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Abstract

The quantitative assessment of the state and dynamics
of a social system is a very difficult problem. This
issue is important for both practical and theoretical
reasons such as establishing the efficiency of social
action programs, detecting possible community needs
or allocating resources. In this paper we propose a new
general theoretical framework for the study of social
complexity, based on the relation of complexity and
entropy in combination with evolutionary dynamics
to assess the dynamics of the system. Imposing the
second law of thermodynamics, we study the conditions
under which cooperation emerges and demonstrate
that it depends on the relative importance of local
and global fitness. As cooperation is a central concept
in sustainability, this thermodynamic-informational
approach allows new insights and means to assess it
using the concept of Helmholtz free energy. We then
introduce a new set of equations that consider the more
general case where the social system changes both in
time and space, and relate our findings to sustainability.
Finally we present a model for the collapse of Rapa
Nui island civilization in NetLogo. We applied our
approach to measure both the entropy production and
the complexity of the system and the results support

our purpose that sustainability needs a positive entropy
production regime which is related to cooperation
emergence.

I. Introduction

Complexity comes from the Latin plexus, which means
interwoven. Something complex is thus difficult to
divide, since its interactions are partially responsible
for the future of the system [1].

Given that interactions generate novel information, a
reductionist scientific approach has been recognized to
be inappropriate for studying complex systems, since it
attempts to simplify and separate each component in
order to predict its behavior [1]. Considering that the
information generated by the interactions is not included
in its initial and boundary conditions, the predictability
of the system is restricted by Wolfram’s computational
irreducibility [2].

Interactions can also be used by components for self-
organization, producing global patterns from local dy-
namics. Furthermore, another major source of com-
plexity is the fact that the interactions themselves may
change in time, generating non-stationary state spaces.
Therefore, even when a solution can in principle be cal-
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culated, it will become inapplicableat in a futue point if
the problem for which it was originally obtained ceases
to exist [1].

Just as Lyapunov exponents characterize different dy-
namical regimes, or temperature represents a statistical
average of the kinetic energy of the system, it would be
very useful to have global measures for complexity. The
interactions between the components in each particular
case are difficult to calculate, but complexity measures
that represent the type of interactions between them
can actually be calculated.

A useful measure of complexity should enable us to
answer questions along the follow lines: Is a desert more
or less complex than a tundra? What is the complexity
of different influenza outbreaks? Which organisms are
more complex: predators or prey; parasites or hosts; in-
dividuals or society? What is the complexity of different
music genres? [3]

As Michaelian (2000) [4] has pointed out, one of the
greatest misconceptions preventing the description of
biological or social systems from a physical perspective
had its origin in the concept of entropy, and the for-
mulation of the second law of Thermodynamics during
the original development of the theory of heat engines.
In this context, entropy is a measure of the energy
that is not available to perform work. Boltzmann later
developed Clausius’s concept at the microscopic level,
relating the entropy of a system to the probability (pi)
of it existing in a macroscopic state, based on the num-
ber of equivalent microscopic states that are consistent
with the macroscopic state. Here entropy is defined as:

S = −
∑

pi log pi (1)

Entropy, unfortunately, became associated with dis-
order, the antithesis of complexity. How was it possible
that biological or social systems appeared to increase
their complexity and reduce disorder, when the second
law seems to demand its decrease? One of the most ac-
cepted of these explanations establishes that the second
law applies only to closed systems, and hence it does
not apply directly to biological or social systems which
are not closed (they exchange energy, matter and infor-
mation with their environment). Then, these kind of
systems may only reduce their entropy at the expense of
the environment, with which they form a closed system.

As discussed by Brooks in his book Evolution as En-
tropy, the key to solving this apparent paradox is to
realize that biological and social systems are nonequi-
librium phenomena characterized by an growing phase
space and a tendency for realized diversity to lag behind
a maximum in entropy. In a physical context, two of
the postulated mechanisms for increasing the number
of microstates were the expansion of the universe, and
the production of elementary particles [6].

Let us consider the diagram in Fig 1 where the vertical

Fig 1. Adapted from ”Evolution as Entropy” [7],
shows the relation between the total information
capacity of a system, associated with the maximum
available entropy, and the actual information content
of the system after all macroscopic constraints are
applied.

axis is a measure of the entropy of the system (S). If
the maximum entropy Smax grows with time, then the
observed entropy or the final entropy that is attained
once all constraints (macroscopical and historical) has
been taken into account may also grow.

Considering a more abstract definition of entropy,
given a string of characters X, composed by a sequence
of values or symbols x which follow a probability dis-
tribution P (x), information (according to Shannon) is
defined as,

I = −
∑

p(x) log p(x) (2)

which has the same functional form as physical entropy.
Therefore, in this work we shall talk about entropy (S)
and information (I) interchangeably. Then, maximum
entropy Smax is the system’s total information capacity,
while observed entropy (Sobs) is the actual information
content. The macroscopic constraint is macroscopic
information and the historical constraint is historically-
excluded information.

Further, Gershenson and coworkers [5] have proposed
that complexity (C) may be directly measured as,

C = aIout(1− Iout) (3)

where a is a normalization constant and Iout is the
system’s information after all computations have taken
place. In terms of entropy, it can be written as,

C = aSobs(1− Sobs) = aS(1− S) (4)

In this form we may measure the complexity of a
system by measuring its entropy.
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II. Complexity in Evolutionary
Dynamics

At this point, we present a simple computation in the
context of game theory as applied to the social sciences
that poses some interesting questions. Essentially, we
show that if social interactions are described by a game
and we compute the associated entropy, then there
are some cases in which it will increase monotonically.
More precisely, assume for simplicity and without loss
of generality that individuals in a society can adopt
two strategies A or B, and let xA and xB describe the
proportion of the population choosing strategy A and
B respectively. So we have xA +xB = 1. Since they are
both positive, we can interpret them as probabilities.
We assume, in the standard context of game theory,
that they satisfy the replicator equations,

ẋA = (fA (xA, xB)− φ)xA
ẋB = (fB (xA, xB)− φ)xB

(5)

where the dot indicates the derivative with respect to
time, fA (xA, xB) describes the fitness level assigned
to an individual that adopts strategy A, and φ is the
average fitness. Now, we may define the entropy of the
system as,

S(xA, xB) = −[xA lnxA + xB lnxB ] = −
∑
xi lnxi

(6)
and the corresponding entropy production as,

dS(xA, xB)

dt
= −

∑
[ẋi lnxi] (7)

since
∑
xi = 1 and therefore d

dt

∑
xi = 0. Using the

replicator equation we finally get,

dS

dt
= −

∑
xi (fi − φ) lnxi (8)

III. Sustainability and Emer-
gence of Cooperation

This is an interesting formulation because the sign of the
entropy production depends on whether the fitness of a
particular population exceeds the average fitness of the
entire population or not. Of course we should be careful
about exactly which entropy we are measuring. For all
open thermodynamic systems, entropy production has
two terms, internal and external, so,

dS

dt
=
dSi

dt
+
dSe

dt
(9)

All macroscopic systems and processes with an un-
derlying physical basis are subject to definite thermo-
dynamic laws. One of the most important is the second

law of thermodynamics, which establishes that the inter-
nal production of entropy due to irreversible processes
occurring within the system must be positive,

dSi

dt
> 0 (10)

and, for some special cases where external constraints
are constant, classical irreversible thermodynamic the-
ory establishes that the system will eventually arrive at
a thermodynamic stationary state in which all macro-
scopic variables, including the total entropy, are station-
ary in time,

dS

dt
= 0 (11)

and therefore,

dSi

dt
= −dSe

dt
(12)

implying that,

dSe

dt
< 0 (13)

Maintaining such a system in a stable thermodynamic
stationary state requires a continuous flow of entropy
into the system.

As the (6) is the total entropy of the game, then
the game will evolve to a thermodynamic stationary
state when there exists a dominant strategy. Strategic
dominance (commonly called simple dominance) occurs
when for one player one strategy is better than the
other strategies, no matter how his opponents may play.
Many simple games can be solved using dominance. The
opposite, intransitivity, occurs in games where for one
player one strategy may be better or worse than another
strategy, depending on how his opponents may play.

Let us assume that A is the dominant strategy and
let us write the entropy explicitly,

dS

dt
= − [xA (fA − φ) lnxA]− [xB (fB − φ) lnxB ] (14)

then, since A is dominant, the population with this
strategy has to decline over time since its fitness is
lower than the average and eventually will disappear.
Then, since the population with strategy B is the entire
population, the fitness of B and the average fitness are
the same and entropy production is zero, reaching a
stationary state. This of course means that if the game
is representing a social process, this process will require
a continuous flow of entropy into the system, which is
not sustainable.

Most interesting is that from the thermodynamic
stand point, sustainability (understood as the capac-
ity of a system to reach states of greater longevity) is
attained by minimizing the Helmholtz free energy,
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F = U − TS (15)

where T is the temperature of the system associated
with the internal randomness, and U is the internal
energy associated with the energy due to interactions [4].
There are two ways of minimizing Helmholtz free energy,
one is by minimizing U and the other is by maximizing
S. Most of the time the internal energy U is fixed or
cannot be controlled deliberately, so the only alternative
is maximizing the entropy. As dS/dt > 0, entropy grows
and the system is in a more sustainable configuration.
In contrast, when dS/dt < 0 entropy decreases and the
system is moving away from sustainability.

Positive entropy production is only achievable when
the average fitness is greater that the local one and
that corresponds to cooperative games. Cooperation
is essential to sustainability, as might be expected, but
now we have a quantitative indicator for measuring how
sustainable a system is.

Another interesting aspect of this formulation is that
it also clarifies the role of entropy in complexity. We
have shown that complexity may be indirectly measured
by using the system’s entropy, but again we must be
very careful in not oversimplifying this with the false
idea that complexity and entropy are exactly the same:
they are related but they are not the same. The common
conception of complexity, prevalent among physicists, is
based on the notion of a noninteracting ideal gas. It is
only in this case that a direct association with entropy
has some legitimacy. In the real world, interactions are
an integral part of the ordering of material particles.
In fact, as pointed out by Michaelian (2000) [4], a defi-
nition of order had been given long ago by Helmholtz
in his formulation of free energy (15). Increasing the
entropy in (15) decreases the free energy of the system.
In this scheme, order has a very natural description,
and increasing the order of the system makes it more
stable, lasting longer in time, more sustainable. This is
true in the ideal gas approaching equilibrium, the crys-
tallization of matter, or the evolutionary dynamics of a
community of interacting biological or social systems.

Then, the association between information and en-
tropy is tricky because complexity is measured as in-
formation after all the computations of the system has
been carried out. This information, of course is partially
comprised of interactions and thus the entropy to be
used must include them. The entropy that appears in
the Helmholtz free energy expression is thus appropriate.
This allows us to make a direct connection with the en-
tropy production calculated from the replicator equation
and, as Michaleian [4] suggests, identify sustainability
with Helmholtz free energy minimization. Then, fitness
is a measure of this capacity for minimization.

Until now, in this first approximation, we have only
worked with the temporal dimension and not even fully

so, because we have assumed that interactions do not
change over time. But, of course, in social systems inter-
actions may evolve with time; for example two agents
that used to cooperate may suddenly stop cooperating
(or vice-versa), changing the form of the interaction and
thus the entropy of the system as Axelrod proved [8].
Even more, the spatial dimension plays a key role in
the emergence of cooperation [9] so we must understand
how it contributes to entropy.

Let us begin by considering only the spatial contribu-
tion to entropy with non-time-dependent interactions
in a system of n replicator equations in a space defined
by a set of rj coordinates as,

∂xi(rj , t)

∂t
= xi (fi(x1, ..., xi, ..., xn)− φ) (16)

We assume some basic probabilistic properties for
these equations as if 0 ≤ xi(rj , 0) ≤ 1 then for every
subsequent time period 0 ≤ xi(rj , t) ≤ 1. In the same
way if

∑
xi(rj , 0) = 1 then for every subsequent time

period
∑
xi(rj , t) = 1.

Under these considerations, the first approximation
for considering a spatial contribution would be intro-
ducing a diffusive term in the replicator equations,

∂xi(rj , t)

∂t
= εi∆xi + xi (fi − φ) (17)

where εi is a diffusion coefficient and ∆ is the laplacian
operator.

Now, an interesting question arises: under which
conditions is the rate of change of total entropy,
d
dt

∫
Ω

S(rj , t)drj , is larger than zero, so the second law of

thermodynamics holds?
We have that,

d

dt

∫
Ω

S(rj , t)drj =

∫
Ω

∂

∂t
S(rj , t)drj (18)

and using the definition of entropy, S = −
∑
xi lnxi,

d

dt

∫
Ω

S(rj , t)drj = −
∑∫

Ω

∂

∂t
(xi lnxi) drj

 (19)

Applying the derivative and using the replicator equa-
tion,

d

dt

∫
Ω

S(rj , t)drj = −
∫
Ω

{
∂

∂t

(∑
xi(rj , t)

)
+
∑

[εi∆xi + xi (fi − φ)] lnxi

}
drj

(20)

and using the normalization condition
∑
xi(rj , t) = 1

it turns out that ∂
∂t (
∑
xi(rj , t)) = 0, and so,
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d

dt

∫
Ω

S(rj , t)drj = −
∑∫

Ω

{[εi∆xi

+xi (fi − φ)] lnxi} drj

(21)

and finally,

d

dt

∫
Ω

S(rj , t)drj = −
∑∫

Ω

εi∆xi lnxidrj

−
∑∫

Ω

xi (fi − φ) lnxidrj

(22)

Now the sign of the entropy production is, in part,
defined by the sign of (fi − φ) in the second integral
but, also, by the spatial term in the first. Focusing on
the spatial integral and using the Divergence Theorem
we obtain that,

∫
Ω

εi∆xi lnxidrj = −
∫
Ω

∇xi · ∇ (lnxi) drj

+

∫
∂Ω

lnxi
∂xi
∂rj

dσ

(23)

where an inflow of probability to the region Ω is sta-
blished when ∂xi

∂rj
> 0 and an outflow from the region

occurs when ∂xi

∂rj
< 0. Considering that ∇ lnxi = 1

xi
∇xi

then we have that
∫
Ω

εi∆xi lnxidrj > 0 for positive prob-

ability flux.
These results imply that if φ > fi and the probabil-

ity flux is positive then we recover the second law of
thermodynamics dSi

dt ≥ 0.
Now let’s consider a more general case where the

interaction may change in time and space. For this
instead of the replicator equation, we start by using the
López-Padilla equations [10].

∂xi(rj , t)

∂t
= div [ei(rj , t)∇xi(rj , t)] (24)

where xi is the probability of finding a player in the
position rj at the time t; and e(rj , t) is the corresponding
strategy that obeys the equation,

∂ei(rj , t)

∂t
= −div [fi(rj , t)ei(rj , t)]

+∇2 [φ(rj , t)ei(rj , t)]

(25)

As before, we want to calculate entropy production,

d

dt

∫
Ω

S(rj , t)drj = −
∑∫

Ω

∂

∂t
(xi lnxi) drj

 (26)

but now we use the new set of equations.

d

dt

∫
Ω

S(rj , t)drj =

−
∑∫

Ω

{div [ei(rj , t)∇xi(rj , t)] lnxi} drj
(27)

This new expression for entropy production considers
the complete contributions of space and interactions,
but now the analysis for determine the conditions in
which entropy production is monotonous is not a trivial
one, and it will depend on the nature of the interactions
represented by the strategies e(rj , t).

IV. The Collapse of Rapa Nui Is-
land, a case of study

Easter Island, also called Rapa Nui by its inhabitants,
is a place so remote that its civilization never contacted
any other human group from the time of its settlement
(c. 000-1200 a.d. [11]) to the year the first Europeans
arrived in the island (1722 a.d.). This civilization flour-
ished for for several centuries, developing an impressive
economy and culture. However, between 1600 and 1800

a.d. the Rapa Nui civilization underwent ecological,
societal, and economic collapse. From a high watermark
of around 13000 people [12], the population of the is-
land crashed to 3000 in less than two hundred years.
The reason for this collapse is as yet unknown, but the
most accepted hypothesis is that excess deforestation of
the island caused a food shortage that led to internal
warfare and an eventual radical decline in population
and material culture [13].

The population of Rapa Nui survived and thrived on
a few sources of food. They grew taro and bananas,
bred Polynesian chickens, fished tuna and dolphins and
gathered shallow-water mollusks. Though the island has
been barren since we have record of it, pollen records
offer strong evidence that the island was once completely
covered by palm trees [14]. The Rapa Nui people must
have cut down these trees to clear land for agriculture,
and to build vessels to fish in the open ocean [13].

The monumental stone statues of the island, called
moai, were built during this period of growth and pros-
perity. However, at some point in the 17th century,
obsidian spearheads begin to appear in the archaeo-
logical records [15]. After a thousand years of peace,
war broke out between the clans of the island. When
the island was first contacted by Europeans, the great
statues were all standing, but each successive European
visitor to the island during the 18th and early 19th cen-
turies records more and more toppled moai. By 1850,
all statues had been toppled, and the island had shifted
to a different religion and form of government.
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IV.1 The Rapa Nui Model

The fact that this self-contained ecosystem harbored
a population that had no contact with any other civi-
lization, and therefore no trade, migration or military
activity, makes it a very interesting natural economic
experiment. This model was first developed in Elisa
Schmelkes undergraduate dissertation to create a simu-
lation of the island that could bring us closer to under-
standing what caused the collapse of Rapa Nui. The
model uses system dynamics and two interacting stocks
of population and resources to create a simple simulation
of a coupled population-resource system.

In this model, the variable that determines the class
of outcome obtained in the simulation (stability, oscil-
lation or collapse) is technology, defined here as access
to the scarcest resource in the system. This variable,
which relates to labor productivity, affects the speed
at which population grows, and hence the speed with
which it can recover from ecological crashes. When a
population has low access to its scarcest (renewable)
resource, it cannot grow fast enough to erode it, and
reaches ecological equilibrium. At intermediate levels of
access, when the population starts eroding the resource,
as population grows resource levels fall, allowing the
resource to recover and oscillate. Finally, when a popu-
lation has high access to its scarcest resource, it grows
too fast at a rate that exceeds its capacity for recov-
ery. Once this happens, it’s too late for the resource to
recover, and they both collapse.

In order to further study the dynamics of the system,
the model was later extended into a spatial agent-based
model with several different clans. Each clan is an
agent and grows organically according to the rules of the
earlier model. The finite area of the island is subdivided
into patches that contain resources, determining the
carrying capacity. Each of the patches can be harvested
for resources, and its resources renovate according to
the erosion of the entire island. Each clan initially owns
a single patch of land. As the clans grow and require
more food, they begin acquiring more land by occyping
nearby patches, until the entire island is settled.

We introduced competition by including in this ex-
panded model several strategies that can be taken by
each of the agents. Loosely following the model for bac-
terial coexistence proposed by [16] Kerr et al. (2002),
each of the agents (i.e. clans) can use their human
resources to either (a) be more productive and grow
faster, (b) be more aggressive and take other clans’
patches more easily, or (c) defend itself from attacks by
other clans. Aggression is considered more expensive
than resistance and thus imposes a heavier resource toll,
generating Rock-Paper-Scissors-like dynamics. Further,
each turn the clans see if their strategy has worked by
checking whether they have grown in the past two turns.
If they haven’t, they randomly choose another strategy.

This generates interesting new dynamics. Initially,
the clans that invest their resources into growth, tend to
dominate the landscape, and then engage in battle with
the aggressive clans. At mid to high levels of technology,
the aggressive clans usually win out and dominate in
the end. However, at lower levels, they mostly coexist
as they reach an equilibrium with their environment.

By applying the methods of analysis proposed in
this paper to the dynamics of the Rapa Nui model, we
shown (see Fig. 2) that while the total population and
resources curves do not intersect, the system is in a
steady state (dS/dt = 0) with virtually homogeneous
population growth for all clans. It seems that the clan
with the greatest initial growth will go thorough a more
drastic population drop and will face collapse earlier.
When the population and resources curves intersect, the
systems lose stationarity (dS/dt 6= 0). At this point
for the sustainability experiment (low levels of fragility)
where cooperation emerges and all clans coexists, neg-
ative entropy production takes place but the systems
reacts to it with a positive entropy flow, and after a
short oscillation in entropy production the system con-
verges (from positive entropy production values) to a
new stationary state. Initially, we observe a decrease
of complexity while population is growing and before
the curves intersect. Then, after intersection, the sys-
tem responds with soft complexity gain and subsequent
stabilization. On the other hand, when we have high
values of fragility (the collapse experiment) after the
loss of stationarity, the system enters negative entropy
production, as with the sustainability experiment. Then
the system also responds with flows of positive entropy.
However, in contrast with the previous case, the system
does not converge to stationarity but remains in a mode
of negative entropy production. Negative entropy pro-
duction grows in a step fashion with positive entropy
production deltas whenever a clan collapses. When only
one (or no) clan subsists, the system reaches a new
non-cooperative stationary state. From the complexity
perspective, every time a clan collapses there is a jump
in the complexity growing process and the final com-
plexity value in the collapse experiment is lower that
the one reached in the sustainability experiment.

V. Discussion and Conclusions

Our proposed new equation is very general and for the
first time (to our knowledge) takes into account the
contributions of both interactions and space, as well
as their time dependence. In the more restricted case
where the spatial component is not taken into account,
we have analytically shown that the emergence of co-
operation is a consequence of entropic principles and
that it may be induced by controlling the difference
between global and local fitness. This mathematical
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Fig 2. Examples of NetLogo Rapa Nui experiments
under different leves of fragility to induce
sustainability or collapse. The upper sub-figure is the
low fragility experiment where sustainability emerges
and higher values of complexity are reached. The
bottom sub-figure is the high fragility experiment
that leads to a civilization collapse in which only one
clan prevails and correspond to lowest values of
complexity

conclusion is supported by the results measured in the
Rapa Nui Model, in which collapse takes place only
when a negative entropy production gets established,
meaning that local fitness is greater than global fitness.
Further, when the system dynamics is dominated by
positive entropy production, cooperation emerges (clans
coexist) and greater values of complexity are reached
once the system returns to stationarity. Thus the hy-
pothesis that sustainability is related to positive entropy
production regimes, corresponding to greater values of
complexity, is confirmed at least for this model. This
seems to us very important, because it opens the door
to the construction of sustainability indicators based on
entropy and complexity measurements.
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