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Abstract. A potential problem in natural gas pipeline networks is bottlenecks 

occurring in the flow system due to unexpected high pressure at the pipeline 

network junctions resulting in inaccurate quantity and quality (pressure) at the 

end user outlets. The gas operator should be able to measure the pressure 

distribution in its network so the consumers can expect adequate gas quality and 

quantity obtained at their outlets. In this paper, a new approach to determine the 

gas pressure distribution in a pipeline network is proposed. A practical and user-

friendly software application was developed. The network was modeled as a 

collection of node pressures and edge flows. The steady state gas flow equations 

Panhandle A, Panhandle B and Weymouth to represent flow in pipes of different 

sizes and a valve and regulator equation were considered. The obtained system 

consists of a set of nonlinear equations of node pressures and edge flowrates. 
Application in a network in the field involving a large number of outlets will 

result in a large system of nonlinear equations to be solved. In this study, the 

Broyden method was used for solving the system of equations. It showed 

satisfactory performance when implemented with field data. 

Keywords: Broyden method; gas pipeline network; pressure distribution; steady state 

gas flow. 

1 Introduction 

Natural gas is widely used as a source of energy for industrial needs and public 

household consumption. Gas operators have the responsibility to provide gas to 

their consumers at a certain rate and pressure at their request. The gas operator 

should be able to preserve the gas pressure distribution and flowrate at each 
outlet or the consumer’s entry point. There are two main problems in natural gas 

distribution networks: optimization of pipeline diameter and determination of 
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pressure distribution. Some research on pipeline diameter optimization can be 

found in [1-3], while some research on the determination of the pressure 

distribution in transmission networks can be found in [4], and more recently in 

[5]. 

The author in [5] expresses concern about the scarceness of methods for flow 

computation for gas networks in the presence of multiple pressure levels. This 

feature is important in the analysis of real gas systems, where most of the 
observed networks cannot be decomposed into pressure-homogeneous portions, 

so they will be solved independently. In the same paper, a steady-state flow 

formulation with multiple pressure levels is proposed and implemented into a 

gas distribution network containing 67 nodes and 88 edges. It also takes into 
account corrections for elevation changes in the pipes. 

The present study focused on determining gas pressure distribution in pipeline 

networks that have multiple sources with multiple pressures. The network was 
considered as connected pipelines with steady-state gas flow from one or more 

supply points to one or more delivery points. Also, the flow in valves and 

regulators was represented by an equation. Hence we have a system of 
nonlinear equations with several variables that constitute the system model. The 

Newton and quasi-Newton methods, which are widely used to iteratively solve 

systems of nonlinear equations, have an advantage in their speed of 

convergence once they are given a sufficiently accurate initial guess of the root. 
Nowadays, the most commonly used approach is to run an optimization method 

first to find the desired initial guess and then feed it to the Newton method. This 

hybrid approach has been proven to be more satisfactory than using the root 
finding method solely. Luo, et al. [6] proposed a hybrid approach using a chaos 

optimization algorithm and the quasi-Newton method, while Burden and Faires 

[7] used a combination of the steepest descent method and the Newton method 

for solving the nonlinear equation system. The latest approach is given by 
Sidarto & Kania in [8]. Because solving nonlinear equation systems is related to 

the pressure distribution in gas pipeline distribution networks, Sidarto, et al. 

[9,10] have proposed a genetic algorithm optimization method combined with 
the Newton method. It uses the genetic algorithm to obtain a good initial guess 

of the root that is used by the Newton-type method to obtain the solution of the 

nonlinear equation system. However, for large systems it is observed that the 
convergence of the optimization process before applying the Newton-type 

method is rather slow. Detailed information on converting the root finding 

problem to an optimization process can be found in [8]. 

Using the Newton method for solving a system of n nonlinear equations with n 
variables, not only the function definitions must be provided but also the n

2
 

partial derivatives of the functions at each iteration. For large systems this is 
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certainly a disadvantage of the method. The Broyden method avoids the 

calculation of those partial derivatives. In the present research, Broyden’s 

method was used so matrix inversion does not need to be computed at each step 

[11]. The details will be explained in Section 4. Nowadays, this method is used 
in many applications. According to [12], the industrial practice of branched gas 

transmission network (GTN) analysis and operation requires high-accuracy 

computational fluid dynamics (CFD) simulators. The numerical solution of the 
obtained system of equations was performed by the modified Broyden method, 

which has been proven to be one of the best performing extensions of the 

classical secant method for numerical solution of non-linear algebraic equations. 

In [13], the development of strongly nonlinear problems in helicopter 
aeroelasticity is considered. For strongly nonlinear problems, numerical 

solutions obtained in an iterative process can diverge due to numerical 

instability. Therefore, choosing the method is critical. In the same research, a 
comparative study was conducted using the modified Newton, rank-1 Broyden, 

and rank-2 BFGS (Broyden-Fletcher-Goldfarb-Shanno) update methods. One of 

the results showed that Broyden’s update method gives a reduction of the 
number of iterations relative to the Newton method and it gives a higher rate of 

convergence. The convergence of the Broyden method has been extensively 

studied in [14] and [15].  

The obtained result of this new approach was compared to the result from 
TGNet, a commercial software application commonly used in natural gas 

pipeline network simulation. The software application is suitable for static 

pipeline network simulation [16]. According to [17], it gives better performance 
compared to other well-known software applications in single-phase gas flow 

simulation, such as OLGA and SPS. The new approach was developed as a new 

software application, called DistNet by OPPINET, in which the initial values 

are generated randomly and the calculation of solutions for the system of 
equations is conducted using the Broyden method. It will be shown that its 

performance is as good as that of TGNet, which validates the results of DistNet. 

This software application has some features that are not found in TGNet, such 
as providing a choice between meta-heuristic methods combined with the 

Newton or quasi-Newton method so its running time can be managed to give 

better performance. 

2 Methodology 

A complex gas pipeline network can be modeled as a directed and connected 

graph  V,E , in which  1,2,iV = v |i = ,N  is the set of vertices/nodes 

consisting of inlets, outlets, and junctions  I O JV =V V V . E is the set of 

directed edge connecting nodes representing the flows’ directions, so it consists 
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of pipes, valves, and regulators. Each flowrate that connects node i  and node j  

is governed by the steady empirical gas flow equation and also by the valve and 

regulator equation. The constraints used in the determination of the flowrate and 
pressure distribution are the balancing equations, which are based on 

Kirchhoff’s law. 

In solving the obtained system of equations, we use the Broyden numerical 
method, which is a quasi-Newton method for finding the roots of a system of N 

nonlinear equations for N  variables. The Newton method for solving the 

system needs the computation of the Jacobian matrices at every iteration, which 

is a difficult and expensive operation for the system when N  is quite large. The 

Broyden method computes the Jacobian matrix only once, at the first iteration, 

and does a rank-one update at the rest of other iterations. 

3 Gas Flowrate Equations on Pipes and Valves/Regulators 

A pipeline system consists of nodes and node-connecting elements (NCE). 

Nodes represent points where one or more NCEs terminate and where a gas 
flow enters or leaves the system. Nodes are also the reference points for the 

pressures of the system. Several types of NCE commonly used in networks are 

pipelines, compressors, valves, and regulators. In this study, all these types were 

considered, with the exception of compressors. In balancing the flowrates using 
a mathematical model, a steady-state model from the continuity equation at each 

node in the system was used [18]. The Weymouth, Panhandle A and Panhandle 

B gas flow equations were used to represent flow in different sizes of pipes. The 
most common pipeline flow equation is the Weymouth equation, which is 

generally preferred for transmission line diameters smaller than 15 inch. The 

other equations are usually better for larger-sized transmission lines. These 
equations were developed to simulate compressible gas flows in long pipelines 

[19]. A pipe that connects node i  and node j  has length ijL  (mile), with inside 

diameter 
ijID  (inch), average flowing temperature 

ijT (°�), specific gravity 
ijG

and pipe efficiency
ijE . The pipeline system in this research was assumed to be 

in steady-state condition. The flow from node i  to j  is expressed as a flow with 

a positive signed value. The gas flowrate is expressed in units of MMSCFD 
(million standard cubic feet of gas per day) and the gas pressure is expressed in 

units of psia (pounds per square inch absolute).  

For horizontal flow, the general flowrate equation in a pipeline is written as 

follows [19]:   
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where 
ijQ is the volumetric gas flowrate in a pipe that connects nodes i  and j . 

iP  and 
jP  are the pressures at nodes i  and j  respectively. �� and �� are the 

base temperature and pressure respectively. � is the gas deviation factor at 

average flowing temperature and average pressure. The different values of 

 represent parameters for different flow equations, which are given 

in Table 1. 

Table 1 Parameter values for the different pipeline flow equations. 

Equation 1a  2a  3a  4a  5a  

Panhandle A 435.87 1.0788 0.5394 0.4604 2.618 

Panhandle B 737.0 1.02 0.510 0.490 2.530 

Weymouth 433.5 1.0 0.5 0.5 2.667 

Valves and regulators have different functions: valves manage the flowrate and 
regulators manage the flow pressure. However, the flowrate equations for both 

valves and regulators are the same:  

 
2 2

2


i j

ij ij

ij ij

P P
= C

G T
Q  (2) 

where 
ijQ and 

ijC are respectively the volumetric gas flowrate and the 

coefficient of a valve/regulator that connects nodes i  and j . Here 
iP and 

jP  are 

the upstream and downstream pressures of a valve/regulator respectively. In the 

valve model, the value of coefficient 
ijC  is given, but the values of the 

upstream and downstream pressures, 
iP and

jP , are estimated. In the regulator 

model, the value of downstream pressure 
jP  is given, but the values of 

coefficient 
ijC and upstream pressure  are estimated. 

The gas flow balancing method was developed based on Kirchhoff’s law about 

the conservation of electric charge. In the gas distribution system its analogue 
that the algebraic summation of the gas flowrates entering and leaving all nodes 

is zero was used. Let
mf be the total flowrate at a node m , and N  the total 

number of nodes in the system. The continuity equation is in the following 

form: 

, 1,...,5i ia

iP
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1

0 1,2, 
n
m

m km m

k=

= Q + QN , m= ,Nf   (3) 

Here 
mn  is the total number of all nodes adjacent to node m , while k , for 

1,..., mnk , are the indices of all nodes adjacent to node m . The flowrate, km
Q , 

is determined by Eq. (1) or (2), and its direction is indicated with a plus or 

minus sign. Here, 
mQN  is the flowrate into or out of the system at node m . 

Herein 
mf is a nonlinear equation at nodes m and it represents the flow 

imbalance at some points. Therefore, 0 for 1, 2, ,m m Nf   …  if the system is 

in a state of balance.  

Having two variables at each node, pressure p and in/out flow QN, and a 

variable of each NCE, there will be a total of 2N + M variables, where N is the 

number of nodes and M is the number of NCEs. Provided only N nodal 
equations are developed in the system of Eq. (3), N variables are to be unknown 

state variables and N + M variables are to be decision variables with given fixed 

values so that the system of equations can be solved. The state variables consist 

of N – 2 pressure variables, one QN variable and one coefficient variable of a 

regulator. Having a large number of N  nodes in a pipeline network there will 

be N  nonlinear equations to solve, so a large number of computations is 

needed as well as good convergence behavior. 

4 Broyden Numerical Methods 

The Broyden method is for numerically solving a nonlinear system of equations 

and is derived from the Newton method [7]. Consider a system of nonlinear 

equations ���	�
 = 0
� and a given initial approximate solution ���. The method 

generates a sequence ����� that will converge to �� such that �����
 = 0
�. For the 

Newton method and � ≥ 0, first compute ������
 and the Jacobian matrix �����
, 

then find ∆�� that satisfies 

 �����
 ∆�� = −������
 

So we have the following iteration formula: 

 ����� = ��� + ∆�� (4) 

The Broyden method replaces the computationally expensive Jacobian matrix �����
 with a simple choice matrix ��. Initially the method sets �� = �����
. For 

the computation of matrices ��  � > 0 as the next replacement of the Jacobian 

matrices the following update is used:  
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 �� = ���� + �
  �� !�� 

"#
�� − ����$��% $��
&

 

where $�� = ��� − ����� and #
�� = ������
 − ��������
,  

So we find ∆�� that satisfies: 

 ��  ∆�� = −������
, 
and the method from Eq. (4) gives: 

 ����� = ��� − ����������
. 

Furthermore, the Sherman-Morison matrix inversion formula (see for example 

[7]) is used to compute ���� from ������  by the following formula: 

 ���� = ������ + �
  �� !( )*)* +
� 

"$�� − ������ #
��% $��
&������  ,  

eliminating the need of a matrix inversion at each iteration. 

5 Implementation on Field Application 

The process of developing the model and the implementation of data are 
discussed in this section. Figure 1 shows the steps of implementing the process. 

The network scheme describes the flows within each couple index of pipelines 

and nodes. For each pipe its length and inside diameter are provided. The gas 

flowrate demand is specified at each outlet node. Related to the valves are data 
of the percentage of opening and the size. For the regulators, the required 

information consists of size, type and desired pressure. 

The input data in Figure 2 were obtained from a large and complex network in 
XYZ, a quite large area in Indonesia. In the model it contains 91 nodes 

consisting of 1 inlet/source, 42 outlets, and 48 junctions. The inlet at node 1 is 

in the upper right of the figure. The outlets are in bullet form, called sinks, with 

numbers from 13-134. The junctions are indicated by diamonds. It also contains 
91 pipelines, consisting of 79 pipes, 10 valves, and 2 regulators. 
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Figure 1 Steps of implementing the network simulation. 

 

Figure 2 Scheme of the gas distribution pipeline network. 

The pressure at the inlet/source node is 377.29 psia, and the temperature is 

77 °F or 536.67 °R. The gas specific gravity that comes into the network 

Input Data: 

1. Scheme of pipelines network 
2. Nodes data 
3. Fixed pressure at one of the inlets/outlets  
 and flowrate in the others. 

4. Valves and regulators data 

Generate random numbers 

as initial estimation of 

flowrate and pressure 

  

Develop equations of flowrates at 

pipelines, valves and regulators 

using equations (1) – (2). 

Solve the system of non-linear  

Equations using Broyden Method 

  

Output: 

1. Pressure at each node 

2. Flowrate at each pipe segment 

3. Gas flow direction 
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through the inlet is 0.633729. There are 42 demand/outlet nodes in the network. 

The non-zero flowrate for each demand node is given in Table 2. Note that two 

demands are relatively large compared to the others, i.e. at outlets 13 and 128. 

The valve coefficient needed in Eq. (2) is ,-. = 50,000 ∙ � ∙ 1, where � is the 

opening percentage and 1 is the size of the valve/regulator. The data of the main 

pipes are given in Table 3. ‘Short’ pipes that connect each outlet node to the 
corresponding main pipe have a length of 5 m and an inside diameter of 6 inch. 

The valve and regulator data are given in Tables 4 and 5. Thus there are 91 

nodes, which gives a system of 91 non-linear equations. The system has 91 state 

variables, which consist of 89 node pressures, one flowrate at node-1 and one 
regulator coefficient (regulator-2). 

Table 2 All non-zero demands in outlets (MMSCFD). 

Outlet Flowrate  Outlet Flowrate  Outlet Flowrate  

13 39.5675 54 1.0613 98 0.1789 

27 0.4047 57 5.2710 104 0.4242 

30 0.0028 68 0.4023 107 0.0664 

35 0.0069 73 3.7774 112 6.1654 

38 0.0131 79 0.0495 119 1.5260 

43 0.03602 85 0.9624 123 0.0706 

46 0.2139 91 0.2050 128 32.061 

49 2.1293 94 0.0105 132 0.1240 

Table 3 Main pipe data. 

Pipe From node To node Length (m) Inside diameter (in.) 

Pipe-1 5 6 11550 19.5 

Pipe-2 7 8 10.169 12.42 

Pipe-3 9 10 2320.43 19.5 

Pipe-4 11 12 2418.39 19.5 

 Pipe-5 15 16 1370 23 

Pipe-6 17 18 7600 15.062 

Pipe-7 18 19 505 15.062 

Pipe-8 20 21 700 15.5 

Pipe-9 21 22 150 19.5 

Pipe-10 19 23 595 15.062 

Pipe-13 23 28 800 15.062 

Pipe-15 28 33 65 7.625 

Pipe-17 33 36 535 7.625 

Pipe-19 36 39 55 7.625 

Pipe-22 28 44 830 15.062 

Pipe-24 44 47 8800 15.062 
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Table 3 Continued. Main pipe data. 

Pipe From 

node 

To node Length (m) Inside diameter (in.) 

Pipe-26 47 50 455 3.876 

Pipe-29 47 55 600 15.062 

Pipe-32 55 60 1535 15.062 

Pipe-35 18 65 3600 15.062 

Pipe-36 65 66 1050 7.625 

Pipe-39 65 71 560 15.062 

Pipe-42 71 76 850 15.062 

Pipe-43 76 77 500 5.875 

Pipe-44 77 78 455 3.876 

Pipe-45 76 80 170 15.062 

Pipe-46 80 81 1050 7.625 

Pipe-52 17 92 303 15.062 

Pipe-54 92 95 9355 15.062 

Pipe-55 95 96 4295 15.062 

Pipe-57 96 99 500 15.062 

Pipe-59 99 102 590 15.062 

Pipe-61 102 105 800 15.062 

Pipe-64 105 110 362 15.062 

Pipe-66 110 113 200 15.062 

Pipe-67 113 114 5 7.625 

Pipe-68 114 115 10 5.875 

Pipe-71 114 120 170 5.875 

Pipe-72 120 121 830 7.625 

Pipe-75 113 126 250 15.062 

Table 4 Valve data. 

Valve Upstream Node Downstream Node % opening Size (in.) 

Valve-1 2 3 100 20 

Valve-2 4 5 100 20 

Valve-3 7 6 100 16 

Valve-4 9 8 100 20 

Valve-5 3 14 100 20 

Valve-6 16 17 100 23 

Valve-7 19 20 100 16 

Valve-8 22 9 0 20 

Valve-9 11 10 100 20 

Valve-10 31 28 100 16 
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Table 5 Regulator data. 

Regulator 
Upstream 

node 

Downstream 

node 

Size 

(in.) 
Mode 

Downstream 

pressure (psia) 

Reg-1 3 4 16 
Bypass 

(free-flowing) 
- 

Reg-2 14 15 16 
Max down 

Pressure 
217.31633 

Although the measures of the pipelines are not of the same type, the software 

application will consider them to be of the same type as chosen by the user. For 

example, if the user chooses Panhandle A, then all pipes are considered to be of 
the type Panhandle A. The software application cannot automatically choose the 

implemented equation based on the measurements of the pipes. This also occurs 

in TGNet software and other commonly used software applications. In our 
observation, the results in this paper do not give significant differences between 

the Panhandle A, Panhandle B and Weymouth correlations. 

5.1 Examples on Developing the Equations 

Now we give examples of developing the equations at node-15, node-17 and 

node-92 (see Figure 3). Detailed information about the pipes and the valve can 

be found in Table 6. Note that the values of 2- , 3 = 1, … ,5, depending on the 
choice of Eq. (1) used, can be found in Table 1. 

 

Figure 3 Example of developing equations at node-15, node-17 and node-92. 

The equation of flowrate at regulator-2: 6�7,�8 = ,�7,�89 :*;< �=�>.@�A@
=∙�.A@@>∙8@A.A>. 

The equation of flowrate at pipe-5: 

Valve-6 

Reg-2 

Pipe-54 

14 

94 

17 

Pipe-5 

95 
92 

Pipe-52 

15 

16 

Pipe-6 
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6�8,�A = 2� ∙ 0.9 C 520
14.7GH< I ��8= − ��A=

536.67 ∙ 0.969 ∙ 0.8513M
HN C 1

0.6337GH; 23HO . 
So the flowrate equation at node-15 is 6�7,�8 − 6�8,�A = 0. The equation at 

node-15 has 4 unknown variables: ��7, ��8, ��A and ,�7,�8. 

The equation of flowrate at valve-6: 6�A,�> = 50,000 ∙ 239 :*P< �:*Q<
=∙�.A@@>@∙8@A.A>. 

The equation of flowrate at pipe-6: 

6�>,�R = 2� ∙ 0.9 C 520
14.7GH< I ��>= − ��R=

536.67 ∙ 0.969 ∙ 0.1883M
HN C 1

4.7224GH; 15.062HO 

The equation of flowrate at pipe-52: 

6�>,S= = 2� ∙ 0.9 C 520
14.7GH< I ��>= − �S==

536.67 ∙ 0.969 ∙ 0.1883M
HN C 1

0.6337GH; 15.062HO 

So the flowrate equation at node-17 is 6�A,�> − 6�>,�R − 6�>,S= = 0. The 

equation at node-17 has 4 unknown variables: ��A, ��>, ��R and �S=. 

Table 6 Information about pipes and valve. 

Pipe Connecting nodes Length (m/mi) ID (in.) 

Pipe-5 15, 16 1370/0.8513 23 

Pipe-6 17, 18 7600/4.7224 15.062 

Pipe-52 17, 92 303/0.1883 15.062 

Pipe-54 92, 95 9355/5.8129 15.062 

Valve Connecting nodes % opening Size (in.) 

Valv-6 16, 17 100 23 

Regulator Connecting nodes Size (in.) 
Downstream 

Pressure (psia) 

Reg-2 14, 15 16 217.31633 

 

The equation of flowrate at pipe-54: 

6S=,S8 = 2� ∙ 0.9 C 520
14.7GH< I �S== − �S8=

536.67 ∙ 0.969 ∙ 5.8129M
HN C 1

0.6337GH; 15.062HO . 
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Having demand 0.0104178 MMSCFD at outlet 94, the flowrate equation at 

node-92 is 6�>,S= − 6S=,S8 − 0.0104178 = 0. It is clear that the equation at 

node-92 has 3 unknown variables: ��>, �S= and �S8.  

5.2 Numerical Results 

The software application was made using C++ and compiled using g++ on 

operating system Ubuntu 12.04 using a notebook with an Intel® Core™ i5 
processor and 3.6 GB of memory. Figure 4 shows the result using the Panhandle 

A correlation. DistNet needed about 0.75 s. Comparing the result to TGNet in 

order to validate the results, if we calculate the difference with  TU-VWXYW�&ZXYW
U-VWXYW T ∙

100%, the averages of the difference values for Panhandle A, Panhandle B and 
Weymouth are 0.0818%, 0.6818% and 1.8655% respectively. 

  

 

Figure 4 Results of Panhandle A using DistNet and TGNet: nodes 1-14 (upper 

left), 15-93 (lower), 95-132 (upper right). 

The gas flow from inlet 1 is diverted into 2 paths: the path from node-4 to node-

10 for supplying outlet-13, which has the largest flowrate demand, and the other 
path is from nodes 14, 15 and so on. It can be seen from Figure 4 upper left that 

nodes 2 to 14 have higher pressure values (around 372-378 psia). At nodes 15-

94, the pressures decrease such that they are not higher than 218 psia. The 
pressures decrease again from node-95 onwards such that they are not higher 
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than 200 psia. There is also a decrease from node-14 to node-15 due to an 

existing regulator-2 for which the downstream flow was set at 217.3163 psia. 

See Figure 3 for a detailed scheme.  

The other significant decrease starts from node 95. This may be caused by the 
length of pipe-54 (9355 m). This length is the second longest after pipe-1 

(11,550 m). This shows that the gas flow direction is from higher to lower 

pressures and that the demands at all outlets will be well fulfilled. This 
phenomenon also occurs in the models using Panhandle B and Weymouth 

equations. 

In the actual field data from Table 4, valve-8 is closed, causing no looping flow 

in the network. Now we give the result in the case when valve-8 is open. The 
difference in pressure distribution is presented in Figure 5.  

The gas flow from valve-8 shows a decrease or increase of pressure at particular 

nodes. A decrease of about 55 psia occurs at nodes 5 to 11 due to the diversion 
at valve-8. On the other hand, quite a large increase (about 90 psia) occurs at 

nodes 16 to 63. However, the pressure at nodes 64 to 91 goes down to the same 

pressure as in the original condition. Notice that these nodes are outlets of the 
system, which have a certain demand. This result shows that the method can 

distribute the pressure to fulfill the demands in both conditions of valve-8. 

 

Figure 5 Difference of pressure distribution in the cases of valve-8 open and 

valve-8 closed. 

In Figure 6, the temperatures are varied in order to see its impact on the pressure 

distribution in the system. It can be seen that the pressures distribution at each 
temperature (0, 20, 25, 35, and 50 °C) does not differs significantly. 
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Figure 6 Difference of pressure distribution with T = 0, 20, 25, 35, 50 °C from 

bottom to top respectively. 

5.2.1 Simplified Network 

Now let us consider the network in Figure 2 without incorporating valves and 

regulators. The total number of observed nodes is 79. In Figure 7 and 8, the 

numbering of nodes is different from Figure 2 but the order is the same. The 
given data on node demands and pipeline sizes are the same.  

First, we conduct a simulation in order to investigate the effect of the chosen 

value of source pressure on the gas supply for this simplified network. This is to 

find the minimum pressure at the source (inlet) node-1 in the network, where its 
original value is 377.29 psia. Remember that the gas supply has an expected 

minimum pressure of 50 psia at each node in the network. The results of these 

simulations are presented in Figure 7. The source pressure 377.29 psia at node-1 
gives pressures values close to 377 psia at all other nodes. It can be concluded 

that the source pressure is too high for the current gas demand. When the source 

pressure (or Pi in Figure 7) is decreased to 300, 250, 200, 150 and 120 
respectively, in order to see whether all nodes can reach a pressure value of at 

least 50 psia or not. Having source pressure 110 psia, the network system 

cannot supply gas at the minimum pressure for node-55 onward. Therefore it is 

concluded that the source pressure at node-1 can be as low as 120 psia for this 
modified network. 
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Figure 7 Effect of source pressure on the nodal pressure for the modified 

network. 

 

Figure 8 Flowrate simulation with source pressure at 377.29 psia. 

In the next simulation, the flowrate demands at all outlets as listed in Table 2 

(represented by Q in Figures 8-10) are increased by a multiplication factor. The 
largest factor that can be obtained in the simplified network system was sought. 

Using a certain value of source pressure at node-1 and these new flowrate 

demands it is also expected that all nodes have a pressure of at least 50 psia. 
Having an original pressure of 377.29 psia in Figure 8, the modified network 

system can support a flowrate demand that is up to 3.8 times greater than the 

original flowrate demand. If the source pressure is 200 psia (Figure 9) and 150 

psia (Figure 10), the largest factors are 1.9 and 1.35 respectively.  
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Figure 9 Flowrate simulation with source pressure at 200 psia. 

 

Figure 10  Flowrate simulation with source pressure at 150 psia. 

6 Conclusion 

The method developed in the novel software application DistNet was shown to 
have the ability to simulate a natural gas distribution network with pipes, 

valves, and regulators. By using the Broyden method, the pressure distribution 

and flow direction can be obtained within a short period of simulation time. 
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Note that the direction of the flow does not have to be defined in the input data 

because the model can determine the direction naturally as gas flow will go 

from higher pressure to lower pressure. If we have very high demand at one 

outlet, for example outlet-13 in the observed network, the pressures will be high 
along all nodes leading to that outlet. 

The results of the DistNet software application are very close to those of 

TGNet. The average differences in pressure distribution for Panhandle A, 
Panhandle B and Weymouth Correlations are 0.082% 0.6818%, and 1.8655% 

respectively. 

A simplified network without valves and regulators can be more efficient than 

the original network. In order to fulfil the same flowrate demands at all outlets, 
the source pressure can be reduced up to 30% of the original value. On the other 

hand, the simplified system with original source pressure can supply up to 3.8 

times the original demand. Comparing the simulation results of the original and 
the simplified network, the existing valves and regulators installed in the 

original network seem to create inefficiency. However, conditions in the field 

sometimes create unexpected constraints, so the valves and regulators are still 
needed to control the pressures and flowrates.  
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