
International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-11, Nov- 2016]
Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1932

The Rising NoSql Technology
Sumati Baral

Assistant Professor, Department of CSE,Trident Academy Of Creative Technology, BBSR,Odisha,India

Abstract—The rising interest in NoSQL technology over
the last few years resulted in an increasing number of
evaluations and comparisons among competing NoSQL
technologies From survey we create a concise and up-to-
date comparison of NoSQL engines, identifying their most
beneficial use from the software engineer point of view.
Keywords—Agile, ACID, BASE, CAP Theorem ,
Schema.

I. INTRODUCTION
Databases can be divided in 3 types:

• RDBMS (Relational Database Management
System)

• OLAP (Online Analytical Processing)

• NoSQL (recently developed database)
NoSQL stands for not-only-SQL. The idea here is not to
oppose SQL, but instead provide an alternative in terms of
storage of data. As most users are well versed with SQL,
many NoSQL databases strive to provide an SQL like
query interface.

What is NoSQL?
It is designed for distributed data stores where very large
scale of data storing needs (for example Google or
Facebook which collects terabits of data every day for
their users). These type of data storing may not require
fixed schema, avoid join operations and typically scale
horizontally.

Characterstics "Not only SQL"
• Does not use SQL as querying language

• Distributed, fault-tolerant architecture

• No fixed schema (formally described structure)

• No joins (typical in databases operated with
SQL)

• RDBMS are "scaled up" by adding hardware
processing power

• NoSQL is "scaled out" by spreading the load
 ○ Partitioning (sharding) / replication

Why NoSQL?
Well, here are the reasons:

• Managing Large Chunks of Data: NoSQL
databases can easily handle numerous read/write
cycles, several users and amounts of data ranging in
petabytes.

• Schema not needed: Most NoSQL databases are
devoid of schema and therefore very

flexible. They provide great choices when it comes
to constructing a schema and foster easy mapping of
objects into them. Terms such as normalization
and complex joins are, well, not needed!

• Programmer-friendly: NoSQL databases provide
simple APIs in every major programming language
and therefore there is no need for
complex ORM frameworks. And just incase APIs
are not available for a particular programming
language, data can still be accessed over HTTP via a
simple API, using XML and/or JSON.

• Availability : Most distributed NoSQL databases
provide easy replication of data and failure of one
node does not affect the availability of data in a
major way.

• Scalability: NoSQL databases do not require a
dedicated high performance server. Actually, they
can easily be run on a cluster of commodity
hardware and scaling out is just as simple as adding
a new node.

• Low Latency: Unless you are running a cluster of a
trillion data servers (or something like that, give or
take a few million of them), NoSQL can help
you achieve extremely low latency. Of course,
latency in itself depends on the amount of data that
can be successfully loaded into memory.

RDBMS vs NoSQL
RDBMS
- Structured and organized data
- Structured query language (SQL)
- Data and its relationships are stored in separate tables.
- Data Manipulation Language, Data Definition
Language
- Tight Consistency
NoSQL
- Stands for Not Only SQL
- No declarative query language
- No predefined schema
- Key-Value pair storage, Column Store, Document Store,
Graph databases
- Eventual consistency rather ACID property
- Unstructured and unpredictable data
- CAP Theorem
- Prioritizes high performance, high availability and
scalability
- BASE Transaction

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-11, Nov- 2016]
Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1933

BENEFITS OF NOSQL OVER RDBMS

Schema Less:
NoSQL databases being schema-less do not define any
strict data structure.
Dynamic and Agile:
NoSQL databases have good tendency to grow
dynamically with changing requirements. It can handle
structured, semi-structured and unstructured data.
Scales Horizontally:
In contrast to SQL databases which scale vertically,
NoSQL scales horizontally by adding more servers and
using concepts of sharding and replication. This behavior
of NoSQL fits with the cloud computing services such as
Amazon Web Services (AWS) which allows you to
handle virtual servers which can be expanded horizontally
on demand.
Better Performance
All the NoSQL databases claim to deliver better and
faster performance as compared to traditional RDBMS
implementations.
Talking about the limitations, since NoSQL is an entire
set of databases (and not a single database), the
limitations differ from database to database. Some of
these databases do not support ACID transactions while
some of them might be lacking in reliability. But each one
of them has their own strengths due to which they are
well suited for specific requirements.

II. NoSQL DATA MODEL
Some of the major and most prominent differentiations
among NoSQL databases are as follows:
1. Document Stores
2. Hierarchical
3. Network
4. Column-oriented
5. Object-oriented
6. Key-value Stores
7. Triple Stores

Document stores
Gone are the days when data organization used to be as
minimal as simple rows and columns.The reason for
favoring XML or
JSON is because both of them are extremely portable, c
ompact and standardized. Again, simply because NoSQL
databases are schema-less, and
there exists no predefined for an XML or JSON document
and as a result, each document is independent of the other.
The database can be employed in CRM, web-related data,
real-time data, etc. Some of the most well known
implementation models are MongoDB, CouchDB and
RavenDB.

Hierarchical Databases
These databases store data in the form of hierarchical

relevance, that is, tree or parent-child relationship. In
terms of relational models, this can be termed as 1:N
relationship. Basically, geospatial databases can be used
in a hierarchical form to store location information which
is essentially hierarchical, though algorithms may vary.
Major examples of the same include PostGIS, Oracle
Spatial, etc. Also, some of the most well known
implementations of hierarchical databases are the
Windows Registry by Microsoft and the IMS Database by
IBM.

Graph Network Databases
Graph databases are the most popular form of network
database that are used to store data that can be represented
in the form of a Graph. Basically, data stored by graph
databases can grow exponentially and thus,
graph databases are ideal for storing data that changes
frequently. A general technique to query a graph is to
begin from an arbitrary or specified start node and follow
it by traversing the graph in a depth-first or breadth-first
fashion, as per the relationships that obey the given
criterion. Most graph databases allow the developer to use
simple APIs for accomplishing the task. For instance, you
can make queries such as: “Does Jonny Nitro read Data
Center Magazine?” Some of the most popular graph
databases include FlockDB, HyperGraphDB and Neo4j.

Column-oriented Databases
Column-oriented databases came into existence after
Google’s research paper on its BigTable distributed
storage system, which is used internally along with the
Google file system. Some of the popular implementations
are Hadoop Hbase, Apache Cassandra, HyperTable, etc.
Such databases are implemented more like three-
dimensional arrays, the first dimension being the row
identifier, the second being a combination of column
family plus column identifier and the third being the
timestamp. Column-oriented databases are employed by
Facebook, Reddit, Digg, etc.
Object-oriented Databases
Such databases allow the storage of data in the form of
objects, thereby making it highly transparent. Some of the
most popular ones include db4o, NEO, Versant, etc.
Object-oriented databases are generally used in research
purposes or web-scale production.
Key-value stores
Key-value stores are based on Amazon’s Dynamo
Research Paper and Distributed hash Tables. Such data
models
are extremely simplified and generally contain only one s
et of global key value pairs with each value having a
unique key associated to it. The database, therefore, is
highly scalable and does not store data relationally. Some
popular implementations include Project Voldemort
(open-sourced by LinkedIn), Redis, Tokyo Cabinet, etc.

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-11, Nov- 2016]
Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1934

Advantages of NoSQL
• Dynamic and Agile:

NoSQL databases have good tendency to grow
dynamically with changing requirements. It can
handle structured, semi-structured and
unstructured data.

• Scales Horizontally:
In contrast to SQL databases which scale
vertically, NoSQL scales horizontally by adding
more servers and using concepts of sharding and
replication. This behavior of NoSQL fits with the
cloud computing services such as Amazon Web
Services (AWS) which allows you to handle
virtual servers which can be expanded
horizontally on demand.

• Better Performance:
All the NoSQL databases claim to deliver better
and faster performance as compared to traditional
RDBMS implementations.

• NoSQL database examples
CAP Theorem (Brewer’s Theorem)
CAP theorem states that there are three basic
requirements which exist in a special relation when
designing applications for a distributed architecture.
Consistency - This means that the data in the database
remains consistent after the execution of an operation. For
example after an update operation all clients see the same
data.
Availability - This means that the system is always on
(service guarantee availability), no downtime.
Partition Tolerance - This means that the system
continues to function even the communication among the
servers is unreliable, i.e. the servers may be partitioned
into multiple groups that cannot communicate with one
another.
In theoretically it is impossible to fulfill all 3
requirements. CAP provides the basic requirements for a
distributed system to follow 2 of the 3 requirements.
Therefore all the current NoSQL database follow the
different combinations of the C, A, P from the CAP
theorem. Here is the brief description of three
combinations CA, CP, AP :
CA - Single site cluster, therefore all nodes are always in
contact. When a partition occurs, the system blocks.
CP - Some data may not be accessible, but the rest is still
consistent/accurate.
AP - System is still available under partitioning, but some
of the data returned may be inaccurate.

NoSQL pros/cons

Advantages :
• High scalability

• Distributed Computing

• Lower cost

• Schema flexibility, semi-structure data

• No complicated Relationships
Disadvantages
• No standardization

• Limited query capabilities (so far)

• Eventual consistent is not intuitive to program for
The BASE

The BASE acronym was defined by Eric Brewer, who is
also known for formulating the CAP theorem.
The CAP theorem states that a distributed computer
system cannot guarantee all of the following three
properties at the same time:

• Consistency

• Availability

• Partition tolerance
A BASE system gives up on consistency.

• Basically Available indicates that the
system does guarantee availability, in terms of the
CAP theorem.

• Soft state indicates that the state of the system may
change over time, even without input. This is because
of the eventual consistency model.

• Eventual consistency indicates that the system will
become consistent over time, given that the system
doesn't receive input during that time.

ACID vs BASE

ACID BASE

Atomic Basically Available

Consistency Soft state

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-11, Nov- 2016]
Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1935

Isolation Eventual
consistency

Durable

POPULAR NOSQL DATABASES

• Document Oriented Databases – MongoDB, HBase,
Cassandra, Amazon SimpleDB, Hypertable, etc.

• Graph Based Databases – Neo4j, OrientDB,
Facebook Open Graph, FlockDB, etc.

• Column Based Databases – CouchDB, OrientDB,
etc.

• Key Value Databases – Membase, Redis,
MemcacheDB, etc.

III. CONCLUSION

Application developers have been frustrated with the
impedance mismatch between the relational data
structures and the in-memory data structures of the
application. Using NoSQL databases allows developers to
develop without having to convert in-memory structures
to relational structures.

REFERENCES
[1] www.ibm.com/analytics/nosq
[2] Best-MongoDB-Books.html
[3] https://books.google.co.in/books?isbn=331925264X.

