
www.ejgta.org

Electronic Journal of Graph Theory and Applications 6 (1) (2018), 1–16

Upper bounds on the bondage number of a graph

Vladimir Samodivkin

Departments of Mathematics

University of Architecture, Civil Engineering and Geodesy

Sofia, Bulgaria

vl.samodivkin@gmail.com

Abstract

The bondage number b(G) of a graph G is the smallest number of edges whose removal from G
results in a graph with larger domination number. We obtain sufficient conditions for the validity of

the inequality b(G) ≤ 2s− 2, provided G has degree s vertices. We also present upper bounds for

the bondage number of graphs in terms of the girth, domination number and Euler characteristic.

As a corollary we give a stronger bound than the known constant upper bounds for the bondage

number of graphs having domination number at least four. Several unanswered questions are

posed.
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1. Introduction

An orientable compact 2-manifold Sh or orientable surface Sh (see [21]) of genus h is obtained

from the sphere by adding h handles. Correspondingly, a non-orientable compact 2-manifold Nq or

non-orientable surface Nq of genus q is obtained from the sphere by adding q crosscaps. Compact

2-manifolds are called simply surfaces throughout the paper. The Euler characteristic is defined

by χ(Sh) = 2−2h, h ≥ 0, and χ(Nq) = 2−q, q ≥ 1. The Euclidean plane S0, the projective plane

N1, the torus S1, and the Klein bottle N2 are all the surfaces of non-negative Euler characteristic.

Received: 4 February 2015, Revised: 26 November 2017, Accepted: 13 December 2017.

1



www.ejgta.org

Upper bounds on the bondage number of a graph | Vladimir Samodivkin

We shall consider graphs without loops and multiple edges. A graph G is embeddable on a

topological surface M if it admits a drawing on the surface with no crossing edges. Such a drawing

of G on the surface M is called an embedding of G on M. If a graph G is embedded in a surface

M then the connected components of M − G are called the faces of G. For such a graph G, we

denote its vertex set, edge set, face set, maximum degree, and minimum degree by V (G), E(G),
F (G), ∆(G), and δ(G), respectively. Set |G| = |V (G)|, ‖G‖ = |E(G)|, and f(G) = |F (G)|.
An embedding of a graph G on a surface M is said to be 2-cell if every face of the embedding is

homeomorphic to an open disc. The Euler’s inequality states

|G| − ‖G‖+ f(G) ≥ χ(M) (1)

for any graph G that is embedded in M. Equality holds if G is 2-cell embedded in M. By the genus

h (the non-orientable genus q) of a graph G we mean the smallest integer h (q) such that G has an

embedding into Sh (Nq, respectively).

The girth of a graph G, denoted as g(G), is the length of a shortest cycle in G; if G is a forest

then g(G) = ∞. For any vertex x of a graph G, NG(x) denotes the set of all neighbors of x in

G, NG[x] = NG(x) ∪ {x} and the degree of x is dG(x) = |NG(x)|. For a subset A ⊆ V (G), let

NG(A) = ∪x∈ANG(x), NG[A] = NG(A)∪A, and 〈A,G〉 be the subgraph of G induced by A. The

distance between two vertices x, y ∈ V (G) is denoted by dG(x, y). The average degree ad(G) of

a graph G is defined as ad(G) = 2‖G‖/|G|.
An independent set is a set of vertices in a graph, no two of which are adjacent. The indepen-

dence number β0(G) of a graph G is the size of the largest independent set in G. A dominating set

for a graph G is a subset D ⊆ V (G) of vertices such that every vertex not in D is adjacent to at

least one vertex in D. The minimum cardinality of a dominating set is called the domination num-

ber of G and is denoted by γ(G). The concept of domination in graphs has many applications in a

wide range of areas within the natural and social sciences. One measure of the stability of the dom-

ination number of G under edge removal is the bondage number b(G) defined in [2] (previously

called the domination line-stability in [2]) as the smallest number of edges whose removal from G
results in a graph with larger domination number. We refer the reader to [31] for a detailed survey

on this topic. In general it is NP -hard to determine the bondage number (see Hu and Xu [11]),

and thus useful to find bounds for it.

The main outstanding conjecture on the bondage number is the following:

Conjecture 1 (Teschner [29]). For any graph G, b(G) ≤ 3
2
∆(G).

Hartnell and Rall [8] and Teschner [30] showed that for the Cartesian product Gn = Kn ×Kn,

n ≥ 2, the bound of Conjecture 1 is sharp, i.e. b(Gn) =
3
2
∆(Gn). Teschner [29] also proved that

Conjecture 1 holds when the domination number of G is not more than 3.

The study of the bondage number of graphs, which are 2-cell embeddable on a surface having

negative Euler characteristic was initiated by Gagarin and Zverovich [6] and is continued by the

same authors in [7], Jia Huang in [12] and the present author in [24]. All these authors obtain upper

bounds for the bondage number in terms of maximum degree and/or orientable and non-orientable

genus of a graph. In [25], the present author gives upper bounds for the bondage number in terms

of order, girth and Euler characteristic of a graph. By Theorem 10 (ii) [7] or by Theorem B(ii)
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below, it immediately follows that Conjecture 1 is true for any graph G such that all the following

is valid: (a) G is 2-cell embeddable in a surface M with χ(M) < 0, (b) |G| > −12χ(M), and (c)

∆(G) ≥ 8.

In this paper we concentrate mainly on the case when a graph G is 2-cell embeddable in a

surface M and |G| ≤ −12χ(M). The rest of the paper is organized as follows. Section 2 contains

preliminary results. In section 3 we give new arguments that improve the known upper bounds

on the bondage number at least when −7χ(M)/(δ(G) − 5) < |G| ≤ −12χ(M), δ(G) ≥ 6.

We propose a new type of upper bound on the bondage number of a graph. Namely we obtain

sufficient conditions for the validity of the inequality b(G) ≤ 2s − 2, where G is a graph having

degree s vertices, s ≥ 5. In particular, we prove that if a connected graph G is 2-cell embeddable

in an orientable/non-orientable surface M with negative Euler characteristic then b(G) ≤ 2δ − 2
whenever −14χ(M) < δ(G) − 4 + 2(δ(G) − 5)|G| and δ(G) ≥ 6. We also improve the known

upper bounds for b(G) when a graph G is embeddable on at least one of N1,N2,N3,N4 and S2.

In section 4 we give tight lower bounds for the number of vertices of graphs in terms of Euler

characteristic and the domination number. We also present upper bounds for the bondage number

of graphs in terms of the girth, domination number and Euler characteristic. As a corollary, in

section 5 we give a stronger bound than the known constant upper bounds for the bondage number

of graphs having domination number at least 4.

2. Known and preliminary results

In this section we recall several known upper bounds on the bondage number of a graph and

prove some useful lemmas. We need the following notations and definitions.

• V≤r(G) = {x ∈ V (G) | dG(x) ≤ r}, r ≥ 1,

• Vr(G) = {x ∈ V (G) | dG(x) = r}, r ≥ 1,

• b1(G) = min{dG(x) + dG(y)− 1 | x, y ∈ V (G) and 1 ≤ dG(x, y) ≤ 2},
• b2(G) = minx,y∈V (G){dG(x) + dG(y)− 1− |NG(x) ∩NG(y)| | xy ∈ E(G)},

• b3(G) = minx,y∈V (G){max{dG(x) + dG(y)− 1− |NG(x) ∩NG(y)|, dG(x)
+dG(y)− 3} | xy ∈ E(G)},

• [13] B(G) = min{b1(G), b2(G)},

• B′(G) = min{b1(G), b3(G)}.
Theorem A. If G is a nontrivial graph, then

(i) (Hartnell and Rall [9]) b(G) ≤ b1(G) ≤ 2ad(G)− 1;

(ii) (Hartnell and Rall [8]) b(G) ≤ b2(G).

By Theorem A and the above definitions we have b2(G) ≤ b3(G) and

b(G) ≤ B(G) ≤ B′(G) ≤ b1(G) ≤ 2ad(G)− 1. (2)

Note that, if a graph G has no triangles then B(G) = B′(G) = b1(G).

Theorem B. (Samodivkin [25]). Let G be a connected graph embeddable on a surface M whose

Euler characteristic χ is as large as possible and let g(G) = g. If χ ≤ −1 then:
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(i) ad(G) ≤ 2g
g−2

(1− χ

|G|
);

(ii) b(G) ≤ 2ad(G)− 1 ≤ 3 + 8
g−2

− 4χg
|G|(g−2)

.

The same upper bound for b(G), in case when g ∈ {3, 4}, is obtained by Gagarin and Zverovich

[6].

Theorem C. (Gagarin and Zverovich [7]). Let G be a connected graph 2-cell embedded in a

surface M with χ(M) = χ ≤ −1. Then

b(G) ≤ 2ad(G)− 1 ≤ 11 +
3χ(

√
17− 8χ− 3)

χ− 1
.

Theorem D. (Samodivkin [24]). Let G be a connected toroidal or Klein bottle graph. Then

b2(G) ≤ ∆(G) + 3 with equality if and only if one of the following conditions is valid:

(P3) G is 4-regular without triangles;

(P4) G is 6-regular and no edge of G belongs to at least 3 triangles.

In [5], Frucht and Harary define the corona of two graphs G1 and G2 to be the graph G =
G1 ◦G2 formed from one copy of G1 and |G1| copies of G2, where the ith vertex of G1 is adjacent

to every vertex in the ith copy of G2.

Theorem E. (Carlson and Develin [3]). Let G be a graph of the form G = H ◦ K1. Then

b(G) = δ(H) + 1.

Lemma F. (Sachs [23], pp. 226-227). Let G be a connected graph embeddable in a surface M. If

M ∈ {S0,N1} then δ(G) ≤ 5. If χ(M) ≤ 1 then δ(G) ≤
⌊

(5 +
√

49− 24χ(M))/2
⌋

.

Lemma 2.1. Let G be a graph embedded in a surface M. If g(G) = g < ∞ then ‖G‖ ≤
(|G| − χ(M)) g

g−2
.

Proof. Case 1: The graph G is connected. Then there is a surface M1 on which G can be 2-cell

embedded. Since clearly gf(G) ≤ 2‖G‖, by (1) we have χ(M) ≤ χ(M1) = |G| − ‖G‖+ f(G) ≤
|G| − ‖G‖+ 2

g
‖G‖, and the result easily follows.

Case 2: The graph G is disconnected. Then there is a connected supergraph G1 for G such

that (a) V (G1) = V (G) and E(G) ( E(G1), and (b) G1 can be embedded in M. By Case 1 we

immediately have ‖G‖ < ‖G1‖ ≤ (|G1| − χ(M)) g

g−2
.

The next lemma is fairly obvious and hence we omit the proof.

Lemma 2.2 (J. van den Heuvel [14]). Let G be a connected graph 2-cell embedded in a surface

M ∈ {Sh,Nq}, v ∈ V (G) and dG(v) ≥ 2. Let Ev = {xy | x, y ∈ NG(v), x 6= y, xy 6∈ E(G)}.

Then there is a subset D ⊆ Ev, such that the graph H = G+D is still 2-cell embedded in M and

(i) 〈NH(v), H〉 is connected;
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(ii) 〈NH(v), H〉 is Hamiltonian when dG(v) ≥ 3.

Lemma 2.3. Let G be a connected graph 2-cell embedded in a surface U. Let s ≥ 3, V≤s−V≤2 6= ∅
and B′(G) ≥ 2s − 1. Let I = {x1, x2, . . . , xk} be an independent dominating set in 〈V≤s, G〉.
Then V≤s−1 ⊆ I and there is a supergraph Gk for G which is 2-cell embedded in U such that

V (Gk) = V (G), E(G) ⊆ E(Gk) and the following hold:

(a) I is an independent set of Gk;

(b) if u ∈ (V (G)−NG(I)) ∪NG(V1) then NGk
(u) = NG(u);

(c) if u ∈ I , v ∈ V≤s−1(G) and u 6= v then dGk
(u, v) = dG(u, v) ≥ 3;

(d) if u ∈ I , dG(u) = r ≥ 3 and v ∈ NG(u) then dGk
(v) ≥ 2s− r + 2;

(e) if u ∈ I , dG(u) = 2 and v ∈ NG(u) then dGk
(v) ≥ 2s− 1.

Proof. Since B′(G) ≥ 2s− 1, the following claim is valid.

Claim 1. If x ∈ Vr(G), r ≤ s, y ∈ V (G) and 1 ≤ dG(x, y) ≤ 2, then dG(y) ≥ 2s− r.

Hence V≤s−1 ⊆ I and dG(x, y) ≥ 3 whenever x 6= y, x ∈ V≤s and y ∈ V≤s−1. Since G is 2-cell

embedded, using Lemma 2.2 consecutively k times we obtain the graphs G0 = G,G1, . . . , Gk, as

follows. For r = 1, 2, . . . , k let Gr = Gr−1 + Fr, where Fr ⊆ {xy | x, y ∈ NG(xr), x 6= y, xy 6∈
E(Gr−1)}, such that Gr is still a 2-cell embedded in U and (i) if dG(xr) ≥ 3 then 〈NGr

(xr), Gr〉
is Hamiltonian, and (ii) if dG(xr) = 2 then xr belong to a triangle of Gr. Clearly, if dG(xr) ≥ 3
then 〈NGk

(xr), Gk〉 is Hamiltonian and if dG(xr) = 2 then xr belongs to a triangle of Gk, r =
1, 2, . . . , k.

(a)–(c): The results immediately follow by the very definition of the graph Gk and by Claim 1.

(d): By Claim 1, dG(v) ≥ 2s − r. If the equality holds then NG(u) ∩ NG(v) is empty. Since

|NGk
(u) ∩NGk

(v)| ≥ 2, dGk
(v) ≥ 2s− r + 2. If dG(v) = 2s− r + 1 then |NG(u) ∩NG(v)| ≤ 1.

Since |NGk
(u) ∩NGk

(v)| ≥ 2, dGk
(v) ≥ 2s− r + 2.

(e): By Claim 1, dG(v) ≥ 2s − 2. If the equality holds then NG(u) ∩ NG(v) is empty. Since

|NGk
(u) ∩NGk

(v)| = 1, dGk
(v) ≥ 2s− 1.

3. Upper bounds: degree s vertices

Motivated by Theorems A, B and C, in this section we concentrate on the set of all vertices of

degree at most s in a 2-cell embedded graph, s ≥ 4. We impose some restrictions on this set to

obtain new upper bounds on the bondage number. The main result of this section is the following

theorem:

Theorem 3.1. Let G be a connected graph 2-cell embedded in M ∈ {Sp,Nq}. If Vs(G) 6= ∅ for

some s ≥ 4 and

−14χ(M) < (s− 4)β0(〈Vs, G〉) + 2(s− 5)|G|+ 4|V≤2|+ 2
s−1
∑

j=3

(5− j)|Vj|

then b(G) ≤ B′(G) ≤ 2s− 2.
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Proof. Let G be a connected graph 2-cell embedded in a surface M with χ(M) = χ. Suppose

B′(G) ≥ 2s− 1. Keeping the notation of Lemma 2.3 let us consider the graph H = Gk − V≤s−1.

By Clam 1 and Lemma 2.3 we immediately have:

Claim 2. Let Is = I − V≤s−1.

(a) δ(H) = s, Is = Vs(H) and Is is an independent set of H .

(b) If u ∈ V (H)−NG[I] then NH(u) = NG(u) and dH(u) ≥ s+ 1.

(c) If v ∈ NG(V≤2) then dH(v) ≥ 2s− 2.

(d) If v ∈ NG(Vl), 3 ≤ l ≤ s− 1, then dH(v) ≥ 2s− l + 1.

(e) If v ∈ NG(Is), then dH(v) ≥ s+ 2.

By Lemma 2.1 and Claim 2 it follows that

6(|H| − χ) ≥ 2‖H‖ =
∑

v∈Is

dH(v) +
∑

u∈NG(I)

dH(u) +
∑

t∈V (H)−NG[I]

dH(t)

≥ s|Is|+ ((s+ 2)|NG(Is)|+ |V≤2|(2s− 2) +
s−1
∑

j=3

(2s− j + 1)|Vj|)

+(s+ 1)(|H| − |Is| − |NH(Is)| − |NG(V≤s−1)|)
or equivalently

−6χ ≥ −|Is|+ |NH(Is)|+ (s− 5)|H|+ |V≤2|(s− 3) +
s−1
∑

j=3

(s− j)|Vj|. (3)

Let us consider the bipartite graph R with parts Is and NH(Is), and edge set {uv ∈ E(G) | u ∈
Is, v ∈ NG(Is)}. First let R have a cycle. Lemma 2.1 implies s|Is| = ‖R‖ ≤ 2(|R| − χ). Since

|R| = |Is|+ |NH(Is)|, we obtain

|NH(Is)| ≥
s− 2

2
|Is|+ χ (4)

If R is a forest then s|Is| = ‖R‖ ≤ |R|−1 = |Is|+|NH(Is)|−1. Hence |NH(Is)| ≥ (s−1)|Is|+1 ≥
s−2
2
|Is|+ χ.

By (3) and (4) it follows

−14χ ≥ (s− 4)|Is|+ 2(s− 5)|H|+ 2|V≤2|(s− 3) + 2
s−1
∑

j=3

(s− j)|Vj|. (5)

Since |H| = |G| − |V≤s−1|, we finally obtain

−14χ ≥ (s− 4)|Is|+ 2(s− 5)|G|+ 4|V≤2|+ 2
s−1
∑

j=3

(5− j)|Vj|, (6)

a contradiction.
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The next two corollaries immediately follow from Theorem 3.1.

Corollary 3.1. Let G be a connected graph 2-cell embedded in M ∈ {Sp,Nq}.

(i) If V5(G) 6= ∅ and −14χ(M) < 4|V≤3|+ 2|V4|+ β0(〈V5, G〉) then b(G) ≤ B′(G) ≤ 8.

(ii) If V6(G) 6= ∅ and −7χ(M) < 2|V≤3|+ |V4|+ β0(〈V6, G〉) + |G| then b(G) ≤ B′(G) ≤ 10.

(iii) If V6(G) = ∅, V7(G) 6= ∅ and −14χ(M) < 4|V≤3| + 2|V4| + 3β0(〈V7, G〉) + 4|G| then

b(G) ≤ B′(G) ≤ 12.

This solves Conjecture 1 when (a) G is as in Corollary 3.1(i) and ∆(G) ≥ 6 or (b) G is as in

Corollary 3.1(ii) and ∆(G) ≥ 7 .

Corollary 3.2. Let G be a connected graph 2-cell embedded in M ∈ {Sp,Nq}, δ(G) = δ ≥ 4 and

−14χ(M) < (δ − 4)β0(〈Vδ, G〉) + 2(δ − 5)|G|. Then b(G) ≤ B′(G) ≤ 2δ − 2.

Hence we may conclude that Conjecture 1 is true whenever G is as in Corollary 3.2 and 4δ(G)−
4 ≤ 3∆(G).

Remark 3.1. Let G be a connected graph 2-cell embedded in a surface M with χ(M) = χ ≤ −1

and let δ(G) = δ ≥ 6. It is not hard to see that if − 7χ
δ−5

− (δ−4)β0(〈Vδ ,G〉)
2(δ−5)

< |G| ≤ −12χ then the

bound stated in Corollary 3.2 is better than that given in Theorem B(ii).

Theorem 3.2. Let G be a connected graph embeddable on a surface M whose Euler charac-

teristic χ(M) is as large as possible. Let G have no vertices of degree δMmax = max{δ(H) |
a graph His 2-cell embedded in M}. Then (a) b(G) ≤ B′(G) ≤ 2δMmax − 3, and (b) if χ(M) ≤ 1

then b(G) ≤ B′(G) ≤ 2
⌊

(5 +
√

49− 24χ(M))/2
⌋

− 3.

Proof. (a) Since χ(M) is as large as possible, G has 2-cell embedding on M [18]. Since G has

no vertex of degree s = δMmax, V≤s−1 is not empty. Suppose to the contrary that B′(G) ≥ 2s −
2. Hence, for any two distinct vertices x, y ∈ V≤s−1 = {x1, . . . , xk}, dG(x, y) ≥ 3. Now, as

in the proof of Lemma 2.3, we obtain a supergraph Gk for G with V (G) = V (Gk) and xy ∈
E(Gk)−E(G) implies both x and y are in NG(u) for some u ∈ V≤s(G). Moreover, if dG(xr) ≥ 3
then 〈NGk

(xr), Gk〉 is Hamiltonian, and if dG(xr) = 2 then xr belongs to a triangle of Gk, r =
1, 2, . . . , k.

Claim 3.

(i) If u ∈ Vr(G), 3 ≤ r ≤ s− 1 and v ∈ NG(u) then dGk
(v) ≥ 2s− r + 1.

(ii) If u ∈ V≤2(G) and v ∈ NG(u) then dGk
(v) ≥ 2s− 2.

Proof of Claim 3. (i): Since B′(G) ≥ 2s − 2, dG(v) ≥ 2s − r − 1. If the equality holds then

NG(u)∩NG(v) is empty. Since |NGk
(u)∩NGk

(v)| ≥ 2, dGk
(v) ≥ 2s− r+ 1. If dG(v) = 2s− r

then |NG(u) ∩NG(v)| ≤ 1. Since |NGk
(u) ∩NGk

(v)| ≥ 2, dGk
(v) ≥ 2s− r + 1.

(ii): Since B′(G) ≥ 2s− 2, dG(v) ≥ 2s− dG(u)− 1. If dG(u) = 2 and the equality holds then

NG(u) ∩NG(v) is empty. Since |NGk
(u) ∩NGk

(v)| = 1, dGk
(v) ≥ 2s− 2.
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Figure 1. A planar graph F (without degree 5-vertices) having B(F ) = B′(F ) = 7.

Consider the graph H = Gk − V≤s(G) which is embedded in M. Since s ≥ 5, by Claim 3 it

follows δ(H) ≥ s+ 1 - a contradiction.

(b) The result immediately follows by (a) and Lemma F.

There are infinitely many planar graphs G without degree δS0max = 5 vertices for which B′(G) =
2δS0max − 3 = 7. One such a graph is depicted in Figure 1. Notice that for a planar graph G without

degree 5 vertices, the inequalities b(G) ≤ 7 and B(G) ≤ 7 are due to Kang and Yuan [16] and

Huang and Xu [13], respectively.

By Theorem 3.2 and Corollary 3.1(i) it immediately follows:

Corollary 3.3. If G is 2-cell embedded in M ∈ {S0,N1} then b(G) ≤ B′(G) ≤ 8.

Figure 2. A planar triangulation H with B′(H) = 8.

The inequalities b(G) ≤ 8 and B(G) ≤ 8 for planar graphs, were proven by Kang and Yuan

[16] and Huang and Xu [13], respectively. Consider the planar graph H shown in Figure 2 (this

graph is taken from [13]). Each edge of H belongs to exactly 2 triangles, δ(H) = 5, ∆(H) = 6

8
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and all neighbors of any degree 5 (red) vertex are degree 6 (green) vertices. This implies B(H) =
B′(H) = 8. Hence the upper bound for B′(G) in Corollary 3.3 is tight when M = S0.

Carlson and Develin [3] showed that there exist planar graphs with bondage number 6. It is not

known whether there is a planar graph G with b(G) ∈ {7, 8}.

Consider the projective-planar graph R depicted in Figure 3. Note that R is a triangulation,

each edge of R is in exactly 2 triangles, δ(R) = 5, there are no adjacent degree 5 (red) vertices and

there is a degree 5 vertex adjacent to a degree 6 (black) vertex. This implies B(R) = B′(R) = 8.

Hence the upper bound for B′(G) in Corollary 3.3 is tight when M = N1. Note that in the case

when M = N1, our result is better than b(G) ≤ 10 which was recently and independently obtained

by Gagarin and Zverovich [7] and by the present author [25].

Figure 3. A projective-planar triangulation R with B′(R) = 8.

It is well known that the non-orientable genus of K6 is 1 [21]. Hence by Theorem E we obtain:

Proposition 3.1. There exist projective-planar graphs with bondage number 6. In particular,

b(K6 ◦K1) = 6.

Corollary 3.3 and Proposition 3.1 show that the maximum value of the bondage number of

projective-planar graph is 6, 7 or 8.

Question. Is there a projective-planar graph G with b(G) ∈ {7, 8}?

In the next corollary we improve the known upper bound for the bondage number of Klein

bottle graphs from 11 (Gagarin and Zverovich [7]) to 9.

Corollary 3.4. Let G be 2-cell embedded in M ∈ {S1,N2}. Then b(G) ≤ B′(G) ≤ 9. Moreover,

B′(G) = 9 if and only if G is a 6-regular triangulation in M.

9
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Proof. If δ(G) ≥ 6 then G is a 6-regular triangulation as it follows by the Euler formula; hence

B′(G) = 9. If V5(G) is not empty then B′(G) ≤ 8 by Corollary 3.1. So, let V≤4(G) 6= ∅ and

V5(G) = ∅. Suppose B′(G) ≥ 9. Note that if x ∈ Vr(G), r ≤ 4, y ∈ V (G) and 1 ≤ dG(x, y) ≤ 2,

then dG(y) ≥ 10 − r. Hence V3(G) ∪ V4(G) 6= ∅ - otherwise each component of the graph

G−V≤2(G) is a graph with minimum degree at least 6 and maximum degree at least 7, contradicting

Lemma 2.1. Consider the supergraph Gk of G described in Lemma 2.3, provided s = 5. Then

Lemma 2.3 implies the graph H = Gk −V≤4 has minimum degree at least 6 and maximum degree

at least 7 - again a contradiction with Lemma 2.1.

It is an immediate consequence of Euler’s formula that any 6-regular graph embedded in M ∈
{S1,N2} is a triangulation. Altshuler [1] found a characterization of 6-regular toroidal graphs

and Negami [19] characterized 6-regular graphs which embed in the Klein bottle. Moreover, no

6-regular graph embeds in both the torus and the Klein bottle [17]. The inequality b(G) ≤ 9 for

toroidal graphs, was proven by Hou and Liu [10]. They also showed that there exist toroidal graphs

with bondage number 7. The next result immediately follows by Theorem E.

Proposition 3.2. Let H be a 6-regular triangulation in M ∈ {S1,N2}. Then b(H ◦K1) = 7.

By Corollary 3.4 and Proposition 3.2 it immediately follows that the maximum value of the

bondage number of graph embeddable on surface with Euler characteristic 0 is 7, 8 or 9. The

following question naturally arises.

Question. Is there a toroidal graph G with b(G) ∈ {8, 9}? Is there a Klein bottle graph G with

b(G) ∈ {8, 9}?

Proposition 3.3. Let G be a connected toroidal or Klein bottle graph and let µ ∈ {b, b2}.

(i) If µ(G) > 3
2
∆(G) then either 4 ≤ δ(G) ≤ ∆(G) ≤ 5 or G is 3-regular.

(ii) If µ(G) = 3
2
∆(G) then either G is 6-regular and no edge of G belongs to at least 3 triangles

or 3 ≤ δ(G) ≤ ∆(G) = 4.

Proof. By Theorem D and Theorem A it follows that µ(G) ≤ ∆(G) + 3. Since G is 2-cell

embedded, ∆(G) ≥ 3.

(i) Since µ(G) > 3
2
∆(G), ∆(G) ≤ 5. Assume δ(G) ≤ 3. But then b2(G) ≥ µ(G) implies that

G is 3-regular.

(ii) Since µ(G) = 3
2
∆(G), ∆(G) ∈ {4, 6}. If ∆(G) = 6 then b2(G) ≥ µ(G) = 9 = ∆(G) + 3.

By Theorem D, G is 6-regular and no edge of G belongs to at least 3 triangles. So, let ∆(G) = 4.

Then µ(G) = 6 which leads to δ(G) ≥ 3.

Problem 1. Find max{b(G) | G is a 6-regular triangulation in M ∈ {S1,N2} and no edge of G
belongs to at least 3 triangles}. Find max{b(G) | G is a 4-regular graph embeddable in M ∈
{S1,N2}}.

For any graph G, which is embeddable in N3, Gagarin and Zverovich [7] proved b(G) ≤ 14.

We improve this bound in the following corollary.

10
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Corollary 3.5. Let G be a graph embeddable in N3. Then b(G) ≤ B′(G) ≤ 10. If G has no

degree 6 vertices then b(G) ≤ B′(G) ≤ 9. If G has 15 mutually nonadjacent degree 5 vertices,

then b(G) ≤ B′(G) ≤ 8.

Proof. If G is embeddable in a surface with non-negative Euler characteristic then the result fol-

lows by Corollary 3.3 and Corollary 3.4. So, we may assume that the non-orientable genus of

G is 3 and hence |G| ≥ 7. By Lemma 2.1, ‖G‖ ≤ 3|G| + 3. Hence δN3

max = 6. If G has no

degree 6 vertices then B′(G) ≤ 9 because of Theorem 3.2. Assume V6 is not empty. But then

7 < β0(〈V6, G〉) + |G|. Now by Corollary 3.1(ii), b(G) ≤ B′(G) ≤ 10. The rest immediately

follows by Corollary 3.1(i).

Since the non-orientable genus of K7 is 3 [21], by Theorem E we obtain:

Proposition 3.4. There exist graphs embeddable on N3 with bondage number 7. One of them is

K7 ◦K1.

Question. Is there a graph G embeddable in N3 with b(G) ∈ {8, 9, 10}?

We conclude our results in this section with a constant upper bound on the bondage number of

graphs embeddable in M ∈ {S2,N4}. For any such a graph G, b(G) ≤ 16 (Gagarin and Zverovich

[7]). We improve this result as follows.

Corollary 3.6. Let G be a graph embeddable in M ∈ {S2,N4}. Then b(G) ≤ 12.

Proof. If G is embeddable in a surface with Euler characteristic not less than −1 then the result

follows by Corollary 3.3, Corollary 3.4 and Corollary 3.5. So, we may assume that at least one

of q(G) = 4 and h(G) = 2 holds. By Lemma 2.1, ‖G‖ ≤ 3|G| + 6. Hence δMmax ≤ 7. Since

h(K8) = 2 and q(K8) = 4, δMmax = 7. If G has no degree 7 vertices then b(G) ≤ B′(G) ≤ 11
because of Theorem 3.2. Assume V7 is not empty. If V6 is empty then Corollary 3.1(iii) implies

b(G) ≤ B′(G) ≤ 12. So, let V6 6= ∅. If there are u ∈ V6 and v ∈ V7 which are at distance at

most 2 then b(G) ≤ B′(G) ≤ b1(G) ≤ 6 + 7 − 1 = 12. If u ∈ V6, v ∈ V7 and dG(u, v) ≥ 3 then

|G| ≥ 15. By Corollary 3.1(ii), b(G) ≤ B′(G) ≤ 10.

Since h(K8) = 2 and q(K8) = 4 [21], by Theorem E we obtain:

Proposition 3.5. There exist graphs embeddable on N4 with bondage number 8. There exist graphs

embeddable on S2 with bondage number 8. One such a graph is K8 ◦K1.

Question. Is there a graph G embeddable in N4 with b(G) ∈ {9, 10, 11, 12}? Is there a graph G
embeddable in S2 with b(G) ∈ {9, 10, 11, 12}?

4. Upper bounds: the domination number

In this section (a) we present upper bounds for the order of a graph in terms of the domination

number and Euler characteristic, and (b) we give upper bounds for the bondage number in terms

of the girth, domination number and Euler characteristic. The obtained bounds for b(G) are better

than the one in Theorem C. We need the following results.

11
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Theorem G. (Sanchis [26]) Let G be a connected graph with n vertices and domination number

γ where 3 ≤ γ ≤ n/2. Then the number of edges of G is at most (n− γ + 1)(n− γ)/2. If G has

exactly this number of edges and γ ≥ 4 it must be of the following form.

(P1) An (n− γ)-clique, together with an independent set of size γ, such that each of the vertices

in the (n − γ)-clique is adjacent to exactly one of the vertices in the independent set, and

such that each of these γ vertices has at least one vertex adjacent to it.

(P2) For γ = 3, G may consist of a clique of n−5 vertices, together with 5 vertices x1, x2, x3, x4, x5,

with edges x1x3, x2x4, x2x5, such that every vertex in the (n − 5)-clique is adjacent to x4

and x5, and in addition adjacent to either xl or x3. Moreover, at least one of these vertices

is adjacent to xl and at least one to x3.

Theorem H. (Ore [20]) If G is a connected graph with n ≥ 2 vertices then γ(G) ≤ n/2.

Proposition 4.1. Let G be a connected graph of order n ≥ 2 which is 2-cell embedded in a surface

M.

(i) If γ(G) = 2 then n ≥ 2 +
√

6− 2χ(M) when n is even and n ≥ 2 +
√

7− 2χ(M) when n
is odd.

(ii) If γ(G) = γ 6= 2 then

n ≥ γ + (1 +
√

9 + 8γ − 8χ(M))/2, and (7)

γ ≤ n+ (1−
√

8n+ 9− 8χ(M))/2. (8)

Proof. Since f(G) ≥ 1, Euler’s formula implies n− ‖G‖+ 1 ≤ χ(M).
(i) If H is a graph with γ(H) = 2, |H| = n and maximum number of edges then its complement

is a forest in which each component is a star [28]. This implies n(n−1)/2−⌈n/2⌉ = ‖H‖ ≥ ‖G‖.

Hence n− n(n− 1)/2 + ⌈n/2⌉+ 1 ≤ χ(M). Equivalently, n2 − 4n+ 2χ(M)− 2 ≥ 0 when n is

even and n2 − 4n+ 2χ(M)− 3 ≥ 0 when n is odd. Since n ≥ 2, the result easily follows.

(ii) Since ‖G‖ ≤ (n − γ + 1)(n − γ)/2 (by Theorem G when γ ≥ 3), we have 2χ(M) ≥
2n− (n− γ + 1)(n− γ) + 2, or equivalently

n2 − (2γ + 1)n+ γ2 − γ − 2 + 2χ(M) ≥ 0 and

γ2 − (2n+ 1)γ + n2 − n− 2 + 2χ(M) ≥ 0.

Solving these inequalities we respectively obtain (7) and (8), because n ≥ 2γ (by Theorem H).

Next we show that the bounds in Proposition 4.1(ii) are tight. Let a graph G have property

(P1)(Theorem G) and in addition δ(G) ≥ 4, |G| = n = γ + i + 4t, where t ≥ γ = γ(G) ≥ 4,

i = 1 when γ is odd, and i = 2 when γ is even. If p = (‖G‖−|G|+1)/2 then p = 4t2+t+(1−γ)/2
when γ is odd, and p = 4t2+3t+1−γ/2 when γ is even. Since G is clearly 4-edge connected, G
can be embedded in M = Sp(e.g. see Jungerman [15]). Note also that G can be 2-cell embedded

in N2p(see [21]). It is easy to see that, in both cases, we have equalities in (7) and (8).

Combining Theorem B(i) and Proposition 4.1 we immediately obtain the following results on

the average degree of a graph.

12
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Corollary 4.1. Let G be a connected graph 2-cell embedded in a surface M with χ(M) = χ ≤ −1.

(i) Then ad(G) ≤ 6− 12χ/(3 +
√
17− 8χ).

(ii) If γ(G) = 2 then ad(G) ≤ 6 − 6χ/(2 +
√
6− 2χ) when |G| is even, and ad(G) ≤ 6 −

6χ/(2 +
√
7− 2χ) when |G| is odd.

(iii) If γ(G) = γ ≥ 3 and g(G) = g then

ad(G) ≤ 2g

g − 2
(1− 2χ

2γ + 1 +
√
9 + 8γ − 8χ

)

≤ 6− 12χ

2γ + 1 +
√
9 + 8γ − 8χ

≤ 6− 12χ

7 +
√
33− 8χ

.

The next theorem follows by combining Theorem B(ii) and Corollary 4.1.

Theorem 4.1. Let G be a connected graph 2-cell embedded in a surface M with χ(M) = χ ≤ −1.

(i) If γ(G) = 2 then

b(G) ≤ 2ad(G)− 1 ≤ 11− 12χ

2 +
√
6− 2χ

when |G| is even, and

b(G) ≤ 2ad(G)− 1 ≤ 11− 12χ

2 +
√
7− 2χ

when |G| is odd.

(ii) If γ(G) = γ ≥ 3 and g(G) = g then

b(G) ≤ 2ad(G)− 1 ≤ 3 +
8

g − 2
− 8g

g − 2
.

χ

2γ + 1 +
√
9 + 8γ − 8χ

≤ 11− 24χ

2γ + 1 +
√
9 + 8γ − 8χ

≤ 11− 24χ

7 +
√
33− 8χ

.

Let us note that the bounds stated in Theorem 4.1 are better than the one in Theorem C when-

ever γ(G) ≥ 2. Finding a better upper bound for b(G) than the bound stated in Theorem 4.1(ii)

could help answer the following question.

Question. What is the maximum number of edges in a connected graph of order n, domination

number γ and girth g, where 1 ≤ γ ≤ n/2 and g ≥ 4.

13
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5. Remarks

Teschner [29] proved that Conjecture 1 holds when the domination number of a graph G is not

more than 3.

Theorem I. (Teschner [29]). Let G be a connected graph.

(i) If γ(G) = 1 then b(G) =
⌈

t
2

⌉

≤ 1
2
∆(G) + 1 ≤ 3

2
∆(G), where t is the number of vertices of

degree |G| − 1.

(ii) If γ(G) = 2 then b(G) ≤ ∆(G) + 1 ≤ 3
2
∆(G).

(iii) If γ(G) = 3 then b(G) ≤ 3
2
∆(G).

Hence it is naturally to turn our attention toward the graphs with the domination number at

least 4. By Theorem 4.1(ii) we have

b(G) ≤ 2ad(G)− 1 ≤ 11− 24χ

9 +
√
41− 8χ

whenever G is a connected graph 2-cell embedded in a surface M, χ(M) = χ ≤ −1 and

γ(G) ≥ 4. For a graph G which has 2-cell embedding on a surface with Euler characteristic

χ ∈ {−2,−3, . . . ,−23}, we have the upper bounds shown in Table 1 provided γ(G) ≥ 4.

Euler characteristic, χ −2 −3 −4 −5 −6 −7 −8 −9 −10 −11 −12

b(G) ≤ 2ad(G)− 1 ≤ 13 15 16 17 18 19 20 22 23 23 24

Euler characteristic, χ −13 −14 −15 −16 −17 −18 −19 −20 −21 −22 −23

b(G) ≤ 2ad(G)− 1 ≤ 25 26 27 28 29 30 30 31 32 33 34

Table 1. Constant upper bounds for the bondage number of graphs: γ ≥ 4 and χ ∈ {−2,−3, . . . ,−23}.

For the sake of completeness we add the upper bounds presented in section 3.

Euler characteristic, χ 2 1 0 −1 −2

b(G) ≤ B′(G) ≤ 8 8 9 10 12

Table 2. Constant upper bounds for the bondage number of graphs: χ ≥ −2.

Recall that the only known connected graphs for which the equality in Teschner’s conjecture

holds are Kn ×Kn, n ≥ 2, and C3k+1, k ≥ 1. We conclude by:

Question. Is there a connected graph G such that G 6= Kn×Kn, G 6= C3k+1 and b(G) = 3
2
∆(G)?

14



www.ejgta.org

Upper bounds on the bondage number of a graph | Vladimir Samodivkin

References

[1] A. Altshular, Construction and enumeration of regular maps on the torus, Discrete Math. 4

(1973), 201–217.

[2] D. Bauer, F. Harary, J. Nieminen and C.L. Suffel, Domination alteration sets in graphs, Dis-

crete Math. 47 (1983), 153–161.

[3] K. Carlson and M. Develin, On the bondage number of planar and directed graphs, Discrete

Math. 306 (2006), 820–826.

[4] J.F. Fink, M.J. Jacobson, L.F. Kinch and J. Roberts, The bondage number of a graph, Discrete

Math. 86 (1990), 47–57.

[5] R. Frucht and F. Harary, On the corona of two graphs, Aequationes Math. 4 (1970), 322–324.

[6] A. Gagarin and V. Zverovich, Upper bounds for the bondage number of graphs on topological

surfaces, Discrete Math. 313 (2013), 1132–1137.

[7] A. Gagarin and V. Zverovich, The bondage number of graphs on topological surfaces and

Teschner conjecture, Discrete Math. 313 (2013), 796–808.

[8] B.L. Hartnell and D.F. Rall, Bounds on the bondage number of a graph, Discrete Math. 128

(1994), 173–177.

[9] B.L. Hartnell and D.F. Rall, A bound on the size of a graph with given order and bondage

number, Discrete Math. 197/198 (1999), 409–413.

[10] J. Hou and G. Liu, A bound on the bondage number of toroidal graphs, Discrete Math. Algo-

rithms Appl. 4 (3), Article ID 1250046 (2012), 5 pages.

[11] F.-T. Hu and J.-M. Xu, On the complexity of the bondage and reinforcement problems, Jour-

nal of Complexity, 28 (2012), 192–201.

[12] J. Huang, An improved upper bound for the bondage number of graphs on surfaces, Discrete

Math. 312 (2012), 2776–2781.

[13] J. Huang and J.-M. Xu, Note on Conjectures of Bondage Numbers of Planar Graphs, Applied

Mathematical Sciences 6 (2012), 3277 – 3287

[14] J. van den Heuvel, Personal communication.

[15] M. Jungerman, A characterization of upper-embeddable graphs, Trans. Amer. Math. Soc. 241

(1978), 401–06.

[16] L. Kang and J. Yuan, Bondage number of planar graphs, Discrete Math. 222 (2000), 191–198.

[17] S. Lawrencenko and S. Negami, Constructing the graphs that triangulate both the torus and

the Klein bottle, J. Combin. Theory Ser. B 77 (1999), 211–218.

15



www.ejgta.org

Upper bounds on the bondage number of a graph | Vladimir Samodivkin

[18] B. Mohar and C. Thomassen, Graphs on surfaces, Johns Hopkins University Press, 2001.

[19] S. Negami: Classification of 6-regular Klein-bottlal graphs. Res. Rep. Inf. Sci. T.I.T. A-96

(1984).

[20] O. Ore, Theory of graphs, AMS Colloquium Publications 38. AMS 1962.

[21] G. Ringel, Map Color Theorem, Springer-Verlag, Berlin, 1974.

[22] G. Ringel, The combinatorial map color theorem, J. Graph Theory 1 (1977), 141–155.
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