
International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-5, May- 2016]
Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 269

Software CrashLocator: Locating the Faulty
Functions by Analyzing the Crash Stack

Information in Crash Reports

Divya R S1, Pushpalatha M N2

1Dept. of Information Science Engineering, M S Ramaiah Institute of Technology (Autonomous Institute Affiliated to VTU)
Karnataka, India

2Assistant Professor, Department of ISE, M S Ramaiah Institute of Technology, Karnataka, India

Abstract— In recent years, studies have been dedicated
mainly in the analysis, of crashes in real-world related to
large-scale software systems. A crash in terms of computing
can be termed as a computer program such as a software
application that stops functioning properly. Software crash
is a serious problem in production environment. When crash
happens, the crash report with the stack trace of software at
time of crash is sent to the developer team. Software
development team may receive hundreds of stack traces from
all deployment sites and many stack traces may be due to
same problem. If the developer starts analyzing each trace, it
may take a longer duration of time and redundancy many
happen in terms of two developers fixing the same problem.
This motivates us to present the solution to analyze the stack
traces and find the important functions responsible for crash
and rank them, so that development resources can be
optimized. In this paper we have proposed the solution to
solve the problem by developing Software CrashLocator.
Keywords— Crash Locator, Windows Error Reporting,
Crash Report, Mozilla Crash Reporter.

I. INTRODUCTION
Software crashes are the severe manifestation of software
faults. Software Crashes are required to be fixed with a
higher priority. Many crash reporting systems to name a few
includes Windows Error Reporting [14], Apple Crash
Reporter [2], and Mozilla Crash Reporter [25] have been
proposed and deployed. These Error Reporting systems
automatically collect relative information like crashed
modules and crash stack) at the time of crash,later cluster the
similar crash reports that are likely to be caused by the same
fault into buckets (categories), and then present the crash
information to the developers for debugging.
Existing crash reporting systems [2, 14, 25] focus on
collecting and later bucketing crash reports. The collected
crash information is mainly useful for debugging purpose,
but these systems do not support automatic localization of
crashing faults. As a result, for debugging crashes non-trivial
manual efforts are required.

Various fault localization techniques (e.g., [1, 18, 21, 22])
over the years, have been proposed so that might help the
developers to locate faults. By static analysis of both the
failing and passing execution traces of test cases, these
techniques suggest list of suspicious program entities. Later
the developers can examine the ranked list of suspicious
entities to locate faults. However, these techniques for fault
localization requires complete information of passing and
failing execution traces, in case of crash reports, typically
contain only information of crash stacks that are dumped at
the time of crashes.
In paper [26], authors proposed a novel technique named
CrashLocator, for locating the crashing faults based on static
analysis techniques and crash stacks. The proposed
technique mainly targets an locating faulty functions as
functions are commonly used in unit testing and are helpful
for crash reproducing [5, 16]. In case of widely-used system,
one crashing fault might result in triggering a large number
of crash reports. A sufficient number of crash stacks can
therefore be used by CrashLocator for locating the crashing
faults. CrashLocator initially expands the crash stacks into
approximate crash traces (the failing execution traces that
lead to crash) using static analysis techniques including call
graph analysis, backward slicing and control flow analysis.
For the purpose of effective fault localization, CrashLocator
applies the concept termed term-weighting [24]: locating
crashing faults is treated as the problem of term weighting,
i.e., calculating importance of the functions (term) for a
bucket of crash traces (documents). CrashLocator considers
several factors to weigh a function: the frequency of the
function appearing in the bucket of crash traces, the
frequency of a function appearing in the crash traces of
different buckets, the distance between the crash point and
function, and the size of a function. Using the listed factors,
CrashLocator calculates the suspiciousness score for each
function in approximate crash traces. Finally, a ranked list
of suspicious faulty functions is given to developers. This
helps the developers to examine the top N returned functions
that helps them to locate crashing faults.

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-5, May- 2016]
Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 270

In crash locator, for calculating the score, lines of code
parameter is used. This parameter is not effective to rank the
functions as number of lines is not a indicator that function is
error prone. Considering these problems in CrashLocator, we
propose Software CrashLocator with better ranking metrics
than CrashLocator.

II. RELATED WORK
In recent years, analysis of crashes of real-world, large-scale
software systems, many studies have been dedicated. In
order to automatically collect the crash information from
field, many crash reporting system have been deployed. For
example, Microsoft deployed the distributed system called
Windows Error Reporting (WER) [14]. It has collected over
billions of crash reports [14] during its ten years of
operation. These crash reports have helped the developers
diagnose problems. On receiving the crash reports, crash
reporting system needs to organize these crash reports into
categories. This process of organizing the similar crash
reports that are caused by the same problem is often termed
as bucketing [14]. Dang et al. [11] based on call stack
similarity a method was proposed for finding the similar
crash reports. Sung et al. [19] also proposed a method to
identify the duplicate crash reports based on similarity of
crash graphs.
Ganapathi et al. [13] analyzed crash data of Windows XP
kernel and found poorly-written device driver code are
predominant cause for OS crashes. Several methods are
proposed by researchers, for reproducing the crashes. For
example, ReCrash [5] a method to generate unit tests that
reproduce the given crash based on captured program
execution information was proposed. Csallner and
Smaragdakis also proposed methods for unit test case
generation for reproducing the crashes [9, 10].
The work described above mainly deals with the
construction of a crash reporting system, the causes for
crashes, and the reproduction of crashes. And also a focus on
software crash reports analysis is done. Unlike the above
described work, we also address the problem of locating
crashing faults, to facilitate debugging activities
Besides statistical techniques of fault localization, many
other techniques have been proposed inorder to facilitate
debugging [27]. For example, consider Yoo et al. proposed
Information Theory based techniques that can help reduce
fault localization costs and help improve the effectiveness
[25]. Zhou et al. proposed information retrieval based
approach, which can help locate faulty files based on the
initial bug reports. Jiang et al. [15] proposed context-aware
statistical debugging method that can help not only in
locating the bug but also provide faulty control flow paths.
Delta debugging simplifies failed test cases and preserves the
failures, producing cause-effect chains and linking them to
the suspicious statements. Program slicing techniques were

applied by Zhang et al. for fault localization by identifying
the set of program entities that could affect the values of
variables in a given program point. Artzi et al. [3, 4]
proposed methods for fault localization that leverage
combined concrete and symbolic executions. F. Servant and
J. Jones leveraged statistical fault localization results and
history of source code to assign the faults to the developers.
Many inputs are required by these techniques such as test
cases, complete initial bug reports and execution traces. Our
approach utilizes only the crash stack information.
Liblit et al. [20, 21] proposed a sparse sampling based
statistical debugging method that can reduce the overhead of
instrumentation in released program. Their sampling
instrumentation technique incurs less than 5% slowdown at
1/1000 sampling rate. However, as they pointed out, lower
sampling rate means that more sampling traces from users
are required in order to observe the rare events (i.e., the
observation of faulty entity execution). Therefore their
method is more suitable for popular and widely used
software, while our approach only relies on crash stacks
collected by a crash reporting system. Furthermore, their
approach requires users to execute specially instrumented
software releases, while our approach requires only the
normal releases of software.
Chilimbi et al. proposed an adaptive and iterative profiling
method called Holmes [8] to locate post-release faults.
Holmes also considers functions in stack that are closer to
the crash point as more important ones. Our approach is
different in that Holmes needs to instrument the program and
collect the dynamic information from end-users. Also, our
approach considers more factors such as the frequency as
well as the inverse bucket frequency of a function. Ashok et
al. proposed a tool called DebugAdvisor [6], which can
facilitate debugging by searching for similar bugs that have
been resolved before. DebugAdvisor requires the users to
specify their debugging context as a “fat query”, which
contains all the contextual information such as bug
descriptions. Unlike DebugAdvisor, our work only requires
source code and crash stacks.
Jin and Orso proposed a failure reproducing tool named
BugRedux [16]. BugRedux collects different kinds of
execution data from end users and reproduces field failures
using symbolic analysis. The exploration study of BugRedux
shows that function call sequence is the most effective data
for reproducing faults. To collect function call sequence, the
instrumentation overhead is from 1% to 50%, on average
17.4%. Based on BugRedux, Jin and Orso also proposed the
F3 approach [17] for localizing field failures. F3 uses the
collected execution data to generate multiple passing and
failing executions, which are similar to the observed field
failures. Both BugRedux and F3 focus on failure
reproduction or localization by analyzing an observed failure
report one at a time. Our work targets at crashing fault

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-5, May- 2016]
Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 271

localization by statistically analyzing a large amount of crash
data collected from different users. Besides, our work is
different from BugRedux and F3 in that our approach does
not require code instrumentation and would not cause
performance overhead.

III. PROBLEM DEFINITION
Given a set of stack traces and the source code, the system
must find the core functions responsible for the crash and
rank them in order of importance.
The solution to fixing the crashes from analyzing each trace
is now translated to fixing important functions responsible
for crash and it happens in most of software, same functions
are responsible for many crashes. So developer effort to
analyze each stack trace to fix the crash is now reduced.
I. Software CrashLoactor - Proposed Solution
The Software CrashLocator solution consists of three
important modules

1. Static Analysis
2. Dynamic Analysis
3. Scoring and Ranking Functions

Static Analysis
In static analysis, the source code is taken as input and call
graph is created for the source code.
Call Graph is of form
< From Classname, From Functionname, To Classname, To
Functionname>

The call graph is created by visiting each class in the code
and traverse each function in the class to find the class and
functions invoked.

Dynamic Analysis

In dynamic analysis, each crash trace is analyzed to find the
calling order of function in the stack trace.
Say below is an example stack trace.
C.fun3
B.fun2
A.fun1
The stack trace may not be complete.

Say A.fun1 has called A.fun2 which returns a output
parameter and that output parameter is passed as input to
B.fun2 and from there to C.fun3 and crash has happened.
Now the reason for crash is the output parameter from
A.fun2 which is not covered in the stack trace as stack trace
gives only the snapshot at time of crash.
To complete the stack trace, information of call graph
obtained from static analysis is used to fill the uncovered
functions in the stack trace

So due to dynamic analysis, complete stack trace like below
is generated
C.fun3
B.fun2
A.fun2
A.fun1
Scoring and ranking functions

In this step a matrix of crash report ID vs functions is
made. In this matrix, if function is covered in the stack trace
of the crash report value in matrix is set as 1 else it is 0.

Table.1: The Crash Traces

 ��

��

… �
�−1

 ��

��

1 0 … 1 1

��

1 1 … 1 1

…. …. …. … … …

�	
�

1 1 … 0 1

�	

1 0 … 0 1

Each functions is given a score based on following metrics

1. Functional Frequency(FF)
2. Inverse Bucket Frequency(IBF)
3. Cyclometric Complexity(CC)
4. Inverse Average Distance to Crash Point (IAD)
5. Number of times where function is referred in static

call graph.(NC)
The final score of the function is given as
FS = FF * IBF * CC* IAD * NC
FF is the function frequency. The number of times function
occurred in crash.

It is calculated as Number of times functions appears divided
by number of crash.
IBF is inverse bucket frequency.

B is the number of crash and Bf is the number of crash
where function occurs.
CC is the cyclometric complexity
IAD is inverse average distance to crash points which gives
the measure of distance to crash point.
NC is the number of times where function is referred in
static call graph.

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-5, May- 2016]
Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 272

After calculating the score, the functions are ranked in
descending order of score.

IV. RESULTS
Software CrashLocator solution is implemented in JAVA.
The snapshots of the system is below

The jar files of entire source code is given as input and from
this jar file, static analysis is done

The result of static analysis is done

For dynamic analysis, the folder where all stack traces is
kept is given as input

After dynamic analysis, the complete stack trace is
displayed.

After static and dynamic analysis, function scoring is done to
rank the functions

Functions score are calculated and functions displayed in the
descending order of score.
The function which appears first is most important to fix and
functions which appears last is least important function to
fix.

V. CONCLUSION
In this paper we have proposed the solution for finding the
functions which are responsible for crash and ranking those
functions by analyzing the stack trace of crash reports. Later
Rank the function based on the scores obtained by using the
metric listed above and reduce the developer effort in terms
of analyzing each crash in fixing the functions that resulted
in the occurrence of crash.

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-5, May- 2016]
Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 273

VI. ACKNOWLEDGEMENT

I thank all the faculty members of Department of
Information Science, MSRIT and also thanks to the
management of MSRIT, Bengaluru for providing the
academic and research atmosphere at the institute.

REFERENCES
[1] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. “On

the accuracy of spectrum-based fault localization”. In
Proceedings of Testing: Academic and Industrial
Conference Practice and Research Techniques -
MUTATION (TAICPARTMUTATION 2007), pages
89-98. IEEE Computer Society Press, 2007.

[2] Apple, “Technical Note TN2123: CrashReporter,”
2010,developer.apple.com/library/mac/#technotes/tn20
04/tn2123.html.

[3] S. Artzi, J. Dolby, F. Tip and M. Pistoia. Practical fault
localization for dynamic web applications. In Proc.
ICSE 2010, pp. 265 – 274, Cape Town, South Africa,
2010.

[4] S. Artzi, J. Dolby, F. Tip and M. Pistoia. Directed test
generation for effective fault localization. In Proc.
ISSTA 2010, pp. 49 – 60, Trento, Italy, 2010.

[5] S. Artzi, S. Kim, and M. D. Ernst, “ReCrashJ: a tool for
capturing and reproducing program crashes in deployed
applications”. In Proc. ESEC/FSE’09, pp. 295-296,
August 2009.

[6] B. Ashok, J. Joy, H. Liang, S. K. Rajamani, G.
Srinivasa and V. Vangala. DebugAdvisor: a
recommender system for debugging. In Proc.
ESEC/FSE’09, pp. 373-382, Amsterdam, The
Netherlands, August 2009.

[7] D. F. Bacon and P. F. Sweeney. Fast static analysis of
c++ virtual function calls. In Proc. OOPSLA, pp. 324-
341, 1996.

[8] T. Chilimbi, B. Liblit, K. Mehra, A. Nori, and K.
Vaswani. “Holmes: effective Statistical Debugging via
Efficient Path Profiling”. In Proc. ICSE 2009, pp. 34-
44, 2009.

[9] C. Csallner and Y. Smaragdakis, "JCrasher: an
automatic robustness tester for Java," Softw. Pract.
Exper., vol. 34, pp. 1025ϋ1050, 2004.

[10] C. Csallner and Y. Smaragdakis. Check ’n’ Crash:
Combining static checking and testing. In Proc. ICSE
2005, pp. 422– 431.

[11] Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel,
"ReBucket: A method for clustering duplicate crash
reports based on call stack similarity", In Proc. ICSE
2012, pp.10841093, Zurich, Switzerland, June 2012.

[12] T. Dhaliwal, F. Khomh, and Ying Zou. Classifying
field crash reports for fixing bugs: A case study of
Mozilla Firefox. In Proc. ICSM 2011, pp. 333-342,
Williamsburg, VA, USA, Sep 2011.

[13] A. Ganapathi, V. Ganapathi, and D. Patterson,
"Windows XP kernel crash analysis," in Proceedings of
the 20th conference on Large Installation System
Administration. Washington, DC: USENIX
Association, 2006, pp. 12-12.

[14] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V.
Orgovan, G. Nichols, D. Grant, G. Loihle, and G. Hunt,
"Debugging in the (very) large: ten years of
implementation and experience," in Proc. SOSP 2009,
Big Sky, Montana, USA, pp. 103-116, 2009.

[15] L. Jiang and Z. Su. Context-aware statistical
debugging: from bug predictors to faulty control flow
paths. In Proc. ASE 2007. ACM, 2007.

[16] W. Jin and A. Orso. "BugRedux: Reproducing field
failures for in-house debugging." In Proc. ICSE 2012,
pp. 474–484, Zurich, Switzerland, 2012.

[17] W. Jin and A. Orso. “F3: Fault Localization for Field
Failures.” In Proc. ISSTA 2013, pp.213-223, Lugano,
Switzerland, 2013.

[18] J. Jones, M. J. Harrold, and J. Stasko. Visualization of
test information to assist fault localization. In Proc.
ICSE 2002, pp. 467-477, Orlando, FL, USA, 2002.

[19] S. Kim, T. Zimmermann, and N. Nagappan, Crash
graphs: An aggregated view of multiple crashes to
improve crash triage, In Proc. DSN 2011, pp. 486 –
493, Hong Kong, June 2011.

[20] B. Liblit, A. Aiken, A. X. Zheng, and Michael I.Jordan.
“Bug isolation via remote program sampling”. In Proc.
PLDI 2003, pp. 141–154, San Diego, CA, 2003.

[21] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M.
Jordan. “Scalable statistical bug isolation”, In Proc.
PLDI 2005, pp. 5-26, 2005.

[22] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff.
SOBER: Statistical model-based bug localization. In
Proc. ESEC/FSE 05, pp. 286-295, Lisbon, Portugal,
2005.

[23] C. Luk , R. Cohn , R. Muth , H. Patil , A. Klauser , G.
Lowney , S. Wallace , V. J. Reddi , and K. Hazelwood,
“Pin: building customized program analysis tools with
dynamic instrumentation”, In Proc. PLDI 2005, pp.
190-200, Chicago, Illinois, USA, June 2005.

[24] C. D. Manning, P. Raghavan and H. Schütze.
Introduction to Information Retrieval, Cambridge
University Press, 2008.

[25] Mozilla, "Mozila Crash Reports," 2012,
http://crashstats.mozilla.com.

[26] [26] Rongxin Wu "CrashLocator: Locating Crashing
Faults Based on Crash Stacks " ACM 2014

