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ABSTRACT 
 
A canonical polarization of symplectic product of two symplectic manifolds with polarization is 
constructed from the polarizations of each symplectic manifold. The polarizations is referred to 
as product polarization. The structure of quantizable algebras of symplectic products of two 
symplectic manifolds with respect to the product polarization in the sense of the geometric 
quantization is studied. The so-called GQ-consistent kinematical algebras of the products are 
extracted from the quantizable algebras.  
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1. INTRODUCTION 
 

Physics is the attempt to find out the 
patterns of natural phenomenon. The 
patterns under question are modeled by 
suitable mathematical objects and the 
relations among them. Therefore, physics 
can be understood also as the attempt to pick 
or to construct (new) mathematical models 
suitable for describing the patterns of 
natural phenomenon. Thus, physics is an 
attempt to represent physical realities in 
mathematical realities. In somewhat 
provocative words, it could be said that 
physics is a branch of mathematics in which 
experimental data play an essential role as 
constraints.  

The suitable and rigorously 
mathematical model for classical 

mechanics1 is symplectic geometry (Libermann, 
and Marle, 1987). On the other side, Hilbert 
spaces and operator algebras in the spaces are 
appropriate mathematical models for quantum 
mechanics (Emch, 1984). Then, with a 
quantization we mean an attempt to make the 
classical description of natural phenomenon 
accessible from the quantum mechanical one, or 
vice versa. 

The present work is situated in  the 
tradition of (Rosyid, 2003; Rosyid, 2005a; 
Rosyid, 2005b, Rosyid, 2005c; Rosyid, 2007a; 
Rosyid, 2007b), name ly in the “junction” area 
between geometric and Borel quantization. A 
canonical polarization of symplectic product of 
two symplectic manifolds with reducible 
polarization is constructed from the 
polarizations of each symplectic manifold.  The 

                                                 
1 Classical Mechanics is proposed as the pattern of 
macroscopic phenomenon while quantum mechanics is 
understood as the pattern of microscopic ones. 
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polarization is referred to as product 
polarization. The structure of quantizable 
algebras of symplectic products of two 
symplectic manifolds with respect to the 
product polarization in the sense of the 
geometric quantization is studied. The 
structure of the so called GQ-consistent 
kinematical algebra of symplectic product of 
symplectic manifolds is investigated. The 
above mentioned scheme can be applied for 
instance to a physical system consisting of a 
massive particle with spin.  

 
2. GQ-CONSISTENT 

KINEMATICAL ALGEBRA 
 
Let (M,ω) be a quantizable 

symplectic manifold of dimension 2n and P 
a strong integrable complex polarization so 
that 0 ≤ dim(D) ≤ n, where DC = P ∩ P* is 
the isotropic distribution associated with 
P(see Rosyid, 2003). In the -(1/2+iγ)-P-
densities quantization, a function f ∈ 
C∞(M,R) is said to be quatizable if the 
Hamiltonian vector field X f generated by f 
preserves the polarization P in the sense2 of 
[Xf,P] ⊂ P. Let FP(M,R) be the set of all real 
quantizable functions and  

 
F(M,R;D) := {f ∈ FP(M,R) |[Xf, D] ⊂ 

D} 
 
as the set of all quantizable functions 
preserving the distribution D. 

Let Z be a vector field on M. The 
maping πD*Z defined by πD*Z(πD(m)) = 
πD*|mZ determines a smooth vector field on 
M/D if and only if Z preserves the 
distribution D, i.e. [Z,D] ⊂ D (see Rosyid, 
2005c). It is clear therefore that a 
quantizable function f belongs to F(M, R; D) 
if and only if there exists a differentiable 
vector field X on M/D, so that Xf and X are 

                                                 
2 The expression [Xf , P] ⊂ P means that [Xf,Y] is a 
cross section of P for every cross section Y of P. A 
cross section Y of P is a vector field on M so that Y(m) 
∈ P(m) for every m ∈ M. 

πD-related, i.e. πD*Xf is a differentiable vector 
field on M/D.  

The set X(M;D) of all vector fields on 
M preserving the distribution D forms a Lie 
subalgebra of X(M), the set of all smooth vector 
fields on M. Now let XF(M;D) denote the set of 
all Hamiltonian vector fields on M generated by 
the functions in the set F(M,R;D) and F

D∗π  be 
defined as the restriction of the Lie 

homomorphism ∗Dπ  : X(M;D) → X(M/D) to 
XF(M;D). The set XF(M;D)  is clearly a Lie 
subalgebra of X(M;D) and  F

D∗π  is a Lie 
homomophism. 

Let XF
~(M;D)  denote the quotient 

algebra of  XF(M;D) relative to the kernel 
K( F

D∗π ) of F
D∗π  and [.,.]~ be the quotient 

bracket in XF
~(M;D). If XF

~
c(M;D) is the subset 

of  XF
~(M;D)  defined by 

 
XF

~
c(M;D) = {[Xf] ∈ XF

~(M;D) |  ∗Dπ [Xf] ∈ 
Xc(M/D)}, 

 
where Xc(M/D) is the set of all complete vector 
fields on M/D,  then, in general, the identity 

∗Dπ XF
~(M;D) = Xc(M/D), is not respected, 

where ∗Dπ [Xf] is defined as ∗Dπ Xf’ for arbitrary 
Xf’  ∈  [Xf]. Furthermore, the maping  
 

c
D∗π  : XF

~
c(M;D) → Xc(M/D) 

 
which is defined by c

D∗π [Xf] = ∗Dπ Xf’ for 
arbitrary Xf’ ∈  [Xf] is an injective partial Lie 
homomorphism.  

Define now X as the assignment Xf ∈ 
XF(M;D) to f in F(M,R;D) and let K( F

D∗π ) 
denote the kernel of the Lie homomorphism 

F
D∗π  in the set XF(M;D). Further, let FK(M,R;D) 

be the inverse image of K( F
D∗π )  under the 

maping X. If g is contained in FK(M,R;D), then 
F
D∗π Xg vanishes. Therefore, there exists 

uniquely a real smooth function ζg ∈ C∞(M/D,R) 
so that g = ζg? πD. However, the converse is in 
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general not correct. If C∞
D(M,R) is the set of 

all real smooth functions on M which are 
constant on every leaf of D and P is real (so 
that D = D- ), then FK(M,R;D) = C∞

D(M,R). 
Since, C∞

D(M,R) is equal to  
∗
Dπ C∞(M/D,R) :=  

{ζ?πD ∈ C∞(M,R)| ζ ∈ C∞(M/D,R)}, 
 

it follows also that   
 

FK(M,R;D) =  ∗
Dπ C∞(M/D,R). 

 
Now let Ξ  : FK(M,R;D) → C∞(M/D,R) be 
the injection defined by Ξ(g) = ζg and define 
for every equivalent class [Xf] ∈ XF

~
c(M;D) 

a linear operator ][ fXL  on the algebra 
FK(M,R;D) so that   
 

][ fXL  = Xf’(g), 

 
for every g ∈ FK(M,R;D) and arbitrary Xf’ ∈ 
[Xf]. 

Let SGQ(M;D) be the semidirect sum 
FK(M,R;D)⊕sXF

~
c(M;D) with Lie bracket 

[⋅,⋅]s defined by 
 

[(g1,[Xf]), (g2,[Xf’])]
s =  

( ][ fXL g2 − ][ 'fXL g1, [[Xf],[Xf’]]
~), 

 
for all [Xf], [Xf’] ∈ XF

~
c(M;D) with 

[[Xf],[Xf’]]
~ ∈ XF

~
c(M;D) and all g1, g2 ∈ 

FK(M,R;D). The pair (SGQ(M;D), [⋅,⋅]s) is 
called GQ-consistent kinematical algebra in 
(M,ω,P).  

Define a maping, denoted by Ξ⊕s
c
D∗π , 

from the algebra SGQ(M;D)  into the 
kinematical algebra S(M/D) = C∞(M/D,R)⊕s 
Xc(M/D) through 
 

Ξ⊕s
c
D∗π (g, [Xf]) = (Ξ(g), c

D∗π [Xf]), 
 
for every (g, [Xf]) ∈ SGQ(M;D). The maping 
Ξ⊕s

c
D∗π  is clearly a partial Lie homomor-

phism. The GQ-consistent kinematical algebra 
SGQ(M;D) is said to be almost complete 

whenever the maping Ξ⊕s
c
D∗π  is a partial Lie 

isomorphism. Furthermore, SGQ(M;D) is said to 
be complete if it is almost complete and 
XF

~
c(M;D) is equal to XF

~(M;D).  
The ideal FK(M,R;D) in the algebra 

SGQ(M;D) is associated with the localization of 
the physical system or particle in its 
configuration space. Then, the elements of 
FK(M,R;D) represent  position of the physical 
system. 

 
Symplectic Product  

Let (M1,ω1) and (M2,ω2) be two 
symplectic manifolds of dimension 2n1 and  2n2 
respectively. Furthermore, let π1 :  M1 × M2 → 
M1  and  π2 : M1 × M2 → M2 be the canonical 
projections.  
 

Definition 1 : The symplectic manifold (M,ω), 
where M = M1 × M2 and ω = π1

∗ ω1 + π2
∗ ω2 is 

called symplectic product of (M1,ω1) and 
(M2,ω2). 

 
Let P1 be a reducible polarization on (M1,ω1) 
and P2 a reducible polarization on (M2,ω2). Let 
P1 × P2 denote the distribution defined by  

 

2121
||| 21),(21 mmmm PPPP ⊕=× , 

 
for every (m1, m2) ∈ M.  
 

Proposition 1 : The distribution P1 × P2 is a 
reducible polarization of M = M1 × M2. The 
polarization is referred to as product 
polarization. 
 

Now we mention an example of 
physical systems which admits the above 
structure. Let G denote the Poincaré group, i.e. 
the symmetry group of relativistic elementary 
particles and G the Lie algebra of G. The 
algebra G is spanned by the generators {Pν ; ν = 
0,1,2,3} of translations and {Jµν ; µ,ν = 0,1,2,3} 
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of Lorentz transformations. Define now P2 
and w2 as P2 = ηµν PµPν and w2 = ηµν wµwν, 
where wρ  = (1/2)ερ µντJµνPτ  and ηµν is the 
Lorentz metric. The orbit of G in G* which 
plays the role of classical phase space of 
relativistic elementary particles is 
characterized by P2 and w2 (see Landsman, 
1998; Simms and Woodhouse, 1976). If P2 > 0 
and w2 does not vanish, i.e. if the particles 
under consideration are massive, the orbit of 
G in G* is diffeomorphic to R6 × S2. The 
canonical symplectic structure ωG on each 
orbit is given by Def.1, i.e. ωG = πR

∗ ωR + 
πS

∗ωS, where ωR  and ωS is the canonical 
symplectic structure of R6 and S2, 
respectively.  
 
3.   GQ-CONSISTENT 

KINEMATICAL ALGEBRA IN 
SYMPLECTIC PRODUCT 

 
Let X(M;P) and X(Mi;Pi) (i = 1, 2) 

denote the set  of all vector fields on M and 
M i which preserve P and Pi, respectively. 
Furthermore, let D = P∩P*∩TM, D1 = 
P1∩P1*∩TM1, and D2 = P2∩P2*∩TM2. 
Finally, let X(M;D) and X(Mi;Di) (i = 1, 2) 
denote the set  of all vector fields on M and 
M i which preserve D and Di, respectively.  
 

Proposition 2 : The cartesian  product 
X(M1;P1)×X(M2;P2) is contained in the set 
X(M;P) and X(M1;D1)×X(M2;D2) contained 
in X(M;D) 
 
Let X(M;D1) be the set of all vector fields on 
M of the form (X1,0) with X1 ∈ X(M1;D1) 
and X(M;D2) the set of all vector fields on M 
of the form (0, X2) with X2 ∈ X(M2;D2). 
 

Remark 1 : X(M;D1) and  X(M;D2) are Lie 
subalgebra of  X(M;D). Moreover, the 
algebra X(M1;D1)×X(M2;D2) is equal to 
X(M;D1) ⊕ X(M;D2). 

 

Let FP(M,R) denote the set of all 
quantizable  functions on (M,ω) relative to the 
polarization P = P1×P2 and F

iP
(Mi,R) denote 

the set of all quantizable functions on (Mi,ωi) 
relative to the polarization Pi (i = 1,2). Now 
define X F(M;P) as the set of all Hamiltonian 
vector fields generated by all functions 
contained in FP(M,R) and XF(Mi;Pi) as the set of 
all Hamiltonian vector fields generated by all 
functions contained in F

iP (Mi,R).  
 

Proposition 3 : The set XF(M1;P1)× XF(M2;P2) 
is contained in XF(M;P). Every function f ∈ 
FP(M,R) so that Xf  ∈ XF(M1;P1)×XF(M2;P2) can 
be written as the sum f = f1? π1 + f2? π2, where 
f1∈ F

1P
(M1,R) and f1∈ F

2P (M2,R). 
 

Next, let XF(M;D) and XF(M i;Di) (i = 
1,2) be the set defined by 

 
XF(M;D) = XF(M;P) ∩ X(M;D)  
 

and  
 
XF(Mi;Di) = XF(Mi;Pi) ∩ X(M i;Di) 

 
(i=1,2), respectively. It is then straight-forward 
to show that  

 
XF(M;D1,D2) := XF(M1;D1)×XF(M2;D2) 

 
is a Lie subalgebra of the Lie algebra XF(M;D) 
and  
 

XF(M;D1,D2) = XF(M;D1)⊕XF(M;D2), 
 
where XF(M;D1) is the set of all vector fields on 
M of the form (X1,0) with X1 ∈ X F(M1;D1) and 
XF(M;D2) the set of all vector fields on M of the 
form (0, X2) with X2 ∈ XF(M2;D2). 

If F(M,R;D1,D2) is the set of all functions f 
∈ F(M,R;D) so that Xf ∈ XF(M;D1,D2) then we 
have 
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Proposition 4 : F(M,R;D1,D2) is contained 
in F(M,R;D). 

  
Let ×

∗Dπ  be the restriction of F
D∗π  to the 

set XF(M;D1,D2). Then, ×
∗Dπ  is equal to the 

product maping, ×
∗Dπ  = F

D ∗1
π × F

D ∗2
π  and 

K( ×
∗Dπ ) = K( F

D ∗1
π )×K( F

D ∗2
π ). Since 

K( ×
∗Dπ ) = K( F

D∗π )∩XF(M;D1,D2), then 

K( ×
∗Dπ ) ⊂ K( F

D∗π ). 
Let XF

∼×(M;D1,D2) be the quotient 
algebra of XF(M;D1,D2) relative to the 
kernel K( ×

∗Dπ ). Then XF
∼×(M;D1,D2) is a 

Lie subalgebra of XF
∼(M;D). 

Consider now the cartesian product 
XF

∼(M1;D1)×XF
∼(M2;D2) and define the 

bracket [.,.]× in XF
∼(M1;D1) × XF

∼(M2;D2) 
according to 
 
[([X1],[X2]),([Y1],[Y2])]

× =  
([[X1],[Y1]] 1∼ , [[X2],[Y2]] 2∼ ) 

 
for all pair ([X1],[X2]),([Y1],[Y2]) in the set  
XF

∼(M1;D1)×XF
∼(M2;D), where [.,.] 1∼  and 

[.,.] 2∼  is accordingly the quotient bracket in 
XF

∼(M1;D1) and XF
∼(M2;D2), respectively. 

 
Proposition 5 : There exists an injective Lie 
homomorphism from the Lie algebra 
(XF

∼(M1;D1)×XF
∼(M2;D2),[.,.]×) into the Lie 

algebra (XF
∼(M;D),[.,.]∼) whose image is the 

subalgebra XF
∼×(M;D1,D2) of 

(XF
∼(M;D),[.,.]∼).  

 
Consequently, XF

∼
c(M1;D1)×XF

∼
c(M2;D2) 

and XF
∼
c(M;D) is partially homomorphic 

and 
 
XF

∼
c(M1;D1)⊕XF

∼
c(M2;D2) ≅ 

XF
∼×

c(M;D1,D2) ⊂ XF
∼
c(M;D). 

 

Let FK(M,R;D1,D2) the set of all 
functions in F(M,R;D1,D2) which are contained 

in K( ×
∗Dπ ). 

Proposition 6 : Every function f ∈ 
FK(M,R;D1,D2) can be written as the sum f = 
f1?π1 + f2?π2, where f1∈ FK(M1,R;D1) and f1∈ 
FK(M2,R;D2). 
 
Main Result : If S×

GQ(M;D)  is defined as the 
semidirect sum  
 

FK(M,R;D1,D2) ⊕s XF
∼×

c(M;D1,D2), 
 
then S×

GQ(M;D) ⊂ SGQ(M;D). The completeness 
of S×

GQ(M;D)  is therefore necessary (but not 
sufficient) for the completeness of SGQ(M;D). In 
turn, it means also that the completeness of 
SGQ(M1;D1) and of SGQ(M1;D1)  is necessary 
(but not sufficient) for the completeness of 
SGQ(M;D). 
 
 
4. OUTLOOK 

 
Implementing the above scheme to a 

physical system consisting of a massive particle 
with spin for instance leads to a kind of 
superselection rule, where the spin variables are 
eliminated automatically from the ideal 
FK(R6×S2,R;DR,DS) of SGQ(R6×S2;D), where 

 
FK(R6×S2,R;DR,DS) = FK(R6 × S2 ,R;DR)  

≅ C∞(R3,R). 
 
The ideal is, as already stated above, associated 
with the localization of the particle in its 
configuration space. However, it would be the 
matter of investigation in [10]. Such result , of 
course, is in concomitant with the wide accepted 
understanding that spin is an internal degree of 
freedom. 
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