International Journal of Advanced Engineering, Management and Science (IJAEMS)

Infogain Publication (Infogainpublication.com)

[Vol-2, Issue-5, May- 2016]
ISSN: 2454-1311

Principles and Goals of Software Testing

Dr Leelavathi Rajamanickam

Senior Lecturer, School of Information Technolo§¥GI University, Malaysia

Abstract— Software testing is an activity which is aimed
for evaluating quality of a program and also for
improving it, by identifying defects and problems.
Software testing strives for achieving its goal (both
implicit and explicit) but it has certain limitations, still
testing can be done more effectively if certain established
principles are to be followed. In spite of having
limitations, software testing continues to dominate other
verification techniques like static analysis, model
checking and proofs. So it is indispensable to understand
the goals, principles and limitations of software testing so
that the effectiveness of software testing could be
maxi mi zed.

Keywords—Software Testing, Testing tools, Testing
principles, Testing Limitations

[. INTRODUCTION
Software testing is about testing a feature withyivay
test data to get a result and then comparing thaalc
result with expected result, it is not merely fimglidefects
or bugs in the software; it is the completely datid
discipline of evaluating the quality of the softwalrl].
Software testing is a process of verifying and degiing
that a software application or program meets trgnsss
and technical requirements that guided its desigd a
development and works as expected and also idestifi
important errors or flaws categorized as per thersty
level in the application that must be fixed [6].fl8@re
testing is a phase of SDLC that entails much eftorie
and cost. Often, testing phase is the single larges
contributor towards the whole development time.tifigs
can not only uncover bugs in the program, but fses
in design of the software [2]. Software testingliso used
to test the software for other software qualitytdes like
reliability, usability, integrity, security, capdity,
efficiency, portability, maintainability, compatlthy etc.
Testing approach differs for different softwardesyel of
testing and purpose of testing.
Software testing should be performed efficientlyd an
effectively, within the budgetary and schedulingits.
Following established principles can make testingier
and more effective, and can also ensure that tegtials
are achieved to its maximum. They also ensure dhat
process is repeatable. Software testing is a veppitant
quality filter and needs to be planned taking iataount
its goals and principles.

WWwWw.ijaems.com

[I. TESTING GOALS
A goal is a projected state of affairs that a perso
system plans or intends to achieve. A goal haseo b
accomplishable and measurable. It is good if adlgare
interrelated. In testing we can describe goalstenided
outputs of the software testing process. Softwastirig
has following goals:
2.1 Verification and Validation
It would not be right to say that testing is dormdycto
find faults. Faults will be found by everybody ugithe
software.
Testing is a quality control measure used to veltigt a
product works as desired [8]. Software testing jgles a
status report of the actual product in comparison t
product requirements (written and implicit). Tegtin
process has to verify and validate whether thewso&
fulfills conditions laid down for its release/usé].[
Testing should reveal as many errors as possibkben
software under test, check whether it meets its
requirements and also bring it to an acceptablellef
quality.
2.2 Priority Coverage
Exhaustive testing is impossible [7]. We shouldfqgren
tests efficiently and effectively, within budgetagnd
scheduling limitations. Therefore testing needsgsign
effort reasonably and prioritize thoroughly. Gelfigra
every feature should be tested at least with olid irgut
case. We can also test input permutations, invafpdit,
and non-functional requirements depending upon the
operational profile of software. Highly present and
frequent use scenarios should have more coverage th
infrequently encountered and insignificant scersaria
study by on 25 million lines of code also revedleat 70-
80% of problems were due to 10-15% of modules, 90%
of all defects were in modules containing 13% of th
code, 95% of serious defects were from just 2.5%hef
code. Pareto principle also states that 80 peroéiat|
software defects uncovered during testing will lyjkbe
traceable to 20 percent of all program compon€eFie
problem, of course, is to isolate these suspecpooents
and to thoroughly test them. Overall we target aewi
breadth of coverage with depth in high use areasaan
time and budget permits.
2.3 Balanced
Testing process must balance the written requirésnmen
real-world technical limitations, and user expdota.

Page | 427

International Journal of Advanced Engineering, Management and Science (IJAEMS)

Infogain Publication (Infogainpublication.com)

[Vol-2, Issue-5, May- 2016]
ISSN: 2454-1311

The testing process and its results must be repleagad
independent of the tester, i.e., consistent andaseH.
Apart from the process being employed in develogmen
there will be a lot unwritten or implicit requirems.
While testing, the software testing team shouldpkek
such requirements in mind. They must also realia¢ we

are part of development team, not the users of the
software. Testers personal views are but one ofyman
considerations. Bias in a tester invariably leads tbias

in coverage. The end user's viewpoint is obviouihl to

the success of the software, but it is not all thatters as

all needs cannot be fulfiled because of technical,
budgetary or scheduling limitations. Every
defect/shortcoming has to be prioritized with resp®e
their time and technical constraints.

2.4 Traceable

Documenting both the successes and failures helps i
easing the process of testing. What was testedhawdt
was tested, are needed as part of an ongoing destin
process. Such things serve as a means to eliminate
duplicate testing effort [8]. Test plans should dear
enough to be re-read and comprehended. We shordd ag
on the common established documentation methods to
avoid the chaos and to make documentation morailusef
in error prevention.

2.5 Deterministic

Problem detection should not be random in testiig.
should know what we are doing, what are we targetin
what will be the possible outcome. Coverage cateri
should expose all defects of a decided nature andity.
Also, afterward surfacing errors should be catemgatias

to which section in the coverage it would have o)

and can thus present a definite cost in detectinth s
defects in future testing. Having clean insightoirihe
process allows us to better estimate costs ancetierb
direct the overall development.

[II. TESTING PRINCIPLES
A principle is an accepted rule or method for aggilon
in action that has to be, or can be desirably Yodid.
Testing Principles offer general guidelines comnfion
all testing which assists us in performing testing
effectively and efficiently. Principles for softweatesting
are:
3.1 Test aprogramto try to makeit fail
Testing is the process of executing a program with
intent of finding errors [7]. Our objective shoulsk to
demonstrate that a program has errors, and thentid
value of testing can be accomplished. We shouldsxp
failures (as many as possible) to make testing ga®c
more effective.
3.2 Start testing early

WWwWw.ijaems.com

Testing a program involves providing the progranthwi
set of test inputs (or test cases) and observinthef
program behaves expected. If the program failsetwale
as expected, then the input data and the conditioder
which the failure occurs are noted for later deloggnd
error correction [2]. If you want to find errorsag as
early as possible. This helps in fixing enormousrsrin
early stages of development, reduces the rework of
finding the errors in the initial stages. Fixingas at
early phases cost less as compared to later phases.
example, if a problem in the requirements is foaifter
releasing the product, then it would cost 10-100e8§
more to correct than if it had already been foupdhe
requirements review. Fid. depicts the increase in cost of
fixing bugs detected/fixed in later phases.

A

Cost

v

Regs Code Test

Implementation

Design

Time
Fig. 1: Cost of the bugs

3.3 Testing is context dependent
Testing is done differently in different contexigesting
should be appropriate and different for differeainps of
time. For example, a safety-critical software isted
differently from an e-commerce site. Even a system
developed using the waterfall approach is tested
significantly differently than those systems depeld
using agile development approach. Even the obgestf
testing differ at different point in software dempiment
cycle. For example, the objective of unit and indtign
testing is to ensure that code implemented thegdesi
properly. In system testing the objective is tourashe
system does what customer wants it to do [13]. Tope
testing approach that will be used depends on &eunf
factors, including the type of system, regulatory
standards, user requirements, level and type kf tést
objective documentation available, knowledge of the
testers, time and budget, development life cycle.
3.4 Define Test Plan
Test Plan usually describes test scope, test dgsctest
strategy, test environment, deliverables of the, tesks

Page | 428

International Journal of Advanced Engineering, Management and Science (IJAEMS)

Infogain Publication (Infogainpublication.com)

[Vol-2, Issue-5, May- 2016]
ISSN: 2454-1311

and mitigation, schedule, levels of testing to pelied,
methods, techniques and tools to be used. Test plan
should efficiently meet the needs of an organizatind
clients as well. The testing is conducted in viefvao
specific purpose (test objective) which should tages! in
measurable terms, for example test effectiveness,
coverage criteria. Although the prime objectivetexting

is to find errors, a good testing strategy alsocessss
other quality characteristics such as portability,
maintainability and usability.

3.5 Design Effective Test cases

Complete and precise requirements are crucial for
effective testing. User Requirements should be well
known before test case design. Testing should be
performed against those user requirements. Thectasst
scenarios shall be written and scripted beforeingst
begins. If you do not understand the user requirgsne
and architecture of the product you are testingn tiiou
will not be able to design test cases which wilea
more errors in short amount of time. A test casestmu
consist of a description of the input data to thegpam
and a precise description to the correct outputhef
program for that set of input data. A necessary giatest
documentation is the specification of expected Itgsu
even if providing such results is impractical [These
must be specified in a way that is measurable st th
testing results are unambiguous.

3.6 Test for valid aswell asinvalid conditions

In addition to valid inputs, we should also tesiteyn for
invalid and unexpected inputs/conditions. Many exiare
discovered when a program under test is used inresom
new and unexpected way and invalid input conditions
seem to have higher error detection yield than eki t
cases for valid input conditions [9]. Choose tegiuis
that possibly will uncover maximum faults by triguney
failures.

3.7 Review Test casesregularly

Repeating same test cases over and over agairualignt
will no longer find any new errors. Therefore thestt
cases need to be regularly reviewed and revisetinaw
and different tests need to be written to exerdifferent
parts of the software or system to potentially findre
defects. We should target and test susceptiblesarea
Exploratory Testing can prove very useful. Explorat
testing is any testing to the extent that the testtively
controls the design of the tests as those tests are
performed and uses information gained while testmg
design new and better tests[7].

3.8 Testing must be done by different persons at
different levels

Different purposes are addressed at the diffemvl$ of
testing. Factors which decide who will perform itegt
include the size and context of the system, thesrithe
WWwWw.ijaems.com

development methodology used, the skill and expeee

of the developers.

Testing of individual program components is usud#tly
responsibility of the component developer (except
sometimes for critical systems); Tests at this lleue
derived from the developer's experience. Testing at
system/sub-system level should be performed by the
independent persons/team. Tests at this levelasedoon

a system specification. Development staff shall be
available to assist testers. Acceptance Testingsiglly
performed by end user or customer. Release Tesing
performed by Quality Manager. Fig. $hows persons
involved at different levels of software testing.

() (N\
Release testing) Quality Manager
(. J (. J
() t h
Acceptance testing —p User/Customer
. J

N

Specialised 1

testing Independent teste

N
[Integration/System

Developer

<
{ Unit testing
J

Testing Levels

J

Performed by

Fig. 2: Software Testing Levels.

3.9 Test a program innovatively

Testing everything (all combinations of inputs and
preconditions) is not feasible except for triviakes. It is
impossible to test a program sufficiently to guaeanthe
absence of all errors [9]. Instead of exhaustigtirig, we
use risks and priorities to focus testing effortsrenon
suspected components as compared to less suspected
infrequently encountered components.

3.10 Use both Static and Dynamic testing

Static testing is good at depth; it reveals deweisp
understanding of the problem domain and data streict
Dynamic testing is good at breadth; it tries maajugs,
including extremes that humans might miss. To elate

as many errors as possible, both static and dynamic
testing should be used [10].

Page | 429

International Journal of Advanced Engineering, Management and Science (IJAEMS)

Infogain Publication (Infogainpublication.com)

[Vol-2, Issue-5, May- 2016]
ISSN: 2454-1311

3.11 Defect clustering

Errors tend to come in clusters. The probabilitytlod

existence of more errors in a section of a progiam

proportional to the number of errors already foimthat

section [9], so additional testing efforts shoulel tmore

focused on more error-prone sections until it igjescted

to more rigorous testing.

3.12 Test Evaluation

We should have some criterion to decide whetheshtis

successful or not. If limited test cases are exatuthe

test oracle (human or mechanical agent which dscide

whether program behaved correctly on a given 8t [

can be tester himself/herself who inspects andddésedhe

conditions that makes test run successful. Whercteses

are quite high in number, automated oracles must be

implemented to determine the success or failuréests

without manual intervention. One good criterion fest

case evaluation is test effectiveness (number rafr#iit

uncovers in given amount of time).

3.13 Error Absence Myth

System that does not fulfill user requirements wdt be

usable even if it does not have any errors. Findind

fixing defects does not help if the system buileslaot

fulfill the users’ needs and expectations. In additto

positive software testing (which verify that systeimes

what it should do), we should also perform negative

software testing (which verify that system does dot

what it should not do).

3.14 End of Testing

Software testing is an ongoing process, which is

potentially endless but has to be stopped somewhere

Realistically, testing is a trade-off between budgene

and quality [11]. The effort spent on testing sllobk

correlated with the consequences of possible progra

errors [11]. The possible factors for stoppingitesare:

1. The risk in the software is under acceptablé.lim

2. Coverage of code/functionality/requirements heaca
specified point.

3. Budgetary/scheduling limitations.

IV. CONCLUSION
Software testing is a vital element in the SDLC aad
furnish excellent results if done properly and etifeely.
Unfortunately, Software testing is often less forrand
rigorous than it should, and a main reason for ikat
because we have struggled to define best practices,
methodologies, principles, standards for optimdtveare
testing. To perform testing effectively and effiuily,
everyone involved with testing should be familiaithw
basic software testing goals, principles and cotscep
Already lot of work has been done in this fielddaven
continues today. Implementing testing principlesréal
world software development, to accomplish testinglg
WWwWw.ijaems.com

to maximum extent keeping in consideration theirigst
limitations will validate the research and alsol \péve a
way for future research.

REFERENCES

[1] Leelavathi Rajamanickam, "Testing Tool for Object
Oriented Software" International Journal of
scientific research and management (IJSRM),2.
Issue 8 august 2014, pages: 1205-1208 (2014).

[2] Leelavathi Rajamanickam, “Software Testing,
Analysis and Obijectives” International Journal of
Advanced Trends in Computer Science and
EngineeringVol 3, No.5, Pages: 01-04 (2014)

[3] Antonia Bertolina, “Software Testing Research and
Practice”, Proceedings of the abstract state mashin
10" international conference on Advances in
theory and practice, 1 -21, 2003.

[4] Drake, T. (1996)—"Measuring software quality: a
case study.” IEEE Computer, 29 (11), 78-87.

[5] [5] James Bach—"Exploratory Testing Explained”,
vol 1.3 4/16/03.

[6] John E. Bentley, Wachovia Bank, Charlotte NC,
—"Software Testing Fundamentals—Concepts,
Roles, and Terminology”, SUGI 30.

[7]1 Myers, Glenford J..—"The art of software testing”,
New York: Wiley, c1979. ISBN: 0471043281

[8] Nick Jenkins—"A Software Testing Primer”, 2008.

[9] Peter Sestoft, “Systematic software tedtinggrsion
2, 2008-02-25.

[10]Programming Research Lte;"Static and Dynamic
Testing Compared”.

[11]Rajat Kumar Bal, “Software Testing”.

[12]Salim Istag et al., —"Debugging, Advanced
Debugging and Runtime Analysis—, (IJCSE)
International Journal on Computer Science and
Engineering VVol. 2, No. 02, 2010, pages: 246-249.

[13]Shari Lawrence Pfleeger-"Software Engineering,
Theory and Practice”, Pearson Education, 2001.

Page | 430

