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Abstract

Let G be a simple graph of order n. The domination polynomial of G is the polynomial D(G, x) =∑n
i=γ(G) d(G, i)xi, where d(G, i) is the number of dominating sets of G of size i and γ(G) is the

domination number of G. A root of D(G, x) is called a domination root of G. Obviously, 0 is a
domination root of every graph G with multiplicity γ(G). In the study of the domination roots of
graphs, this naturally raises the question: Which graphs have no nonzero real domination roots? In
this paper we present some families of graphs whose have this property.
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1. Introduction

All graphs in this paper are simple of finite orders, i.e., graphs are undirected with no loops or
parallel edges and with finite number of vertices. Let G = (V,E) be a simple graph. For any vertex
v ∈ V (G), the open neighborhood of v is the set N(v) = {u ∈ V (G)|uv ∈ E(G)} and the closed
neighborhood of v is the set N [v] = N(v)∪{v}. For a set S ⊆ V (G), the open neighborhood of S
is N(S) =

∪
v∈S N(v) and the closed neighborhood of S is N [S] = N(S) ∪ S. The complement

Gc of a graph G is a graph with the same vertex set as G and with the property that two vertices
are adjacent in Gc if and only if they are not adjacent in G. A set S ⊆ V (G) is a dominating
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set if N [S] = V or equivalently, every vertex in V (G)\S is adjacent to at least one vertex in S.
The domination number γ(G) is the minimum cardinality of a dominating set in G. For a detailed
treatment of domination theory, the reader is referred to [22].

Let D(G, i) be the family of dominating sets of a graph G with cardinality i and let d(G, i) =

|D(G, i)|. The domination polynomial D(G, x) of G is defined as D(G, x) =
∑|V (G)|

i=γ(G) d(G, i)xi

(see [2, 6]). This polynomial is the generating polynomial for the number of dominating sets of
each cardinality. Similar to generating polynomials for other combinatorial sequences, such as
independents sets in a graph [9, 11, 13, 16, 19, 20, 21], they have attracted recent attention to name
but a few references. The algebraic encoding of salient counting sequences allows one to not only
develop formulas more easily, but also, often, to prove unimodality results via the nature of the the
roots of the associated polynomials (a well known result of Newton states that if a real polynomial
with positive coefficients has all real roots, then the coefficients form a unimodal sequence, see,
for examples, [14] and [30]). A root of D(G, x) is called a domination root of G (see [12]). The
set of roots of D(G, x) is denoted by Z(D(G, x)). It is known that −1 is not a domination root
as the number of dominating sets in a graph is always odd [8]. On the other hand, of course, 0
is a domination root of every graph G with multiplicity γ(G). The existing research on the roots
of domination polynomials has been restricted to those graphs with exactly two, three or exactly
four domination roots [2, 4]. Also in [12] Brown and Tufts studied the location of the roots of
domination polynomials for some families of graphs such as bipartite cocktail party graphs and
complete bipartite graphs. In particular, they showed that the set of all domination roots is dense
in the complex plane. For some very recent developments on domination roots see [28]. Let G be
a graph of order n and minimum degree δ. Oboudi in [28] showed that all roots of D(G, x) lie in
the set {z : |z + 1| ≤ δ+1

√
2n − 1} and D(G, x) has at least δ − 1 non-real roots.

In the study of the domination roots of graphs, this naturally raises the question: Which graphs
have no nonzero real domination roots? In this paper we would like to present some families of
graphs with this property. Let G be the family of all simple finite graphs. We define the subfamily
graphs CG by CG =

{
G ∈ G|Z(D(G, x)) ⊆ C \ R

}
.

In the next section, we present some families of graphs which are in CG. In Section 3 we
consider the complement of the friendship graphs, F c

n and compute their domination polynomials,
exploring the nature and location of their roots. As a consequence we show that F c

n ∈ CG.

2. Some families of graphs in CG

In the beginning of the study of domination roots of graphs, one can see that there are graphs
with no nonzero real domination roots. As examples, the complete graph Kn for odd n and the
complete bipartite graph Kn,n for even n, are in CG. With these motivations, in [1] the authors
asked the question: “Which graphs have no nonzero real domination roots?” In other words, which
graphs lie in CG?.

In this section we use the existing results on domination polynomials to find some families of
graphs that belong to CG. We need some preliminaries.

The join G = G1 + G2 of two graphs G1 and G2 with disjoint vertex sets V1 and V2 and edge
sets E1 and E2 is the graph union G1 ∪ G2 together with all the edges joining V1 and V2. The
following theorem gives a formula for the domination polynomial of a join of two graphs.
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Theorem 2.1. [2] Let G and H be nonempty graphs of order n and m, respectively. Then,

D(G+H, x) = ((1 + x)n − 1)((1 + x)m − 1) +D(G, x) +D(H, x).

For two graphs G = (V,E) and H = (W,F ), the corona G ◦ H is the graph arising from
the disjoint union of G with |V | copies of H , by adding edges between the ith vertex of G and
all vertices of ith copy of H [17]. We need the following theorem which is for computing the
domination polynomial of the corona products of two graphs.

Theorem 2.2. [3] Let G = (V,E) and H = (W,F ) be nonempty graphs of order n and m,
respectively. Then

D(G ◦H, x) = (x(1 + x)m +D(H, x))n.

Let Kk be a complete graph on k vertices and S be an independent set of n − k vertices.
A (k, n)-star, denoted by Sk,n−k, is defined as Sk,n−k = Kk + S. The book graph Bn can be
constructed by bonding n copies of the cycle graph C4 along a common edge {u, v}. In [5] it was
proved that, for every n ∈ N,

D(Bn, x) = (x2 + 2x)n(2x+ 1) + x2(x+ 1)2n − 2xn.

The following theorem gives some families of graphs that are in CG.

Theorem 2.3. (i) [5] Every graph H in the family

{G ◦K2n, (G ◦K2n) ◦K2n, ((G ◦K2n) ◦K2n) ◦K2n, · · · }

lies in CG.
(ii) [23] For odd n and even k, the k-star Sk,n−k is in CG.

(iii) [23] For odd n and odd k, every graph H in the family

{G ◦ Sk,n−k, (G ◦ Sk,n−k) ◦ Sk,n−k, ((G ◦ Sk,n−k) ◦ Sk,n−k) ◦ Sk,n−k, · · · }

lies in CG.
(iv) [5] Every graph H in the family {G ◦ B2, (G ◦ B2) ◦ B2, ((G ◦ B2) ◦ B2) ◦ B2, · · · } lies in

CG.

In [27], Levit and Mandrescu constructed a family of graphs Hn from the path Pn by the
“clique cover construction”, as shown in Figure 1. By H0 we mean the null graph. To compute the
domination polynomial of Hn, we need some preliminaries and well known results.

An irrelevant edge is an edge e ∈ E(G), such that D(G, x) = D(G − e, x), and a vertex
v ∈ V (G) is domination-covered, if every dominating set of G − v includes at least one vertex
adjacent to v in G [26].

Theorem 2.4. [26] Let G = (V,E) be a graph. A vertex v ∈ V is domination-covered if and only
if there is a vertex u ∈ N [v] such that N [u] ⊆ N [v].
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H2n

P2n+1 P2n

H2n+1

Figure 1. Graphs H2n+1 and H2n, respectively.

Theorem 2.5. [26] Let G = (V,E) be a graph. An edge e = {u, v} ∈ E is an irrelevant edge in
G, if and only if u and v are domination-covered in G− e.

The following theorem yields formula for the domination polynomials of Hn. Other families
of graphs with the same domination polynomial have been studied in [25].

Theorem 2.6. Let Hn be the graphs in Figure 1.

(i) For every n ∈ N, D(H2n, x) = (x4 + 4x3 + 6x2 + 2x)n.

(ii) For every n ∈ N, D(H2n+1, x) = (x3 + 3x2 + x)(x4 + 4x3 + 6x2 + 2x)n.

Proof. (i) Let G be a graph of order 4 as in Figure 2 and e1, . . . , en be the edges with end-
vertices of degree 4, which connect each two G in H2n. By Theorem 2.4, the two end-
vertices of every edge ei are domination-covered in H2n, and so by Theorem 2.5, every edge
ei is an irrelevant edge of H2n. Since D(G, x) = x4+4x3+6x2+2x, by induction we have

D(H2n, x) = (x4 + 4x3 + 6x2 + 2x)n.

(ii) Let e be an edge joining H2n and the leftmost vertical P3 in H2n+1. By Theorem 2.4, the two
end-vertices of edge e are domination-covered in H2n+1. So, by Theorem 2.5, the edge e is
an irrelevant edge of H2n+1. So D(H2n+1, x) = D(P3∪H2n, x) and therefore by part (i) we
have the result.

Figure 2. The graph in the proof of Theorem 2.6 (i)

Here using Theorem 2.6 we present other families of graphs in CG.

Theorem 2.7. (i) The graphs of the form Hn +Hn, Hn+1 + Bn, for n ≥ 3, and the graphs of the
form Bn +Bn, for odd n are in CG.

(ii) The graphs of the form Bn+1 +Bn, for even n, and Bn+1 +Hn, for n ≥ 4 are in CG.
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Proof. Since the coefficients of domination polynomials are positive integers, we investigate real
domination roots for x ≤ 0.

(i) By Theorem 2.1, we can deduce that for each natural number n ≥ 3,

D(Hn +Hn, x) = ((1 + x)|V (Hn)| − 1)2 + 2D(Hn, x).

To obtain the domination roots of Hn +Hn, we shall solve the following equation:

((1 + x)|V (Hn)| − 1)2 = −2D(Hn, x). (1)

We consider two cases, and show that in each there is no nonzero solution.

• If n ≥ 3 is even, i.e., n = 2k for some natural k ≥ 2, then the equation (1) is equivalent
to the following equation

((1 + x)4k − 1)2 = −2(x4 + 4x3 + 6x2 + 2x)k

= −2((1 + x)4 − 2x− 1)k. (2)

For x ≤ 0 and even k, the equation (2) is true just for real number x = 0, because
for nonzero real number x, the left side of the equality (2) is positive and the right
side is negative. To investigate other cases, we draw the diagram of both sides of
the equation (2) for k = 1 in Figure 3 and consider the two points −0.2133340651
and −0.4563109873. Observe that for x ≤ −0.4563109873 and odd k, the left side of
equality (2) is positive but the right side is negative. If k ≥ 3 is odd and −0.4563109873
< x ≤ 0, then the left side of equality (2) is greater than the right side. If k = 1 and
−0.2133340651 < x ≤ 0, then the right side of equality (2) is greater than the left side,
and the left side of equality (2) is greater than the right side when −0.4563109873 <
x ≤ −0.2133340651.

• If n ≥ 3 is odd, i.e., n = 2k+ 1, for some k ∈ N, then the equation (1) is equivalent to
the following equation

((1 + x)4k+3 − 1)2 = −2(x3 + 3x2 + x)(x4 + 4x3 + 6x2 + 2x)k

= −2((1 + x)3 − 2x− 1)((1 + x)4 − 2x− 1)k. (3)

We consider the following different cases, and show in each there is no nonzero real
solution. If x ≤ −1, there are no real solutions x, because for −2 ≤ x ≤ −1, the left
side of equation (3) is positive but its right side is negative. Also for x < −2, the left
side of equality (3) is greater than the right side. Assuming that −1 < x < 0.
(a) If k is even and −1

2
≤ x < 0, the left side of equality (3) is greater than the right

side, a contradiction.
(b) If k is odd and −1

2
≤ x < 0, the left side of equality (3) is positive but the right

side is negative, a contradiction.
(c) For every k and −1 < x < −1

2
, there are no real solutions x, because the left side

of equality (3) is positive but the right side is negative.
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Figure 3. y = ((1 + x)4 − 1)2 (red curve) and y = −2((1 + x)4 − 2x− 1) (blue curve).

To obtain the domination roots of Bn + Bn for each odd natural number n similar to first
case, we shall solve the following equation:

((1 + x)2n+2 − 1)2 = −2
(
(x2 + 2x)n(2x+ 1) + x2(x+ 1)2n − 2xn

)
. (4)

We consider three cases and show that in each there is no nonzero real solution.
For −1

2
< x ≤ 0, the equation (4) is true just for real number x = 0, because for nonzero

real number, the left side of equality (4) is greater than the right side. Now suppose that
−2 ≤ x ≤ −1

2
, the left side of equality (4) is positive but the right side is negative, a

contradiction. Also for x < −2, the left side of equality (4) is positive but the right side is
negative.
It rests to show that for n ≥ 3 the graphs of the form Hn+1 + Bn are in CG. To obtain the
domination roots of Hn+1 +Bn, we shall solve the following equation:

((1 + x)|V (Hn+1)| − 1)((1 + x)|V (Bn)| − 1) = −D(Hn+1, x)−D(Bn, x). (5)

We consider two cases, and show that in each there is no nonzero solution.

• If n ≥ 3 is even, then the equation (5) is equivalent to the following equation

((1 + x)2n+3 − 1)((1 + x)2n+2 − 1) = −
(
(x3 + 3x2 + x)((1 + x)4 −

2x− 1)
n
2 + (x2 + 2x)n(2x+ 1)

+x2(x+ 1)2n − 2xn
)
. (6)

We consider the following different cases and show in each there is no nonzero real
solution. For −2 ≤ x ≤ 0, the equation (6) is true just for real number x = 0, because
for nonzero real number, the left side of the equality (6) is greater than the right side.
Observe that for x < −2, the both sides of equality (6) are negative, but the right side
of it is greater than the left side.
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• If n ≥ 3 is odd, then the equation (5) is equivalent to the following equation

((1 + x)2n+2 − 1)2 = −
(
((1 + x)4 − 2x− 1)⌊

n
2
⌋+1 + (x2 + 2x)n

(2x+ 1) + x2(x+ 1)2n − 2xn
)
. (7)

We consider the following different cases, and show in each there is no nonzero real solution.
For −1

2
< x ≤ 0, the equation (7) is true just for real number x = 0, because for nonzero

real number, the left side of the equality (7) is greater than the right side. Observe that for
x ≤ −1

2
, the left side of equality (7) is positive but the right side is negative.

(ii) To obtain the domination roots of Bn+1 +Bn for each even natural number n similar to first
case, we solve the following equation:

((1 + x)2n+4 − 1)((1 + x)2n+2 − 1) = −D(Bn+1, x)−D(Bn, x)

= −
(
(x2 + 2x)n(2x+ 1)(1 + x)2

+x2(x+ 1)2n(1 + (1 + x)2)

−2xn(1 + x)
)
. (8)

We consider three cases, and show that in each there is no nonzero real solution.
For −1 ≤ x ≤ 0, the equation (8) is true just for real number x = 0, because for nonzero
real number, the left side of equality (8) is greater than the right side. Also for x < −2, the
left side of equality (8) is greater than the right side. Assuming that −2 ≤ x < −1, the right
side of equality (8) is greater than the left side.
To obtain the domination roots of Bn+1 +Hn, we solve the following equation:

((1 + x)|V (Bn+1)| − 1)((1 + x)|V (Hn)| − 1) = −D(Bn+1, x)−D(Hn, x). (9)

This case is similar to the last case in proof of Part (i).

Domination roots of the graphs Hn +Hn and Bn +Bn in Theorem 2.7 (i), for 3 ≤ n ≤ 20 are
shown in Figure 4.

Figure 4. Domination roots of Hn +Hn and Bn +Bn in Theorem 2.7 (i), for 3 ≤ n ≤ 20, respectively.
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3. Domination roots of the complement of the friendship graphs

The friendship (or Dutch-Windmill) graph Fn is a graph that can be constructed by coalescing
n copies of the cycle graph C3 of length 3 with a common vertex. The Friendship Theorem of
Paul Erdös, Alfred Rényi and Vera T. Sós [15], states that graphs with the property that every
two vertices have exactly one neighbour in common are exactly the friendship graphs. Figure 5
shows some examples of friendship graphs. The following theorem states that for each odd n, the
friendship graph Fn lie in CG.

Figure 5. Friendship graphs F2, F3, F4 and Fn, respectively.

Theorem 3.1. [5] (i) For every n ∈ N, D(Fn, x) = (2x+ x2)n + x(1 + x)2n.
(ii) For odd n, Fn ∈ CG.

The nature and location of domination roots of friendship graphs have been studied in [5]. It is
natural to ask about the domination polynomial and the domination roots of the complement of the
friendship graphs. The Turán graph T (n, r) is a complete multipartite graph formed by partitioning
a set of n vertices into r subsets, with sizes as equal as possible, and connecting two vertices by
an edge whenever they belong to different subsets. The graph will have (n mod r) subsets of size
⌈n
r
⌉, and r − (n mod r) subsets of size ⌊n

r
⌋. That is, it is a complete r-partite graph

K⌈n
r
⌉,⌈n

r
⌉,...,⌊n

r
⌋,⌊n

r
⌋.

The Turán graph T (2n, n) can be formed by removing a perfect matching composed by n edges no
two of which are adjacent, from a complete graph K2n. As Roberts (1969) showed, this graph has
boxicity exactly n; it is sometimes known as the Roberts graph [29]. If n couples go to a party, and
each person shakes hands with every person except his or her partner, then this graph describes the
set of handshakes that take place; for this reason it is also called the cocktail party graph. So, the
cocktail party graph CP (t) of order 2t is the graph with vertices b1, b2, · · · , b2t in which each pair
of distinct vertices form an edge with the exception of the pairs {b1, b2}, {b3, b4}, . . . , {b2t−1, b2t}.
It is easy to check that the complement of the friendship graph Fn is CP (n) ∪K1.

Theorem 3.2. For every n ∈ N, D(F c
n, x) =

(
(1 + x)2n − (1 + 2nx)

)
x.

Proof. An elementary observation is that if G1 and G2 are graphs of orders n1 and n2, respectively,
then D(G1∪G2, x) = D(G1, x)D(G2, x). Clearly D(K1, x) = x and there are no dominating sets
of size 1 in CP (n). So D(CP (n), x) = (1 + x)2n − (1 + 2nx) and we have the result.

In [12] a family of graphs was produced with roots just barely in the right-half plane, showing
that not all domination polynomials are stable (a polynomial f over the complex field is stable, if
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Figure 6. Domination roots of graphs F c
n, for 1 ≤ n ≤ 30.

and only if all of its zeros have non-positive real part), but Figure 6 provides an explicit family
(namely the F c

n) which domination roots have positive real part. The domination roots of the
complements of the friendship graphs exhibit a number of interesting properties (see Figure 6).
Even though we cannot find the roots explicitly, there is much we can say about them. Here we
prove that for each natural number n, the complement of the friendship graphs F c

n lie in CG.

Theorem 3.3. For every natural number n, the complement of the friendship graphs F c
n lie in CG.

Proof. It suffices to show that for each natural n, the cocktail party graph CP (n) is in CG. By
Theorem 3.2, for every n ∈ N, D(CP (n), x) = (1 + x)2n − (1 + 2nx). If D(CP (n), x) = 0 then
for x ̸= 0, we have

(1 + x)2n = 1 + 2nx.

We consider three cases, and show in each there is no nonzero solution.

• x > 0 : Obviously the above equality is true just for real number x = 0, since for nonzero
real number the left side of the equality is greater than the right side.

• x ≤ −1 : In this case the left side is greater than 0 and the right side 1+2nx is less than −1,
a contradiction.

• −1 < x < 0 : In this case obviously there are no real solutions x, since the left side of
equality is greater than the right side.

Thus in any event, there are no nonzero real domination roots of the cocktail party graph.
The plot in Figure 6 suggests that the roots tend to lie on a curve. In order to find the limiting

curve, we will need a definition and a well known result.
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Definition 3.4. If fn(x) is a family of (complex) polynomials, we say that a number z ∈ C is a
limit of roots of fn(x) if either fn(z) = 0 for all sufficiently large n or z is a limit point of the set
R(fn(x)), where R(fn(x)) is the union of the roots of the fn(x).

The following restatement of the Beraha-Kahane-Weiss theorem [7] can be found in [10].

Theorem 3.5. Suppose fn(x) is a family of polynomials such that

fn(x) = α1(x)λ1(x)
n + α2(x)λ2(x)

n + ...+ αk(x)λk(x)
n (10)

where the αi(x) and the λi(x) are fixed non-zero polynomials, such that for no pair i ̸= j is
λi(x) ≡ ωλj(x) for some ω ∈ C of unit modulus. Then z ∈ C is a limit of roots of fn(x) if and
only if either

(i) two or more of the λi(z) are of equal modulus, and strictly greater (in modulus) than the
others; or

(ii) for some j, λj(z) has modulus strictly greater than all the other λi(z), and αj(z) = 0.

The following Theorem gives the limits of the domination roots of F c
n.

Theorem 3.6. The limit of domination roots of F c
n is the unit circle with center −1.

Proof. By Theorem 3.2, the domination polynomial of F c
n is,

D(F c
n, x) = x((x+ 1)2)n − x(1 + 2nx)

= α1(x)λ
n
1 (x) + α2(x)λ

n
2 (x),

where
α1(x) = x, λ1(x) = (x+ 1)2,

and
α2(x) = x+ 2nx2, λ2(x) = 1.

Clearly there is no ω ∈ C of modulus 1 for which λ1 = ωλ2 (or vice versa). Also, α1, and α2

are not identically zero. Therefore, the initial conditions of Theorem 3.5 are satisfied.
Now, |x− (−1)|2 = 1 implies that x lies on the circle centred at −1.
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