
to show that

Xe(M;D1,D;) = Xg(My;D1)” Xe(My;D,)

is a Lie subagebra of the Lie agebra X-(M;D)
and

XF(M;Dl,Dz) = XF(M,Dl)AXF(M,Dz),

where Xg(M;D,) isthe set of al vector fields on
M of the form (X;,0) with X; T Xg(My;D;) and
Xe(M;Dy) the set of dl vector fields on M of the
form (0, Xo) with Xo T Xe(M3;D,).

If F(M,R;D;,D,) isthe set of al functions f
T FM,RD) so that X T Xe(M;D1,D,) thenwe
have




Rosyid, M.F., On the Structure of Quantizable Algebras

Proposition 4 : F(M,RD,,D,) is contained
in F(M,RD).

Let p o betherestriction of p {. tothe
set Xg(M;D1,D;). Then, p . isequa to the
product maping, p,. = pgl*' p ;2* and

K(pp) = K(Ppp.) K(pp,). Since
K(p ;)* ) = K(p E* )CXF(M;DllDZ)l thm
K(po)l Kipg):

Let X~ (M;D1,D,) be the quotient
algebra of Xg(M;D.,D,) relative to the
kernd K(p o). Then Xz~ (M;DyD,) isa
Lie subagebra of Xe (M;D).

Consider now the cartesan product
XFN(Ml;Dl)’,XFN(Mz;DZ) and define the
bracket [.,.] in Xi(M3;D1) = Xg(M3Dy)
according to

(XD (VLI YD) =
(X 0Ya]] ™, (%] Y211 72)

for al par ([Xi].[X2]),([Y1].[Y2]) in the set
Xe (M1;D1)” X (My;D), where [.,.] ™ and
[.,.] 72 isaccordingly the quotient bracket in
Xg (My;D;) and Xg (M3;D,), respectively.

Let F«(MRDyD,) the set of all
functions in F(M,R;D;,D,) which are contained

in K(p o)-

Proposition 6 Every function f 1
F«(M,R;D,,D,) can be written as the sum f =
f, 1 + £,P., where f,l  F«(My,RD,) and f,l
Fk(M2,R;Dy).

Main Result : If S go(M;D) is defined as the
semidirect sum

FxcM,RD1,D,) ASXF; «(M;D41,Dy),

thenS co(M;D) I Seo(M;D). The compleeness
of S¢o(M;D) is therefore necessary (but not
sufficient) for the completeness of Sgo(M;D). In
turn, it means also that the completeness of
Sco(M1;D1) and of Sgo(My;D;) is necessary
(but not sufficient) for the completeness of
Sco(M;D).

Proposition 5 : Thereexistsan injective Lie
homomorphism from the Lie algebra

(Xe(My;D1)" X (M2;D,) [.,.] ) into the Lie
algebra(Xg (M;D),[.,.] ) whose image isthe
subalgebra X~ (M;D1,D,) of
(Xe (M;D),[.,.] ).

Consequently, Xr«(M1;D1)" Xr(M2;D2)
and Xg«(M;D) is partially homomorphic
and

Xe (M 1;D1)AXF~c(M2; D) @
Xe o(M;Dy,Dy) 1 Xeo(M;D).

4. OUTLOOK

Implementing the above scheme to a
physical system consisting of a massive particle
with spin for instance leads to a kind of
superselection rule, where the spin variables are
eiminated automaticaly from the idea

Fr(R” S°’R:DrDs) of Seo(R®* S:D), where

FK(I?, SZ,R;DR,DS) = FK(?, SZ,R,DR)
@C*(R*R.

Theided is, as aready stated above, associated
with the localization of the partice in its
configuration space. However, it would be the
meatter of investigation in [10]. Such result, of
course, isin concomitant with the wide accepted
understanding that spin is an internal degree of
freedom.
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