Electronic Journal of Graph Theory and Applications

Rainbow perfect domination in lattice graphs

Luis R. Fuentes ${ }^{\text {a }}$, Italo J. Dejter ${ }^{\text {a }}$, Carlos A. Araujo ${ }^{\text {b }}$
${ }^{a}$ University of Puerto Rico, Rio Piedras, PR 00936-8377, Puerto Rico
${ }^{b}$ Universidad del Atlántico, Barranquilla, Colombia
luis.fuentes@upr.edu, italo.dejter@gmail.com, carlosaraujo@mail.uniatlantico.edu.co

Abstract

Let $0<n \in \mathbb{Z}$. In the unit distance graph of $\mathbb{Z}^{n} \subset \mathbb{R}^{n}$, a perfect dominating set is understood as having induced components not necessarily trivial. A modification of that is proposed: a rainbow perfect dominating set, or RPDS, imitates a perfect-distance dominating set via a truncated metric; this has a distance involving at most once each coordinate direction taken as an edge color. Then, lattice-like RPDS s are built with their induced components C having: (i) vertex sets $V(C)$ whose convex hulls are n-parallelotopes (resp., both $(n-1)$ - and 0 -cubes) and (ii) each $V(C)$ contained in a corresponding rainbow sphere centered at C with radius n (resp., radii 1 and $n-2$).

Keywords: perfect dominating set, lattice, tiling, rainbow sphere
Mathematics Subject Classification : 05C69, 52C22, 11H31, 94B25
DOI: 10.5614/ejgta.2018.6.1.7

1. PRELIMINARIES

Before defining our main concerns in Section 2, we review perfect dominating sets and perfectdistance dominating sets, and sketch our plan.

1.1. Perfect Dominating Sets, (PDS s)

Let $\Gamma=(V, E)$ be a graph and let $S \subset V$. Let $[S]$ be the subgraph of Γ induced by S. The induced components of S, namely the connected components of $[S]$ in Γ, are said to be the components of S. Several definitions of perfect dominating sets in graphs are considered in the

Received: 23 July 2016, Revised: 4 February 2018, Accepted: 21 February 2018.
literature [23, 25]. We work with the following one [32] denoted with the short acronym PDS, to make a distinctive difference:
S is a PDS of $\Gamma \Leftrightarrow$ each vertex of $V \backslash S$ has a unique neighbor in S.
This definition (of PDS) differs from that of a 'perfect dominating set' as in [21, 22, 30] (that for us is a stable PDS coinciding with the perfect code of [4] or with the efficient dominating set of [3, 23]), in that $[S]$ is not necessarily trivial.

Let $0<n \in \mathbb{Z}$. The following graphs are considered. The unit distance graph $\Lambda_{n}^{\mathbb{R}}$ of \mathbb{R}^{n} has vertex set \mathbb{R}^{n} and exactly one edge between each two vertices if and only if their Euclidean distance is 1 . Let $\Lambda_{n}^{\mathbb{Z}}$ be the induced subgraph of \mathbb{Z}^{n} in $\Lambda_{n}^{\mathbb{R}}$. If no confusion arises, we write $\Lambda_{n}=\Lambda_{n}^{\mathbb{Z}}$ and express the elements $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}$ with no parentheses or commas, namely as $a_{1} \cdots a_{n}$. This way, we denote: $O=00 \cdots 0, e_{1}=10 \cdots 0, e_{2}=010 \cdots 0, \ldots, e_{n-1}=0 \cdots 010$ and $e_{n}=00 \cdots 01$. An n-cube is the cartesian graph product $Q_{n}=K_{2} \square K_{2} \square \cdots \square K_{2}$ of precisely n complete graphs K_{2}. A grid graph is the cartesian graph product of two path graphs.

Our definition of a PDS S allows induced components of S in Γ which are not isolated vertices. For example: (a) tilings with generalized Lee r-spheres, for fixed r with $1<r \leq n$ in \mathbb{Z} (e.g., crosses with arms of length one if $r=n$), furnish Λ_{n} with PDS s whose components are r-cubes [20]; (It is most remarkable that $r=n \Leftrightarrow n \in\left\{2^{r}-1,3^{r}-1 ; 0<r \in \mathbb{Z}\right\}$ [6]); (b) total perfect codes [1, 26], that is PDS s whose components are $K_{2}=P_{2}$ in the Λ_{n} s and grid graphs; (these appear as diameter perfect Lee codes [19, 24]); (c) PDS s in n-cubes [5, 12, 13, 15, 16, 32], where $0<n \in \mathbb{Z}$, including the perfect codes of [18]; (d) PDS s in grid graphs [13, 26].

1.2. Perfect-Distance Dominating Sets

In [2], an extension of the definition of PDS is given as follows. Let $t \geq 1$ and $\Gamma=(V, E)$ be a graph. A set $S \subset V$ is a t-perfect-distance dominating set (t-PDDS) in Γ if, for each $v \in V$, there is a unique component C_{v} of S so that for the graph distance $d\left(v, C_{v}\right)$ from v to C_{v} it is $d\left(v, C_{v}\right) \leq t$, and there is in C_{v} a unique vertex w with $d(v, w)=d\left(v, C_{v}\right)$.

We refer to [2] for relations of PDDS s to other domination and coding notions. For $0<n \in \mathbb{Z}$, the tilings with generalized Lee spheres of [20] (see Subsection 1.2 item (a)) provide $\Gamma=\Lambda_{n}$ with t-PDDS s whose components are r-cubes, for any fixed $t \in \mathbb{Z}$ and $r \in \mathbb{Z}$ such that $t \geq 1$ and $0 \leq r \leq n$.

1.3. Plan of the Paper and Related Motivation

In Section 2, rainbow perfect dominating sets, or RPDS s, are defined that generalize PDS s while imitating the definition of PDDS but using a truncated metric [17], pages 40 and 262. This has a rainbow distance by coloring the edges of $\Lambda_{n}^{\mathbb{Z}}$ according to the n coordinates, for $0<n \in \mathbb{Z}$. With the aim of packing perfectly the resulting rainbow spheres, Section 3 takes to the construction of lattice-like RPDS s S whose induced graphs [S] have their components C possessing: (i) vertex sets with n-parallelotopes as their convex hulls in \mathbb{R}^{n} and minimal separating graph distance 3 , having a set of representatives that forms a lattice with generating elements precisely along the coordinate directions of \mathbb{Z}^{n} and (ii) each $V(C)$ contained in a corresponding rainbow sphere centered at C with radius n.

It is not clear that similar lattice-like results hold with r-parallelotopes $(0<r<n)$, including lattice-like rainbow total perfect codes (case $r=1$). However, once the concept of lattice-like is generalized in Section 4, we are able to show that a lattice-like RPDS S exists in Λ_{n} whose $[S]$ has its components C possessing: (\mathbf{i}^{\prime}) vertex sets with $(n-1)$ - and 0 -cubes as their convex hulls in \mathbb{R}^{n} and (ii') each $V(C)$ contained in a corresponding rainbow sphere centered at C with respective radii 1 and $(n-2)$.

Motivation for this outcome of RPDS s with induced components that are r-cubes of different dimensions r (Theorem 4.2) comes both from the perfect covering codes with spheres of two different radii in Chapter 19 of [11] and from a negative answer to a conjecture [32] claiming that the components of a PDS S in an n-cube Q_{n} are r-cubes Q_{r} where r is fixed with $0 \leq r \leq n$. In fact, it was found in [31] that a PDS in Q_{n} with components that are r-cubes Q_{r} in Q_{13} of two different dimensions $r=r_{1}$ and $r=r_{2}$ exist, specifically with $r_{1}=4$ and $r_{2}=0$. However, this is still the only known counterexample to the conjecture of [32].

2. RAINBOW PERFECT DOMINATING SETS

Let $0<n \in \mathbb{Z}$. Let $\Gamma=(V, E)$ be a graph edge-colored in $I_{n}=\{1, \ldots, n\}$. A path $P_{\text {@ }}$ in Γ is a rainbow path if no color appears more than once in $P_{\text {® }}[8,9,10,27,28,29]$. We consider a truncated metric that generalizes that of [17], pages 40 and 262 and is defined between two vertices u and v in Γ by their rainbow distance $\rho(u, v)$, namely: (i) the shortest length of a rainbow path P_{Π} joining u and v, if such $P_{\text {® }}$ exists; (ii) $\left|I_{n}\right|+1=n+1$, otherwise. Notice that ρ is not a well-defined distance like the graph distance d of Γ given by the shortest length $d(u, v)$ of a path P between u and v. If K is a component of S and $u \in V$ then we denote $\rho(u, K)=\min \{\rho(u, v) ; v \in K\}$ and $d(u, K)=\min \{d(u, v) ; v \in K\}$. Let $1 \leq t \leq n$. A set $S \subseteq V$ is said to be a t-rainbow perfect dominating set or t-RPDS in Γ if for each $v \in V$ there are: (a) a unique component K_{v} of S with $\rho\left(v, K_{v}\right) \leq t$ and (b) a unique vertex w in K_{v} with $\rho(v, w)=\rho\left(v, K_{v}\right)$. If in this definition of t-RPDS we replace ρ by d then S becomes a t-PDDS in Γ, as in [24].

Let $H=(V, E)$ be a subgraph of Λ_{n} and let $z \in \mathbb{Z}^{n}$. Then $H+z$ denotes the graph $H^{\prime}=$ $\left(V^{\prime}, E^{\prime}\right)$ with vertex set $V^{\prime}=V+z=\left\{w \in \mathbb{Z}^{n} ; \exists v \in V\right.$ such that $\left.w=v+z\right\}$ and such that $u v \in E$ if and only if $(u+z)(v+z) \in E^{\prime}$. Observe that the subgraph H of Λ_{n} induced by the set of vertices with entries in $\{0,1\}$ (and by extension any translation $H^{\prime}=H+z$ of such an H in Λ_{n}) constitutes an n-cube Q_{n}.

Let $i \in I_{n}$. Each edge of Λ_{n} parallel to $O e_{i}$ is assigned color i. Thus, an edge $u v$ of Λ_{n} has color i if and only if $u-v \in\left\{ \pm e_{i}\right\}$. Considering this for every $i \in I_{n}, \Lambda_{n}$ becomes an edge-colored graph having its copies of the n-cube Q_{n} as its largest properly edge-colored subgraphs.

All 1-RPDS s are PDS s. A PDS is both a 1 -RPDS and a 1-PDDS, so that 1 -RPDS s and 1 PDDS s coincide as PDS s. However, this is not the case if $t>1$. The following restriction of a theorem of [32] (Theorem 1 of [2] has a similar proof) is expressed in terms of monochromatic paths in the edge-colored Λ_{n} with a monochromatic path understood as either one-way infinite or two-way infinite or having length either null or positive.

Theorem 2.1. If S is a t-RPDS in Λ_{n} then each component of S is the cartesian product of monochromatic paths of different colors in Λ_{n}.

Let J be a cartesian product of finite monochromatic paths of different colors in Λ_{n}. The rainbow sphere $W_{n, J, t}^{\rho}$ of radius t around J in Λ_{n} is the union of $V(J)$ and the set of those $v \in \mathbb{Z}^{n}$ with $\rho(v, V(J)) \leq t$. Here, J is said to be the rainbow center of $W_{n, J, t}^{\rho}$. The graph sphere $W_{n, J, t}^{d}$ is defined similarly and has J as its corresponding graph center. If there is no confusion, we drop the initial adjective rainbow or graph. If J is an r-cube, where $0 \leq r \leq n$, then we write $W_{n, J, t}^{\rho}=W_{n, r, t}^{\rho}$ and $W_{n, J, t}^{d}=W_{n, r, t}^{d}$. It is seen that $W_{n, J, t}^{\rho}$ is a generalized Lee spheres [20]. Figure 1 represents two rainbow spheres (dark gray) in Λ_{2} contained in respective graph spheres (twotone gray), namely $W_{2,0,2}^{\rho}$ (dark gray) $\subset W_{2,0,2}^{d}$ (two-tone gray) and $W_{2,1,2}^{\rho}$ (dark gray) $\subset W_{2,1,2}^{d}$ (two-tone gray).

Figure 1. Rainbow spheres contained in respective graph spheres.

A t-RPDS S of Λ_{n} determines a partition of \mathbb{Z}^{n} into the spheres $W_{n, K, t}^{\rho}$, with K running over the components of S. A t-PDDS S^{\prime} of Λ_{n} determines similarly a partition of \mathbb{Z}^{n} into the spheres $W_{n, K^{\prime}, t}^{d}$, with K^{\prime} running over the components of $\left[S^{\prime}\right]$.

A t-RPDS S in Λ_{n} such that the components of S are all isomorphic to a fixed finite graph H is said to be a t-RPDS $[H]$. Let S be a t-RPDS[H] and let K be a component of S with K isomorphic to H. Then S is said to be lattice-like ([2]) if: there is a lattice $L \subseteq \mathbb{Z}^{n}$ such that K^{\prime} is a component of S if and only if $K^{\prime}=K+z$ with $z \in L$. A set $S \subset \mathbb{Z}^{n}$ is periodic [2] if there are integers p_{1}, \ldots, p_{n} such that $v \in S$ implies $v \pm p_{i} e_{i} \in S$ for all $i=1, \ldots, n$. Notice that each lattice-like t-RPDS[H] S is periodic [2]. Thus, a suitable restriction of such an S yields a t-RPDS[H] in a cartesian product of n cycles $C_{k_{1} p_{1}} \square C_{k_{2} p_{2}} \square \cdots \square C_{k_{n} p_{n}}$ with $0<k_{i} \in \mathbb{Z}$, for $i=1,2, \ldots, n$. This observation is easily adapted to the generalizations of a t-RPDS[H] below, up to Section 4. In fact, the second parts of the statements of Theorems 3.1, 4.1 and 4.2 use them. However, we prove just the existence of those RPDS s in the $\Lambda_{n} \mathrm{~s}$, leaving the covering and projection (onto cartesian products of cycles) parts of the proofs to the reader.

Let H be a cartesian product of finite monochromatic paths of different colors in Λ_{n}. If just r elements of I_{n} color the edges of H, then we say that H is an r-box. In this case, H is a cartesian product $\prod_{i=1}^{n} P_{i}$ where P_{i} is a finite path, for $1 \leq i \leq n$, with exactly r paths P_{i} having positive length. Clearly, the convex hull of an r-box is an r-parallelotope and any r-cube in Λ_{n} is an r-box, for $0 \leq r \leq n$..

A constellation of a lattice L in \mathbb{Z}^{n} is a subset $T \subseteq \mathbb{Z}^{n}$ that contains exactly one vertex from each class $\bmod L$ so that T is in fact a complete system of coset representatives of L in Λ_{n}. (Compare with fundamental region, [7], pg. 26). We still say that a partition of \mathbb{Z}^{n} into constellations of L is a tiling of \mathbb{Z}^{n} and that those constellations are its tiles.

3. TOP RADIUS AND BOX DIMENSION

A particular case of t-RPDS[H] is that in which H is an n-box in Λ_{n}. For each such n-box H we show that there is a lattice-like $\operatorname{RPDS}[H]$ in Λ_{n}. (In [6], n-boxes of unit volume in Λ_{n} are shown to determine 1-PDDS $[H] \mathrm{s}$ if and only if either $n=2^{r}-1$ or $n=3^{r}-1$).

Theorem 3.1. For each n-box $H=\prod_{i=1}^{n} P_{i}$ in Λ_{n}, where P_{i} is a path of color i and length ℓ_{i} $(i=1, \ldots, n)$, there exists a lattice-like $n-\operatorname{RPDS}[H] S$ of Λ_{n}. This S covers an $n-\operatorname{RPDS}[H]$ in any cartesian product of cycles $C_{\left(\ell_{1}+3\right) k_{1}} \square C_{\left(\ell_{2}+3\right) k_{2}} \square \cdots \square C_{\left(\ell_{n}+3\right) k_{n}}$ with $1<k_{i} \in \mathbb{Z}(i=1, \ldots, n)$. The minimum graph distance between the induced components of S is 3 .

Proof. Assume S is an n - $\operatorname{RPDS}[H]$ in Λ_{n}. As already commented, S determines a partition of \mathbb{Z}^{n} into the spheres $W_{n, K, n}^{\rho}$ with K running over the components (isomorphic to H) of S. These spheres conform a tiling which is associated to a lattice L_{S} to be set now. In each such $W_{n, K, n}^{\rho}$ let $b_{1} b_{2} \cdots b_{n}$ be the vertex $a_{1} a_{2} \cdots a_{n}$ for which $a_{1}+a_{2}+\cdots+a_{n}$ is minimal. We say that this $b_{1} b_{2} \cdots b_{n}$ is the anchor of $W_{n, K, n}^{\rho}$. Then the anchors of the spheres $W_{n, K, n}^{\rho}$ form the lattice $L=L_{S}$. Without loss of generality we can assume that O is the anchor of a $W_{n, H_{0}, n}^{\rho}$ whose center H_{0} is a component of S isomorphic to H. In $W_{n, H_{0}, n}^{\rho}$ let $c_{0} c_{1} \cdots c_{n}$ be the vertex $a_{1} a_{2} \cdots a_{n}$ in $W_{n, H_{0}, n}^{\rho}$ for which $a_{1}+a_{2}+\cdots a_{n}$ is maximal. Then L_{S} has generating set $\left\{\left(1+c_{1}\right) e_{1},\left(1+c_{2}\right) e_{2}, \ldots,\left(1+c_{n}\right) e_{n}\right\}$ and is formed by all linear combinations of its elements. This insures that S exists and is latticelike via L_{S}. Remaining details of the proof are left to the reader, who must check that $\ell_{i}=c_{i}-2$, for $i=1, \ldots, n$.

Theorem 3.1 can be proved alternatively by the additive-group epimorphism technique $[2,1$, 24] modified in Section 5 as Proposition 5.1. Figure 3 in Section 4 below suggests in light-gray color at least two induced components of a t - $\operatorname{RPDS}[H]$ in Λ_{n} as in Theorem 3.1, where $t=3$, $H=Q_{0}$ and $n=3$.

The Voronoi diagram of \mathbb{Z}^{n} in \mathbb{R}^{n} has its composing Voronoi regions ([7], pg. 26) as the unitvolume n-dimensional cubes, cartesian product $\Pi_{i=1}^{n}\left[a_{i}-\frac{1}{2}, a_{i}+\frac{1}{2}\right]$. Let H_{0} and L be as in the proof of Theorem 3.1. Consider the vertices v of a sphere $W_{n, H_{0}, n}^{\rho}+\ell,(\ell \in L)$. The union of the Voronoi regions of those v is called the Voronoi box $B_{n, H_{0}, n, \ell}^{\rho}$ of $W_{n, H_{0}, n}^{\rho}+\ell$. Then, \mathbb{R}^{n} admits a Voronoi partition \mathcal{V} into constellations (in a way similar to that of [7], pg.26) each contained in a corresponding Voronoi box $B_{n, H_{0}, n, \ell}^{\rho}$ but containing its anchor in $L=L_{S}$ and just one point from each pair of antipodal points in its boundary (equidistant from the barycenter of $B_{n, H_{0}, n, \ell}^{\rho}$ along a straight line). As a result, $L=L_{S}$ is a set of representatives of \mathcal{V}, but \mathcal{V} is not uniquely defined.

Corollary 3.1. For each n-box H, \mathbb{R}^{n} admits a Voronoi partition into constellations associated to the Voronoi boxes $B_{n, H_{0}, n, \ell}^{\rho}$ where both H_{0} and L are as in the proof of Theorem 3.1, and ℓ runs over L.

4. SMALLER RADII AND BOX DIMENSIONS

Existing results of lattice-like t-RPDS s in Λ_{n} with $t<n$ concern solely $t=1$ (that is for PDS s). In fact, constructions in [2, 6, 20, 24] lead to lattice-like 1-RPDS. However, it seems that
there are not many of these 1-RPDS s. For example, [14] shows that there is only one latticelike 1-RPDS $\left[Q_{2}\right]$ and no 1-RPDS $\left[Q_{2}\right]$ which is not lattice-like. In contrast with the existence of a lattice-like 2-PDDS $\left[P_{2}\right]$ in Λ_{3} arising from a Minkowsky tiling cited in [2], we may combine the conjecture in Subsection 1.3 with the related conjecture that there are no lattice-like t-RPDS in Λ_{n}, for $1<t<n$.

Figure 2. Constellation of a lattice L_{S} for a 1-RPDS $\left[Q_{1} ; 4\right] S$ in Λ_{3}.

If S is a periodic t - $\operatorname{RPDS}[H]$ in Λ_{n} and is not lattice-like, then for some positive integer m there is a tiling of Λ_{n} with tiles that are the vertex set of a connected subgraph H^{*} induced in Λ_{n} by the union of both: (a) m disjoint copies H^{1}, \ldots, H^{m} of H that intervene as components of S and (b) the set formed by the vertices $v \in \mathbb{Z}^{n}$ for which $\rho\left(v, H^{j}\right) \leq t$, for some $j \in I_{m}$. If so, by taking m as small as possible, we say that S is a t-RPDS $[H ; m$.

For example, Section 5 of [2] shows the existence of a 1-RPDS $\left[Q_{1} ; 4\right] S$ which is not latticelike. However, there exists a lattice L_{S} based on such S with each of its constellations containing two copies of Q_{2} in color 1 (of edge $O e_{1}$) and two copies of Q_{1} in color 2 (of edge $O e_{2}$), all four copies of Q_{2} being components of S. This is represented in Figure 2, where the rainbow 1-spheres of such four components (in thick trace) are shaded dark gray and the remaining area completing their convex hull is in light gray.

Here we can take a fixed vertex v_{T} in each resulting tile T so that all the vertices v_{T} constitute the lattice L_{S}. Thus, even for a non-lattice-like t-RPDS we can recover a lattice formed by selected vertices v_{T} in the corresponding tiles T associated to S. However, when describing S as a t $\operatorname{RPDS}[H ; m]$, we can say that S is a lattice-like $t-\operatorname{RPDS}[H ; m]$ as there is indication between brackets of the components of S in a resulting typical tile T in which to fix a sole distinguished vertex v_{T} so that all such distinguished vertices constitute a lattice L_{S} and the resulting tiling is effectively a lattice-like tiling. We generalize this situation as follows.

A t-RPDS S in Λ_{n} with the components of S isomorphic to two different fixed finite graphs H_{0} and H_{1} is said to be a t - $\operatorname{RPDS}\left[H_{0}, H_{1}\right]$. Even though such an S cannot be lattice-like, it may happen that there exists a lattice L_{S} such that for some positive integers m_{0} and m_{1} there exists a constellation of L_{S} in Λ_{n} given by the union of two disjoint subgraphs H_{0}^{*} and H_{1}^{*}, where $H_{i}^{*}(i=0,1)$ is induced in Λ_{n} by the disjoint union of: (a) m_{i} copies $H_{i}^{1}, \ldots, H_{i}^{m_{i}}$ of H_{i} that intervene as components of S and (b) the sets of vertices $v \in \mathbb{Z}^{n}$ for which $0<\rho\left(v, H_{i}^{j}\right) \leq t$, for $j \in I_{m_{i}}$. In this case, S is said to be a lattice-like t-RPDS $\left[H_{0}, H_{1} ; m_{0}, m_{1}\right]$. We can take a fixed vertex v_{T} in each resulting tile T so that all the vertices v_{T} form the lattice L_{S}. We obtain a $1-\operatorname{RPDS}\left[H_{0}, H_{1} ; m_{0}, m_{1}\right]$ in the following statement, where $H_{0}=Q_{2}, H_{1}=Q_{0}, m_{0}=2, m_{1}=2$,

Figure 3. Elements of a constellation for a 1-RPDS $\left[Q_{2}, Q_{0} ; 2,2\right]$ in Λ_{3}.
with a constructive proof of it in Section 6 by means of Proposition 5.1.
Theorem 4.1. There exists a lattice-like $1-\operatorname{RPDS}\left[Q_{2}, Q_{0} ; 2,2\right] S$ in Λ_{3}. This S covers a 1-RPDS $\left[Q_{2}, Q_{0} ; 2,2\right]$ of any cartesian product $C_{6 k_{1}} \square C_{6 k_{2}} \square C_{3 k_{3}}$ with $0<k_{i}$, for $i=1,2,3$. The minimum graph distance between the induced components Q_{2} (resp., Q_{0}) of S is 3 .

This is represented in Figure 3, where the components of S in one of the constellations of L_{S} formed by two copies of Q_{2} and two copies of Q_{0}, are blackened and the edges in the rainbow 1 -spheres having them as centers are shown in dark trace; the other edges induced in the union of these four components are in dark-gray trace. For better reference, the rainbow 3-spheres of the 3-RPDS $\left[Q_{0}\right]$ resulting from Theorem 3.1 are shaded in light gray. Also, dark gray was used to indicate two other copies of Q_{2} appearing in the figure that are components of S. Notice that vertices O, e_{1}, e_{2}, e_{3} are indicated in the figure. The minimum distance between the induced components Q_{n-1} (resp., Q_{0}) of S is 3 .

More generally, let $1 \leq t_{i} \leq n$, for $i=0,1$. A set $S \subset V$ is said to be a $\left(t_{0}, t_{1}\right)-\operatorname{RPDS}\left[H_{0}, H_{1}\right]$ in Λ_{n} if for each $v \in V$ there is: (i) a unique index $i \in\{0,1\}$ and a unique component K_{v}^{i} of S such that the distance $\rho\left(v, K_{v}^{i}\right)$ from v to C_{K}^{i} satisfies $\rho\left(v, K_{v}^{i}\right) \leq t_{i}$ and (ii) there is a unique vertex w in K_{v}^{i} such that $\rho(v, w)=\rho\left(v, K_{v}^{i}\right)$.

Even though such an S cannot be lattice-like, it may happen that there exists a lattice L_{S} such that for some positive integers m_{0} and m_{1} there exists a constellation of L_{S} in Λ_{n} given by the union of two disjoint subgraphs H_{0}^{*} and H_{1}^{*}, where $H_{i}^{*}(i=0,1)$ is induced in Λ_{n} by the disjoint union of: (a) m_{i} disjoint copies $H_{i}^{1}, \ldots, H_{i}^{m_{i}}$ of H_{i} that intervene as components of S and (b) the sets of vertices $v \in \mathbb{Z}^{n}$ for which $0<\rho\left(v, H_{i}^{j}\right) \leq t_{i}$, for $j \in I_{m_{i}}$. In this case, S is said to be a lattice-like $\left(t_{0}, t_{1}\right)$-RPDS $\left[H_{0}, H_{1} ; m_{0}, m_{1}\right]$. We can take a fixed vertex v_{T} in each resulting tile T so that all the vertices v_{T} form a lattice L_{S}. A family of lattice-like $\left(t_{0}, t_{1}\right)$-RPDS $\left[H_{0}, H_{1} ; m_{0}, m_{1}\right]$ s in the lattices Λ_{n} that extend the 1 - $\operatorname{RPDS}\left[Q_{2}, Q_{0} ; 2,2\right]$ of Theorem 4.1 is obtained as follows, where
$H_{0}=Q_{n-1}, H_{1}=Q_{0}, m_{0}=m_{1}=2, t_{0}=1, t_{1}=n-2$, with a constructive proof of it in Section 7.

Theorem 4.2. There exists a lattice-like ($1, n-2)-\operatorname{RPDS}\left[Q_{n-1}, Q_{0} ; 2,2\right] S$ in Λ_{n}. This S covers $a(1, n-2)-\operatorname{RPDS}\left[Q_{n-1}, Q_{0} ; 2,2\right]$ in any cartesian product $C_{6 k_{1}} \square \ldots \square C_{6 k_{n-1}} \square C_{3 k_{n}}$ with $0<k_{i}$, for $i=1, \ldots, n$.

5. ADDITIVE-GROUP EPIMORPHISMS

All the constructions of RPDS s mentioned in this paper can be confirmed by means of the additive-group epimorphism technique presented in this section. In fact, we use a modification of Corollary 2 in [2] in the following two sections. This is a corollary to Theorem 6 [24] whose proof uses the linear-algebraic notion of translation of subsets $S \subset \mathbb{Z}^{n}$. The modification in question (of the corollary) is given as Proposition 5.1 below and it is tailored in order to complete the proofs of the results in Section 4. The additive-group epimorphism technique starts by having:
(a) a lattice L in $\left(\mathbb{Z}^{n},+\right)$ generated by elements $u_{1}, \ldots, u_{n} \in \mathbb{Z}^{n}$ such that $L=\left\{\alpha_{1} u_{1}+\ldots+\right.$ $\left.\alpha_{n} u_{n} ; \alpha_{i} \in \mathbb{Z}, i=1, \ldots, n\right\} ;$
(b) a set $T \subseteq \mathbb{Z}^{n}$ containing one element from each coset of $\mathbb{Z}^{n} \bmod L$ such that $\{T+u ; u \in L\}$ is a partition of \mathbb{Z}^{n} into subsets of size $\left|\mathbb{Z}^{n} / L\right|$, with the induced subgraphs $[T+u]$ of $T+u$ in Λ_{n} pairwise isomorphic, where $u \in L$.

Figure 4. Accompanying example: two possible selections for $[T]$.

Given a lattice L, we can split \mathbb{Z}^{n} into subsets with their induced subgraphs having different shapes depending on the choice of T. For example, $L=\left\{\alpha_{1}(3,2)+\alpha_{2}(0,4) ; \alpha_{i} \in \mathbb{Z}, i=1,2\right\}$ in Λ_{2} has $\left(\mathbb{Z}^{n},+\right) / L=\mathbb{Z}_{12}$. The graph $[T]$ might be either the cartesian product $P_{6} \square P_{2}$ or the closed neighborhood of a 2-cube $Q_{2}=P_{2} \square P_{2}$, as shown in Figure 1.

Let $D=(V, E)$ be an induced subgraph of Λ_{n}. We are looking for a partition (tiling) of Λ_{n} into copies of D. We need to find a lattice L for the required selection of the set T with $[T]=D$. The following construction leads to the sought tiling of Λ_{n}.

If there is an abelian group $(G,+)$ of order $|V|$ and elements g_{1}, \ldots, g_{n} of G such that the restriction of the epimorphism $\Phi: \mathbb{Z}^{n} \rightarrow G$ defined by $\Phi\left(\left(a_{1}, \ldots, a_{n}\right)\right)=a_{1} \Phi\left(e_{1}\right)+\ldots+$ $a_{n} \Phi\left(e_{n}\right)=a_{1} g_{1}+\ldots+a_{n} g_{n}$ to V is a bijection then there is a partition of Λ_{n} into copies of D.

In other words, we need to find an abelian group G of order $|V|$ and assign elements g_{1}, \ldots, g_{n} of G to the vertices e_{1}, \ldots, e_{n} of Λ_{n} such that $\Phi\left(\left(a_{1}, \ldots, a_{n}\right)\right)=a_{1} \Phi\left(e_{1}\right)+\ldots+a_{n} \Phi\left(e_{n}\right)=$
$a_{1} g_{1}+\ldots+a_{n} g_{n}$ is a bijection on V. Since the kernel of a group epimorphism $\Phi: \mathbb{Z}^{n} \rightarrow G$ is a subgroup of \mathbb{Z}^{n}, then the elements w of \mathbb{Z}^{n} for which $\Phi(w)=0$ form a lattice L in $\left(\mathbb{Z}^{n},+\right)$. In addition, $\left(\mathbb{Z}^{n},+\right) / L=G$; also, V has exactly one element in each coset of $\left(\mathbb{Z}^{n},+\right) / L$. Thus we can set $T=V$.

TABLE I

	\mathbb{Z}^{3}							$\vec{\phi}$	G						
\ldots	\cdots	122	222	\cdots	\ldots	\ldots	\ldots	\cdots	\cdots	322	422	\cdots	\ldots	\cdots	
\ldots	\ldots	112	212	\ldots	\ldots	\ldots	\ldots	\cdots	\ldots	212	312	\ldots	\ldots	\ldots	\ldots
\ldots	\cdots	131	231	\ldots	\ldots	\ldots	\ldots	\cdots	\cdots	401	501		\ldots	\cdots	\cdots
...	021	121	221	321	\ldots	...	221	321	421	521	\ldots	...	\ldots
...	011	111	211	311	\ldots	\cdots	111	211	311	411	...	\ldots	\ldots
\ldots	001	101	201	301	\ldots	001	101	201	301	...	\ldots	\ldots
\ldots	...	120	220	...	420	520	\cdots	\cdots	...	320	420		020	120	\cdots
...	010	110	210	310	410	510	...	\ldots	110	210	310	410	510	010	\ldots
100	000	100	200	300	400	500	000	100	200	300	400
\cdots	010	310	520	\ldots	...	220		...	
\ldots	...	\cdots	\ldots		431	531	...	\cdots	...	\ldots	\cdots			202	
\ldots	\cdots	\ldots	\ldots	321	421	521	621	\ldots	\ldots	\ldots	\ldots	522	022	122	222
\ldots	...	\ldots	\ldots	311	411	511	61F	...	\cdots	\cdots	\ldots	412	512	012	112
\ldots	001	..	\ldots	301	401	501	002	302	402	502	
\cdots	...	\cdots	\cdots	\cdots	422	522	...	\cdots	\cdots	\cdots	\cdots	\cdots	021	121	\ldots
\ldots	\ldots	...	412	512	\ldots	...	511	011	

As mentioned, Corollary 2 of [2] can be modified as follows.
Proposition 5.1. Let $1 \leq t_{i} \in \mathbb{Z}$ and $1 \leq m_{i} \in \mathbb{Z}$. Let H_{i} be a finite subgraph of Λ_{n}, for $i=0,1$. Let H be the disjoint union in Λ_{n} of m_{0} copies of H_{0} and m_{1} copies of H_{1}. Let an induced supergraph H^{*} of H in Λ_{n} be such that a vertex v is in H^{*} if and only if there is just a copy H^{\prime} of H_{i} that is a component of H with the least $\rho\left(v, H^{\prime}\right) \leq t_{i}$, for a fixed $i=0,1$ dependent only on v. Let $D=(V, E)$ be a copy of H^{*} in Λ_{n} that contains vertices O, e_{1}, \ldots, e_{n}. Then there is a lattice-like $\left(t_{0}, t_{1}\right)-\operatorname{RPDS}\left[H_{0}, H_{1} ; m_{0}, m_{1}\right]$ if there exists an abelian group G of order $|V|$ and a group epimorphism $\Phi: \mathbb{Z}^{n} \rightarrow G$ such that the restriction of Φ to V is a bijection.

6. PROOF OF THEOREM 4.1

If $x<y$ in \mathbb{Z}, then let $[x, y]=\{z \in \mathbb{Z} ; x \leq z \leq y\}$. Consider the subset $X \subset \mathbb{Z}^{3}$ of vertices of Λ_{3} whose coordinates are divisible by 3 . Clearly, X is a lattice of \mathbb{Z}^{3}. Each element of X is in a subset $\tau_{x_{1}, x_{2}, x_{3}}=\left[3 x_{1}, 2+3 x_{1}\right] \times\left[3 x_{2}, 2+3 x_{2}\right] \times\left[3 x_{3}, 2+3 x_{3}\right]$ of \mathbb{Z}^{3}, with $x_{1}, x_{2}, x_{3} \in \mathbb{Z}$. Such a subset is a constellation of the lattice X and from now on will be called a 3-grenade.

TABLE II

\mathbb{Z}^{4}	.. \ldots \ldots \ldots	... 00011 \ldots	... \ldots \ldots	- -. \cdots	$\begin{aligned} & 0110 \\ & 0010 \\ & 0110 \end{aligned}$	\ldots 1010 \ldots	... \cdots \ldots	\ldots 0011 \ldots	... \ldots \ldots
	\ldots	0101	...	1-100	0100	1100	\cdots	0101	
	1001	0001	1001	1-000	0000	1000	-001	0001	1001
	...	0101	...	1-100	01-00	11-00	...	0101	...
	\ldots	...	\cdots		011-0	\ldots	\ldots
	...	001-	...	1-010	0010	1010	\ldots	0011	...
	\ldots	01-10	...	\cdots	...	\ldots
\downarrow^{Φ}									
	\ldots	\ldots	2110	...	\ldots	\ldots	...
	\ldots	1012	\ldots	0010	1010	2010	\ldots	1011	\ldots
	\ldots	...	\ldots	...	0210		\ldots
G	\ldots	1102	10	0100	1100	2100	\cdots	1101	
	5002	0002	1002	5000	0000	1000	5001	0001	1001
	...	5202	...	4200	5200	0200	...	5201	...
	...	\ldots	\ldots	\ldots	0120		\ldots	\cdots	\ldots
	\ldots	5022	\ldots	4020	5020	0020	\ldots	5021	\ldots
	\ldots	...	4220	...	\ldots	...	\ldots

A lattice-like 1-RPDS $\left[Q_{2}, Q_{0} ; 2,2\right]$ as claimed in Theorem 4.1 is composed by X and a subset Y defined as follows. We select in each 3-grenade $\tau_{x_{1}, x_{2}, x_{3}}$ the 2-cube (or square) $\sigma_{x_{1}, x_{2}, x_{3}}=$ $\left[1+3 x_{1}, 2+3 x_{1}\right] \times\left[1+3 x_{2}, 2+3 x_{2}\right] \times\left\{1+\delta+3 x_{3}\right\}$, where δ is the rest of dividing $x_{1}+x_{2}$ by 2 . Then Y is given by the union of all squares $\sigma_{x_{1}, x_{2}, x_{3}}$ with $x_{1}, x_{2}, x_{3} \in \mathbb{Z}$. Theorem 4.1 is a direct corollary of the following lemma.

Lemma 6.1. $X \cup Y$ is a lattice-like $(1,1)-\operatorname{RPDS}\left[Q_{2}, Q_{0} ; 2,2\right]$ of Λ_{3}. Its induced components are centers of the copies of respective spheres $W_{3,2,1}^{\rho}$ and $W_{3,0,1}^{\rho}$ in a specific tiling of Λ_{3}.

Proof. We will construct the claimed $\operatorname{RPDS}\left[Q_{2}, Q_{0} ; 2,2\right]$ by applying Proposition 5.1. Let H be given by the union of $\sigma_{0,0,0}, \sigma_{1,0,-1},\left\{3 e_{1}\right\}$ and $\{O\}$. Let $D=(V, E)$ be as in the statement of Proposition 5.1 in out present situation. The graph H^{*} is represented in Figure 2 with: (i) edges between vertices in each component of D in thick black trace, (ii) the remaining edges in H^{*} in thick dark-gray trace, (iii) the convex hulls of shown parts of 3-grenades in \mathbb{R}^{3} in light gray and (iv) dominating copies of Q_{2} in black.

TABLE III

\mathbb{Z}^{4}		\ldots	\ldots	1231	2231	\ldots	\ldots	\ldots
		1321	2321	...		
	1220	2220	0221	1221	2221	3221	1222	2222
	1120	2120	0121	1121	2121	3121	1122	2122
		1021	2021
	\ldots	1311	2311	...	\ldots	\ldots
	1210	2210	0211	1211	2211	3211	1212	2212
	1110	2110	0111	1111	2111	3111	1112	2112
	1011	2011	\ldots	\ldots	...
	...	\ldots	\ldots	1201	2201	\ldots	\ldots	\ldots
	\ldots	1101	2101
\downarrow^{Φ}								
	...	\ldots	\cdots	0201	1201	\ldots	\cdots	\cdots
	...	\ldots	\cdots	5101	
	\ldots	...	\ldots	0021	1021	\ldots	\cdots	
	5220	0220	4221	5221	0221	1221	5222	0222
G	4120	5120	3121	4121	5121	0121	4122	5122
	3021	4021
	\ldots	\ldots	\ldots	5011	0011			
	4210	5210	3211	4211	5211	0211	4212	5212
	3110	4110	2111	3111	4111	5111	3112	4112
	2011	3011	...	\cdots	...
	...		\ldots		4201	\ldots	\ldots	\ldots
	\ldots	2101	3101	...	\ldots	...

We place $D=(V, E)$ in such a way that V comprises: (a) the vertices $e_{1}+e_{2}+e_{3}, 2 e_{1}+e_{2}+e_{3}$, $e_{1}+2 e_{2}+e_{3}$ and $2 e_{1}+2 e_{2}+e_{3}$ of $\sigma_{0,0,0}$; (b) $4 e_{1}+e_{2}-e_{3}, 5 e_{1}+e_{2}-e_{3}, 4 e_{1}+2 e_{2}-e_{3}$ and $5 e_{1}+2 e_{2}-e_{3}$ of $\sigma_{1,0,-1}$; (c) $3 e_{1}$; (d) O. This yields a total of 10 vertices, to which we must add their 44 neighbors, namely, respectively: (a') $e_{1}+e_{2}, 2 e_{1}+e_{2}, e_{1}+2 e_{2}, 2 e_{1}+2 e_{2}, e_{1}+e_{2}+2 e_{3}$, $2 e_{1}+e_{2}+2 e_{3}, e_{1}+2 e_{2}+2 e_{3}, 2 e_{1}+2 e_{2}+2 e_{3}, e_{2}+e_{3}, 3 e_{1}+e_{2}+e_{3}, 2 e_{2}+e_{3}, 3 e_{1}+2 e_{2}+e_{3}$, $e_{1}+e_{3}, 2 e_{1}+e_{3}, e_{1}+3 e_{2}+e_{3}$ and $2 e_{1}+3 e_{2}+e_{3} ;\left(\mathbf{b}^{\prime}\right) 4 e_{1}+e_{2}, 5 e_{1}+e_{2}, 4 e_{1}+2 e_{2}, 5 e_{1}+2 e_{2}$, $4 e_{1}+e_{2}+2 e_{3}, 5 e_{1}+e_{2}+2 e_{3}, 4 e_{1}+2 e_{2}+2 e_{3}, 5 e_{1}+2 e_{2}+2 e_{3}, 3 e_{1}+e_{2}+e_{3}, 6 e_{1}+e_{2}+e_{3}, 5 e_{2}+e_{3}$, $6_{1}+2 e_{2}+e_{3}, 4 e_{1}+e_{3}, 5 e_{1}+e_{3}, 4 e_{1}+3 e_{2}+e_{3}$ and $5 e_{1}+3 e_{2}+e_{3}$; (c') $2 e_{1}, 4 e_{1}, 3 e_{1}+e_{2}$ and $3 e_{1}-e_{2}, 3 e_{1}+e_{3}$ and $3 e_{1}-e_{3} ;\left(\mathbf{d}^{\prime}\right)-e_{1}, e_{1},-e_{2}, e_{2}, e_{3}$ and $-e_{3}$. Thus, $|V|=54$ and D contains the vertices O, e_{1}, e_{2}, e_{3} as required by Proposition 5.1. We choose $G=\mathbb{Z}_{6} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$. The element g_{i} of G that is assigned to the vertex e_{i}, for $i=1,2,3$, is given by expressing it without parentheses or commas, as follows: $g_{1}=\Phi\left(e_{1}\right)=100, g_{2}=\Phi\left(e_{2}\right)=110$, and $g_{3}=\Phi\left(e_{3}\right)=001$.

We need to show that the restriction of the mapping $\Phi\left(\left(a_{1}, \ldots, a_{n}\right)\right)=\Phi\left(e_{1}\right)^{a_{1}} \circ \ldots \circ \Phi\left(e_{n}\right)^{a_{n}}=$ $a_{1} g_{1}+\ldots+a_{n} g_{n}$ to V is a bijection. This can be verified by means of Table I, where elements of $V \subset \mathbb{Z}^{3}$ are disposed on the left-hand side (in slices for constant $x_{3}=2,1,0,-1,-2$) and their images via Φ in G accordingly on the right-hand side; parentheses and commas avoided both for the elements of V and for those of G, with $O:=000, e_{1}=100, e_{2}=010, e_{3}=001, \ldots$ to save space, and where we indicated -1 and -2 respectively by 1 and 2 ; the positions of elements of $\mathbb{Z}^{3} \backslash V$ and of their images via Φ are indicated by means of ellipsis, for a better reference, and those vertices in items (a)-(d) above are in bold trace.

7. PROOF OF THEOREM 4.2

In order to extend the construction of Section 6, consider in $\Lambda_{n}(n>3)$ the subset $X \subset \mathbb{Z}^{n}$ of vertices whose coordinates are divisible by 3 . Clearly, X is a lattice of \mathbb{Z}^{n}. Each element of X is in a subset $\left[3 x_{1}, 2+3 x_{1}\right] \times\left[3 x_{2}, 2+3 x_{2}\right] \times \cdots \times\left[3 x_{n}, 2+3 x_{n}\right]$ of \mathbb{Z}^{n}, with $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{Z}$. Such a subset is a constellation of the lattice X and from now on will be called an n-grenade.

A lattice-like $(1, n-2)-\operatorname{RPDS}\left[Q_{n-1}, Q_{0} ; 2,2\right]$ as claimed in Theorem 4.2 is composed by X and a subset Y as follows. We select in each n-grenade $\tau_{x_{1}, x_{2}, \ldots, x_{n}}$ the $(n-1)$-cube $\sigma_{x_{1}, x_{2}, \ldots, x_{n}}=$ $\left[1+x_{1}, 2+x_{1}\right] \times\left[1+x_{2}, 2+x_{2}\right] \times \cdots \times\left[1+x_{n-1}, 2+x_{n-1}\right] \times\left\{1+\delta+x_{n}\right\}$, where δ is the rest of dividing $x_{1}+x_{2}+\cdots+x_{n-1}$ by 2 . Then Y given by the union of all $(n-1)$-cubes $\sigma_{x_{1}, x_{2}, \ldots, x_{n}}$ with $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{Z}$. Theorem 4.2 is a direct corollary of the following lemma.

Lemma 7.1. $X \cup Y$ is a lattice-like $(1, n-2)-\operatorname{RPDS}\left[Q_{n-1}, Q_{0} ; 2,2\right]$ of Λ_{n}. Its induced components are centers of the copies of respective spheres $W_{n, n-1,1}^{\rho}$ and $W_{n, 0, n-2}^{\rho}$ in a specific tiling of Λ_{n}.

Proof. We will construct the claimed (1, $n-2)$-RPDS $\left[Q_{n-1}, Q_{0} ; 2,2\right]$ by applying Proposition 5.1. Let H be given by the union of $\sigma_{0,0 \ldots \ldots, 0}, \sigma_{1,0 \ldots, 0,-1},\left\{3 e_{1}\right\}$ and $\{O\}$. We place the graph $D=$ (V, E) isomorphic to H^{*} so that V comprises two copies of Q_{n-1} with vertices of the form: (a) $\beta_{1} e_{1}+\beta_{2} e_{2}+\cdots+\beta_{n-1} e_{n-1}+e_{n}$ in $\sigma_{0,0, \ldots, 0,0}$, where $\beta_{i} \in\{1,2\}$ for $1 \leq i<n$, and (b) $\left(3+\beta_{1}\right) e_{1}+\beta_{2} e_{2}+\cdots+\beta_{n-1} e_{n-1}-e_{n}$ in $\sigma_{1,0, \ldots, 0,-1}$, and the isolated vertices (c) $3 e_{1}$ and (d) O. This yields a total of $2^{n}+2$ vertices, to which we must add their $2 \times 3^{n}-2^{n}-2$ neighbors, namely the vertices of the forms, respectively: (\mathbf{a}^{\prime}) $\beta_{1} e_{1}+\beta_{2} e_{2}+\cdots+\beta_{n-1} e_{n-1}+e_{n} \pm e_{n}$, $\beta_{2} e_{2}+\cdots+\beta_{n-1} e_{n-1}+e_{n}, 3 e_{1}+\beta_{2} e_{2}+\cdots+\beta_{n-1} e_{n-1}+e_{n}, \beta_{1} e_{1}+\beta_{3} e_{3}+\cdots+\beta_{n-1} e_{n-1}+e_{n}$, $\beta_{1} e_{1}+3 e_{2}+\beta_{3} e_{3}+\cdots+\beta_{n-1} e_{n-1}+e_{n}, \ldots, \beta_{1} e_{1}+\cdots+\beta_{n-2} e_{n-2}+e_{n}, \beta_{1} e_{1}+\cdots+\beta_{n-2} e_{n-2}+$ $3 e_{n-1}+e_{n}$; $\left(\mathbf{b}^{\prime}\right)\left(3+\beta_{1}\right) e_{1}+\beta_{2} e_{2}+\cdots+\beta_{n-1} e_{n-1}-e_{n} \pm e_{n}, 3 e_{1}+\beta_{2} e_{2}+\cdots+\beta_{n-1} e_{n-1}-e_{n}$, $6 e_{1}+\beta_{2} e_{2}+\cdots+\beta_{n-1} e_{n-1}-e_{n},\left(3+\beta_{1}\right) e_{1}+\beta_{3} e_{3}+\cdots+\beta_{n-1} e_{n-1}-e_{n},\left(3+\beta_{1}\right) e_{1}+3 e_{2}+\beta_{3} e_{3}+$ $\cdots+\beta_{n-1} e_{n-1}-e_{n}, \ldots,\left(3+\beta_{1}\right) e_{1}+\cdots+\beta_{n-2} e_{n-2}-e_{n},\left(3+\beta_{1}\right) e_{1}+\cdots+\beta_{n-2} e_{n-2}+3 e_{n-1}-e_{n}$; (\mathbf{c}^{\prime}) $3 e_{1}$ added to any of $\pm e_{1}, \ldots, \pm e_{n}$ and the sums of up to $n-2$ of $\pm e_{1}, \ldots, \pm e_{n}$, namely $3 e_{1} \pm e_{1}$, $3 e_{1} \pm e_{2}, \ldots, 3 e_{1} \pm e_{3} \pm e_{4} \pm \cdots \pm e_{n} ;\left(\mathbf{d}^{\prime}\right) \pm e_{1}, \ldots, \pm e_{n}$ and the sums of up to $n-2$ of $\pm e_{1}$, $\ldots, \pm e_{n}$, namely $\pm e_{1} \pm e_{2}, \ldots, \pm e_{3} \pm e_{4} \pm \cdots \pm e_{n}$. Counting these items yields the following numbers.

Subtotal of vertices in $\left(a^{\prime}\right)$ and $\left(b^{\prime}\right): 2\left[2^{n}+2(n-1) 2^{n-2}\right]=2^{n+1}+n 2^{n}-2^{n}$. Subtotal of vertices in $\left(c^{\prime}\right)$ and $\left(d^{\prime}\right): 2\left[\sum_{i=1}^{n-2} 2^{i}\binom{n}{i}\right]=2\left[(1+2)^{n}-2^{n}-n 2^{n-1}-1\right]=2\left[3^{n}-2^{n}-n 2^{n-1}-1\right]=$ $2 \times 3^{n}-2^{n+1}-n 2^{n}-2$. Total of vertices: $2^{n+1}+n 2^{n}-2^{n}+2 x 3^{n}-2^{n+1}-n 2^{n}-2=2 \times 3^{n}-2^{n}-2$.

Thus, $|V|=2 \times 3^{n}$ and D contains O and e_{i}, for $i=1, \ldots, n$, as required by Proposition 5.1. We choose $G=\mathbb{Z}_{6} \oplus\left(\mathbb{Z}_{3}\right)^{n-1}$. The element g_{i} of G that is assigned to the vertex e_{i}, for $i=$ $1,2, \ldots, n$, is given by expressing it without parentheses or commas, as follows: $\Phi\left(e_{1}\right)=10 \cdots 0$, $\Phi\left(e_{2}\right)=110 \cdots 0, \Phi\left(e_{3}\right)=1010 \cdots 0, \ldots, \Phi\left(e_{n-1}\right)=10 \cdots 010$, and $\Phi\left(e_{n}\right)=0 \cdots 01$. We need to show that the restriction of the mapping $\Phi\left(\left(a_{1}, \ldots, a_{n}\right)\right)=\Phi\left(e_{1}\right)^{a_{1}} \circ \ldots \circ \Phi\left(e_{n}\right)^{a_{n}}=$ $a_{1} g_{1}+\ldots+a_{n} g_{n}$ to V is a bijection. To help in visualizing the construction, we present tables for the case $n=4$. Table II shows the assignment Φ restricted to the sphere $W \rho_{4,0,2}$ around $O=0000$ (items (d) and ($\left.\mathrm{d}^{\prime}\right)$), with the corresponding values in G presented in the lower half of the table.

From Table II, a similar table is obtained for the sphere $W_{4,0,2}^{\rho}$ around $3 e_{1}=3000$ (cases (c) and $\left(\mathrm{c}^{\prime}\right)$) by adding 3 to the first entry of the 4 -tuples in the upper half of the table, and adding 3 mod 6 to the first entry of the 4-tuples in the lower half. Table III shows the assignment Φ restricted to the sphere $W_{4,3,1}^{\rho}$ spanned by the vertices in items (a) and (a^{\prime}), with the corresponding values in G presented in the lower half of the table.

From Table III, a similar table is obtained for the sphere $W_{4,3,1}^{\rho}$ spanned by the vertices in items (b) and (b^{\prime}) by adding 3 to the first entry of the 4-tuples in the upper half of the table and modifying accordingly the last entry, i.e. $1 \rightarrow(-1) ; 0 \rightarrow(-2) ; 2 \rightarrow 0$, and by adding 3 mod 6 to the first entry of the 4 -tuples in the lower half and applying the permutation that exchanges the last entries 1 and 2, with null last entries kept fixed. By combining the four tables obtained, it can be seen that Φ is indeed as required. These four tables, of which just two are displayed, will be denoted A, B, C, D, the same letters (capitalized now) corresponding to the lower-case ones used. We separate the first entry α_{1} of an element $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ of $G=\mathbb{Z}_{6} \oplus\left(\mathbb{Z}_{3}\right)^{n-1}$ from the remaining entries, considering for each of the resulting $(n-1)$-tuples $\alpha^{\prime}=\left(\alpha_{2}, \ldots, \alpha_{n}\right)$ in $G^{\prime}=\left(\mathbb{Z}_{3}\right)^{n-1}$ a corresponding terminal $(n-1)$-tuple $\beta_{2}, \ldots, \beta_{n}$ in \mathbb{Z}^{n-1} of a pre-image n tuple $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)$ in \mathbb{Z}^{n} via Φ, in order to establish, for each terminal $(n-1)$-tuple α^{\prime}, a correspondence from the first entries α_{1} to the first entries β_{1}, that can be grouped depending on the corresponding tables A, B, C, D.

In Table IV, for $n=3$ and 4 , we show that this grouping depends on the tables A, B, C, D above, for the four rainbow spheres involved in V, in four corresponding columns. In each of these four columns we can see three sub-columns showing from left to right: the different possible values of $\alpha_{1}=\alpha_{1}^{\xi},(\xi=A<B<C<D$, without separating commas) that pre-fixed to the row-heading α^{\prime} yields a corresponding α; the corresponding values of $\beta_{1}=\beta_{1}^{\xi}$ (again without separating commas); and a uniquely corresponding $\beta^{\prime}=\beta_{B}^{\prime}$.

In general, for any $n \geq 3$ we find it is necessary to consider six cases of α^{\prime} as appearing in Table IV, namely:
(1) $\alpha^{\prime} \in\{1,2\}^{n-2} \times\{1\}$; here $\beta_{1}^{B} \in\{0,1,2,3\}, \beta_{B}^{\prime}=\alpha^{\prime}$ and $\alpha_{1}^{B}=\beta_{1}^{B}+\alpha_{2}+\cdots+\alpha_{n-1} \in \mathbb{Z}_{6}$; also $\beta_{1}^{D} \in\{4,5\}, \beta_{D}^{\prime}=\alpha^{\prime}-(0, \ldots, 0,3)$ and $\alpha_{1}^{D}=\beta_{1}^{D}+\alpha_{2}+\cdots+\alpha_{n-1} \in \mathbb{Z}_{6}$; moreover, nothing is contributed for $\xi=A, C$.

TABLE IV

α^{\prime}	α_{1}^{A}	β_{1}^{A}	β_{A}^{\prime}	α_{1}^{B}	β_{1}^{B}	β_{B}^{\prime}	α_{1}^{C}		β_{C}^{\prime}	α_{1}^{D}	β_{1}^{D}	β_{D}^{\prime}
11				1234	0123	11				50	45	12
21				2345	0123	21				01	45	22
111				2345	0123	111				01	45	112
211				3450	0123	211				12	45	212
121				3450	0123	121				12	45	121
221				4501	0123	221				23	45	222
12				23	12	12				4501	3450	11
22				34	12	22				5012	3450	11
112				34	12	112				5012	3450	111
212				45	12	212				0123	3450	21F
122				45	12	122				0123	3450	121
222				50	12	222				1234	3450	221
10	1	0	10	23	12	10	4	3	10	50	45	10
20	5	0	10	34	12	20	2	3	10	01	45	20
110	2	0	110	34	12	110	5	3	110	01	45	110
210	0	0	-10	45	12	210	3	3	110	12	45	210
120	0	0	110	45	12	120	3	3	110	12	45	120
220	4	0	110	50	12	220	1	3	1-0	23	45	220
01	0	0	01	12	12	01	3	3	01			
101	1	0	101	45	12	31						
				50	12	131	4	3	101			
201	5	0	F01	34	12	201	2	3	101			
				01	12	231						
011	1	0	011	23 50	12	011	4	3	011			
021	5	0	01-1	34	12	021	2	3	011			
02	0	0	01	01	12	321	3	3	01	12	45	31
										45	45	01
102	1	0	101				4	3	101	23	45	131
202	5	0	101				2	3	101	50	45	011
										01	45	201
012	1	0	011				4	3	011	23	45	311
										50	45	011
022	5	0	01F				2	3	01F	34 01	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 321 \\ & 02 \mathrm{~F} \end{aligned}$
00	501	101	00				234	234	00			
000	501	101	000				234	234	000			
100	012	101	100				345	234	100			
200	450	101	100				123	234	100			
010	012	101	010				345	234	010			
020	450	101	010				123	234	010			
001	501	101	001				234	234	001			
002	501	101	001				234	234	001			

(2) $\alpha^{\prime} \in\{1,2\}^{n-2} \times\{2\}$; here $\beta_{1}^{D} \in\{3,4,5,0\}, \beta_{D}^{\prime}=\alpha^{\prime}-(0, \ldots, 0,3)$ and $\alpha_{1}^{D}=\beta_{1}^{D}+\alpha_{2}+$ $\cdots+\alpha_{n-1} \in \mathbb{Z}_{6}$; also $\beta_{1}^{B} \in\{1,2\}, \beta_{B}^{\prime}=\alpha^{\prime}$ and $\alpha_{1}^{B}=\beta_{1}^{B}+\alpha_{2}+\cdots+\alpha_{n-1} \in \mathbb{Z}_{6}$; moreover, nothing is contributed for $\xi=A, C$.
(3) $\alpha^{\prime} \in\{1,2\}^{n-2} \times\{0\}$; here $\beta_{1}^{A}=0, \beta_{1}^{B} \in\{1,2\}, \beta_{1}^{C}=3$ and $\beta_{1}^{D} \in\{4,5\} ; \beta_{\xi}^{\prime}=\alpha^{\prime}$, for
$\xi \in\{B, D\}$; for $\xi \in\{A, C\}, \beta^{\prime}=\alpha^{\prime \prime}$, where $\alpha^{\prime \prime}$ differs from α^{\prime} just in that each entry γ valued 2 in α^{\prime} is modified to $\gamma^{\prime}=-1$ in $\alpha^{\prime \prime}$; for any other entry γ of α^{\prime}, we set $\gamma^{\prime}=\gamma$; then α_{1}^{A} is the sum $\bmod 6$ of the values γ^{\prime} corresponding to the entries γ of α^{\prime}, and $\alpha_{1}^{C}=3+\alpha_{1}^{A} \bmod 6$; if δ is the sum of the entries of α^{\prime}, then to each feasible β_{1}^{ξ} corresponds $\alpha_{1}^{\xi}=\beta_{1}^{\xi}+\delta$, where $\xi=B, D$.
(4) α^{\prime} obtained from $\alpha^{\prime \prime} \in\{1,2\}^{n-2} \times\{1\}$ by changing one entry $\neq \alpha_{n}$ to 0 ; here $\beta_{1}^{A}=0$, $\beta_{1}^{C}=3$ and $\beta_{1}^{B} \in\{1,2\} ; \beta_{\xi}^{\prime}$ is obtained from α^{\prime} as in item 3 above, for $\xi=A, C$; for each of $\beta_{1}^{B}=1,2$, there are two instances for β_{B}^{\prime}, namely $\beta_{B^{\prime}}^{\prime}=\alpha^{\prime}$ and $\beta_{B^{\prime \prime}}^{\prime}$ obtained from α^{\prime} by replacing each null entry by 3 ; then, to each feasible β_{1}^{B} corresponds $\alpha_{1}^{B^{\prime}}=\beta_{1}^{B}+\alpha_{2}+\cdots+\alpha_{n-1} \in \mathbb{Z}_{6}$ and $\alpha_{1}^{B^{\prime \prime}}=\alpha_{1}^{B^{\prime}}+3(\bmod 6)$, respectively for $\beta_{B^{\prime}}^{\prime}$ and for $\beta_{B^{\prime \prime}}^{\prime}$; moreover, nothing is contributed for $\xi=D$.
(5) α^{\prime} obtained from $\alpha^{\prime \prime \prime} \in\{1,2\}^{n-2} \times\{2\}$ by changing one entry $\neq \alpha_{n}$ to 0 ; here $\beta_{1}^{A}=0$, $\beta_{1}^{C}=3$ and $\beta_{1}^{D} \in\{4,5\} ; \beta_{\xi}^{\prime}$ is obtained from α^{\prime} as in item 3 above, for $\xi=A, C$; for each of $\beta_{1}^{D}=4,5$, there are two instances for β_{D}^{\prime}, namely $\beta_{D^{\prime}}^{\prime}=\alpha^{\prime}$ and $\beta_{D^{\prime \prime}}^{\prime}$, obtained from α^{\prime} by replacing each null entry by 3 ; then, to each feasible β_{1}^{D} corresponds $\alpha_{1}^{D^{\prime}}=\beta_{1}^{D}+\alpha_{2}+\cdots+\alpha_{n-1} \in \mathbb{Z}_{6}$ and $\alpha_{1}^{D^{\prime \prime}}=\alpha_{1}^{D^{\prime}}+3(\bmod 6)$, respectively for $\beta_{D^{\prime}}^{\prime}$ and for $\beta_{D^{\prime \prime}}^{\prime}$; moreover, nothing is contributed for $\xi=B$.
(6) α^{\prime} with at least two null entries; here $\beta_{1}^{A} \in\{-1,0,1\}$ and $\beta_{1}^{C} \in\{2,3,4\} ; \beta_{\xi}^{\prime}$ is obtained from α^{\prime} as in item 3 above, for $\xi=A, C$; to each β_{1}^{ξ} as above corresponds $\alpha_{1}^{\xi}=\beta_{\xi}^{\prime}+\alpha_{2}+\cdots+$ $\alpha_{n-1} \in \mathbb{Z}_{6}$; moreover, nothing is contributed for $\xi=B, D$.

By combining these six cases, it is seen that the restriction of the additive-group epimorphism $\Phi: \mathbb{Z}^{6} \rightarrow G=\mathbb{Z}_{6} \oplus\left(\mathbb{Z}_{3}\right)^{n-1}$ is effectively a bijection, for every $n \geq 3$. Indeed, the cardinalities of those $\alpha^{\prime} \in\left(\mathbb{Z}_{3}\right)^{n-1}$ are respectively: (1) 2^{n-2}; (2) 2^{n-2}; (3) 2^{n-2}; (4) $(n-2) 2^{n-3}$; (5) $(n-2) 2^{n-3}$; and (6) $2\left(3^{n}\right)-3\left(2^{n-2}\right)-2(n-2) 2^{n-3}$. These cardinalities add up to $|V|=2\left(3^{n}\right)=|G|$, as required.

8. CONCLUSION AND OPEN PROBLEMS

After reviewing previous work on perfect dominating sets and perfect distance dominating sets, we continued here with the novel notion of rainbow distance in graph lattices. This was done in order to introduce rainbow perfect dominating sets or RPDSs in those graphs as well as in their quotient toroidal graphs. These are cartesian products of cycles, with possible applications to parallel computers.

Let $0<n \in \mathbb{Z}$. Two constructions of lattice-like RPDSs were presented in this work having their induced components C with:
(i) vertex sets $V(C)$ whose convex hulls are n-parallelotopes (resp., both $(n-1)$ - and 0 -cubes) and,
(ii) each $V(C)$ contained in a corresponding rainbow sphere centered at C with radius n (resp., radii 1 and $n-2$).

These rainbow spheres form a partition of \mathbb{Z}^{n}, in each one of the two constructions. Such a partition can be projected into partitions of the quotient toroidal graphs.

We find it not clear that similar lattice RPDS results as in (i) above hold with r-parallelotopes, for $0<r<n$. So this is a source of open problems on the existence or nonexistence of such RPDSs.

It has to be seen whether the construction of Theorem 4.1 is unique or not. (A result in this vein was obtained in [14] to the effect that there is but one PDS in Λ_{3} inducing just square components). The same may be inquired for the constructions obtained in Theorem 4.2.

References

[1] C.A. Araujo and I.J. Dejter, Lattice-like total perfect codes, Discuss. Math. Graph Theory 34 (2014), 57-74.
[2] C.A. Araujo, I.J. Dejter and P. Horak, A generalization of Lee codes, Des. Codes Cryptogr. 70 (2014), 77-90.
[3] D.W. Bange, A.E. Barkauskas and P.J. Slater, Efficient dominating sets in graphs, Discrete Appl. Math., eds. R.D. Ringeisen and F.S. Roberts, SIAM, Philadelphia, (1988), 189-199.
[4] N. Biggs, Perfect codes in graphs, J. Combin. Theory Ser. B 15 (1973), 289-296.
[5] J. Borges and I.J. Dejter, On perfect dominating sets in hypercubes and their complements, J. Combin. Math. Combin. Comput. 20 (1996), 161-173.
[6] S. Buzaglo and T. Etzion, Tilings by $(0.5, n)$-crosses and perfect codes, SIAM J. Discrete Math. 27 (2013), 1067-1081.
[7] R. Calderbank, ed., Different aspects of coding theory: AMS Short Course, January 2-3, 1995, San Francisco, California, AMS, Proc. Symp. Appl. Math. 501995.
[8] S. Chakraborty, E. Fischer, A. Matsliah and R. Yuster, Hardness and algorithms for rainbow connection, J. Combin. Optim. 21 (2011), 330-347.
[9] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008), 85-98.
[10] G. Chartrand, F. Okamoto and P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks 55 (2010), 360-367.
[11] G. Cohen, I. Honkala, S. Litsyn and A. Lobstein, Covering codes, North-Holland, Amsterdam 1997.
[12] I.J. Dejter, Perfect domination in regular grid graphs, Australas. J. Combin. 42 (2008), 99114.
[13] I.J. Dejter and A.A. Delgado, Perfect domination in rectangular grid graphs, J. Combin. Math. Combin. Comput. 70 (2009), 177-196.
[14] I.J. Dejter, L.R. Fuentes and C.A. Araujo, There is but one PDS in \mathbb{Z}^{3} inducing just square components, Bull. Inst. Combin. Appl. 82 (2018), 30-41.
[15] I.J. Dejter and J. Pujol, Perfect domination and symmetry in hypercubes, Congr. Num. 111 (1995), 18-32.
[16] I.J. Dejter and P. Weichsel, Twisted perfect dominating subgraphs of hypercubes, Congr. Numer. 94 (1993), 67-78.
[17] M.M. Deza and E. Deza, Encyclopedia of distances, Springer-Verlag, 2014;
[18] P. Dorbec and M. Mollard, Perfect codes in cartesian products of 2-paths and infinite paths, Electron. J. Combin. 12 (2005), p. $\sharp R 65$.
[19] T. Etzion, Product constructions for perfect Lee codes, IEEE Trans in Inform. Theory 57 (2011), 7473-7481.
[20] T. Etzion, Tilings with generalized Lee spheres, in: J.-S. No et al., eds., Mathematical Properties of Sequences and other Combinatorial Structures, Springer, 726 (2003), 181-198.
[21] M.R. Fellows and M.N. Hoover, Perfect domination, Australas. J. Combin. 3 (1991), 141150.
[22] H. Gavlas and K. Schultz, Efficient open domination in graphs, Electron. Notes in Discrete Math. 11 (2002), 681-691.
[23] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs, M. Dekker Inc., 1998.
[24] P. Horak and B.F. AlBdaiwi, Diameter perfect Lee codes, IEEE Trans. Inform. Theory 58 (2012), 5490-5499.
[25] W.F. Klostermeyer, A taxonomy of perfect domination, J. Discrete Math. Sci. Cryptogr. 18 (2015), 105-116.
[26] W.F. Klostermeyer and J.L. Goldwasser, Total perfect codes in grid graphs, Bull. Inst. Comb. Appl. 46 (2006) 61-68.
[27] M. Krivelevich and R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63 (2010), 185-191.
[28] X. Li, Y. Shi and Y. Sun, Rainbow connections of graphs: a survey, Graphs Combin. 29 (2013), 1-38.
[29] X. Li and Y. Sun, Rainbow connections of graphs, Springer, 2012, ISBN 978-1-4614-3119-0.
[30] M. Livingston and Q.F. Stout, Perfect dominating sets, Congr. Numer. 79 (1990), 187-203.
[31] P.R.J. Östergård and W.D. Weakley, Constructing covering codes with given automorphism, Des. Codes Cryptogr. 16 (1999), 65-73.
[32] P.M. Weichsel, Dominating sets in n-cubes, J. Graph Theory 18 (1994), 479-488.

