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Abstract

The hyper-Zagreb index of a simple connected graph G is defined by

χ2(G) =
∑

uv∈E(G)

(d(u) + d(v))2.

In this paper, we establish, analyze and compare some new upper bounds on the Hyper-Zagreb

index in terms of the number of vertices (n), number of edges (m), maximum vertex degree (∆),
and minimum vertex degree (δ), first Zagreb index M1(G), second Zagreb index M2(G), harmonic

index H(G), and inverse edge degree IED(G). In addition, we give the identities on Hyper-Zagreb

index and its coindex for the simple connected graphs.
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1. Introduction

Mathematical chemistry is a branch of theoretical chemistry using mathematical methods to

discuss and predict molecular properties without necessarily referring to quantum mechanics.
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Chemical graph theory is a branch of mathematical chemistry which applies graph theory in mathe-

matical modeling of chemical phenomena. Topological indices are the numerical values associated

with chemical structures which are used to study and predict the physicochemical property corre-

lations of organic compounds in QSAR and QSPR studies [9, 15].

A molecular graph is a representation of the structural formula of a chemical compound such

that its vertices correspond to the atoms and the edges to the bonds. Let G be such a graph with

vertex set V (G) and edge set E(G). For u ∈ V (G), NG(u) denotes the (first) neighbors of u in

G and the degree of u is denoted by d(u) = dG(u) = |NG(u)| and the degree of edge e = uv is

denoted by d(e) = d(u) + d(v)− 2.

One of the most popular and most used molecular descriptors are the Novel first and second

Zagreb indices, introduced by Gutman and Trinajstić [12] and are defined as

M1(G) =
∑

v∈V (G)

d(v)2 and M2(G) =
∑

uv∈E(G)

d(u)d(v).

Numerous papers were recorded in the literature regarding the mathematical and chemical prop-

erties on Zagreb indices and the surveys on Zagreb indices. For the recent outcomes on Zagreb

indices, see [8, 17, 3] and references therein. Li and Zheng [14] introduced the generalized version

of the first Zagreb index. For α ∈ R and G be any graph satisfies the important identity (1):

Mα+1
1 (G) =

∑

v∈V (G)

d(v)α+1 =
∑

uv∈E(G)

[d(u)α + d(v)α]. (1)

Very recently, Furtula and Gutman [11, 12] re-introduced the forgotten topological index, defined

by

F (G) =
∑

v∈V (G)

d(v)3.

Ashrafi, Došlić and Hamzeha introduced the concept of sum of nonadjacent vertex degree pairs of

the graph G, known as first and second Zagreb coindices [1] and are defined as

M1(G) =
∑

uv/∈E(G)

[d(u) + d(v)] and M2(G) =
∑

uv/∈E(G)

d(u)d(v).

2. Basic notions and Preliminaries

The degree of a vertex is denoted by d(vi) for i = 1, 2, . . . , n such that d(v1) ≥ d(v2) ≥ · · · ≥
d(vn). For any v ∈ V (G) is said to be pendant vertex, if d(v) = 1 and p denotes the number of

pendent vertices of G. Let ∆ = ∆(G), δ1 = δ1(G) and δ = δ(G) denotes the maximum, minimum

non pendant and minimum vertex degree of G respectively. Similarly, for e = uv ∈ E(G), then

the degree of a edge is denoted by d(e) = d(u) + d(v) − 2. Let G denotes the complement of

G, with the same vertex set such that two vertices u and v are adjacent in G if and only if they

are not adjacent in G. The degree of the same vertex in G is then given by n − 1 − d(v) and
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m = n(n−1)
2

−m. The line graph L(G) obtained from G in which V (L(G)) = E(G), where two

vertices of L(G) are adjacent if and only if they are adjacent edges of G.

As usual Pn, K1,n−1, Cn, Kn denote path, star, cycle and the complete graph on n vertices,

respectively. The graph K∗
2,n−2 is a connected graph with n vertices obtained from the complete

bipartite graph K2,n−2 with two vertices of degree n−2 are joined by a new edge. The wheel graph

Wn is obtained by connecting a K1 to all vertices of a cycle Cn−1. The helm graph Hn is obtained

from Wn by adjoining a pendant edge at each vertex of the cycle. The flower Fln is obtained from

the helm Hn by joining each pendent vertex to the central vertex of the helm. A graph G is called

bidegreed if its vertex degree is either ∆ or δ with ∆ > δ ≥ 1. Let Bn,t be the graph on n vertices

with exactly t vertices of degree n− 1 and the remaining of n− t vertices forming an independent

set.

3. Main Results

In 2010, Zhou and Trinajstić introduced the general sum-connectivity index [22]:

χα(G) =
∑

uv∈E(G)

(d(u) + d(v))α.

Obviously, χ0(G) = m,χ1(G) = M1(G). In 2013, Shirdel, Rezapour and Sayadi [19] defined the

Hyper-Zagreb index, which is simply the general sum-connectivity index with α = 2 in [22]. This

paper deals with the mathematical properties of the general sum-connectivity index for α = 2.

By the definition of Hyper-Zagreb index, we have that χ2(G) = F (G) + 2M2(G). Clearly, the

mathematical properties of χ2(G) partially depends on the forgotten index and the second Zagreb

index. So the bounds for these indices automatically leads to the bounds for χ2(G).
In 2006, Cioabă [4] established the upper bound for F (G) in terms of n,m, δ,∆ and M1(G).

Theorem 3.1. (See [4]) Let G be a connected graph. Then

F (G) ≤
2m− (∆2 − δ2)

n
M1(G) +

2m(n− 1)(∆2 − δ2)

n

with equality holds if and only if G is regular or G = Bn,t for some t with 1 ≤ t ≤ n.

In 2010, Zhou and Trinajstić [23] present the upper bound for F (G) involving the first and

second Zagreb indices.

Theorem 3.2. (See [23]) Let G be a graph on n vertices and m ≥ 1 edges. Then

F (G) ≤ 2M2(G) + nM1(G)− 4m2 (2)

with equality if and only if any two non-adjacent vertices have equal degrees.

Our next intention is to give upper bounds on F (G) only in terms of n, m, ∆, δ.
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Theorem 3.3. Let G be a simple graph with n(≥ 3) vertices and m edges. Then

F (G) ≤ ∆3 +∆− (m−∆)

[

2 [(n− 2)(δ − 1)− 3]− (n+ δ)

(

2(m−∆)

n− 2
+ n− 3

)]

(3)

with equality holds if and only if G is K1,n−1 or Kn or K∗
2,n−2.

Proof. Let v1, v2, . . . , vn be the vertices of G. Choose a vertex whose degree is ∆ in V (G) and

label it as v1. Then

F (G) = dG(v1)
3 +

n
∑

i=2

dG(vi)
3
.

Let G1 be a subgraph obtained by deleting the vertex v1 in G. So G1 has m − ∆ edges and

{v2, v3, . . . , vn} vertices.

F (G) = ∆3 +
∑

vi∈N(v1)

dG(vi)
3 +

∑

vi∈V (G)\{N(v1)∪v1}

dG(vi)
3

= ∆3 +
∑

vi∈N(v1)

(dG1
(vi) + 1)3 +

∑

vi∈V (G1)\N(v1)

dG1
(vi)

3

= ∆3 +∆+ 6(m−∆) + 3
∑

vi∈N(v1)

dG1
(vi)

2 +
∑

vi∈N(v1)

dG1
(vi)

3 +
∑

vi∈V (G1)\N(v1)

dG1
(vi)

3

≤ ∆3 +∆+ 6(m−∆) + 3
∑

vi∈V (G1)

dG1
(vi)

2 +
∑

vi∈V (G1)

dG1
(vi)

3
.

Taking into the consideration of the upper bounds of M1(G) and M2(G) from [5, 6] and [7] re-

spectively for the graph G1, we have

∑

vi∈V (G1)

dG1
(vi)

2 ≤

(

2(m−∆)

n− 2
+ n− 3

)

,

M2 (G1) ≤ 2(m−∆)2 − (n− 2)(m−∆)(δ − 1) +
1

2
(δ − 2)(m−∆)

(

2(m−∆)

n− 2
+ n− 3

)

.

Since v1 is chosen with dG(v1) = ∆. Then G may have at most k-vertices of degree δ (2 ≤ k ≤ ∆)
with d(v1, vk) = 1, for some k. If there exists at least one such vk, then we have dG1

(vk) = δ − 1.

By utilizing (2) for the graph G1 and using the above bounds, we have

∑

vi∈V (G1)

dG1
(vi)

3 ≤ (n− 1)
∑

vi∈V (G1)

dG1
(vi)

2 + 2M2(G1)− 4(m−∆)2

≤ (n− 1)
∑

vi∈V (G1)

dG1
(vi)

2 − 2 (m−∆) (n− 2)(δ − 1)

+ (m−∆) (δ − 2)

(

2 (m−∆)

n− 2
+ n− 3

)

.
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Thus, we get

F (G) ≤ ∆3 +∆− (m−∆)

[

2 [(n− 2)(δ − 1)− 3]− (n+ δ)

(

2(m−∆)

n− 2
+ n− 3

)]

.

First part of the proof is done. Now suppose, G ∈ K∗
2,n−2. Then m = 2n− 3 and ∆ = n− 1 and

we get

∆3 +∆−(m−∆)

[

2 [(n− 2)(δ − 1)− 3]− (n+ δ)

(

2(m−∆)

n− 2
+ n− 3

)]

= (n− 1)3 + (n− 1)− (n− 2) [2(n− 5)− (n+ 2)(n− 1)]

= 2(n− 1)3 + (n− 2)23

= F
(

K∗
2,n−2

)

.

If G ∈ K1,n−1, with m = n− 1 and ∆ = n− 1, we get

∆3 +∆−(m−∆)

[

2 [(n− 2)(δ − 1)− 3]− (n+ δ)

(

2(m−∆)

n− 2
+ n− 3

)]

= (n− 1)3 + (n− 1)

= F (K1,n−1) .

If G ∈ Kn, with m = n(n−1)
2

and ∆ = n− 1, we get

∆3 +∆−(m−∆)

[

2 [(n− 2)(δ − 1)− 3]− (n+ δ)

(

2(m−∆)

n− 2
+ n− 3

)]

= n(n− 1)2

= F (Kn) .

Similarly we get the converse part, which completes the proof.

Suppose, if d(v1, vk) 6= 1 for any k(2 ≤ k ≤ n), then dG1
(vk) = δ. By replacing δ − 1 by δ in

(3) immediately leads to the following inequality.

F (G) ≤ ∆3 +∆− (m−∆)

[

2 [(n− 2)δ − 3]− (n+ δ + 1)

(

2(m−∆)

n− 2
+ n− 3

)]

. (4)

The inequality (4) fails only for the class of K∗
2,n−2 graphs.

By the above theorem, we can state the following two corollaries.

Corollary 3.1. Let G be a simple graph with n(≥ 3) vertices and m edges. Then

χ2(G) ≤ 2M2(G) + ∆3 +∆

− (m−∆)

[

2 [(n− 2)(δ − 1)− 3]− (n+ δ)

(

2(m−∆)

n− 2
+ n− 3

)]

(5)

with equality holds if and only if G is K1,n−1 or Kn or K∗
2,n−2.

170



www.ejgta.org

New bounds on the hyper-Zagreb index | S. Elumalai et al.

Corollary 3.2. Let G be a K∗
2,n−2 free simple graph with n(≥ 3) vertices and m edges. Then

χ2(G) ≤ 2M2(G) + ∆3 +∆

− (m−∆)

[

2 [(n− 2)δ − 3]− (n+ δ + 1)

(

2(m−∆)

n− 2
+ n− 3

)]

(6)

with equality holds if and only if G is K1,n−1 or Kn.

Theorems 3.1 and 3.2 immediately leads to the following corollaries for χ2(G).

Corollary 3.3. Let G be a connected graph. Then

χ2(G) ≤ 2M2(G) +
2m− (∆2 − δ2)

n
M1(G) +

2m(n− 1)(∆2 − δ2)

n
(7)

with equality holds if and only if G is regular or G = Bn,t for some t with 1 ≤ t ≤ n.

Corollary 3.4. Let G be a graph on n vertices and m ≥ 1 edges. Then

χ2(G) ≤ 4M2(G) + nM1(G)− 4m2 (8)

with equality if and only if any two non-adjacent vertices have equal degrees.

Note that since the bounds in (5) and (6) are obtained using the bound in (2) partially. So (8)

is always better than (5) and (6). But, (5) and (6) are incomparable with (7). For the flower graphs

Fn with n ≥ 4, the bound in (6) is finer than (7) and for L(Fn) the bound in (7) is finer than (6).

Next, we are ready to give some new upper bounds for χ2(G) involving the other vertex and

edge based topological indices.

Theorem 3.4. Let G be any simple graph with n vertices and m edges. Then

χ2(G) ≤ 2(∆ + δ)M1(G)− 4m∆δ (9)

with equality if and only if G is regular.

Proof. The vertex degree d(vi) is bounded by δ ≤ d(vi) ≤ ∆ for i = 1, 2, . . . , n. In analogy the

edge degree is bounded by 2(δ − 1) ≤ d(ei) ≤ 2(∆− 1) for i = 1, 2, · · · ,m. The edges of G are

labeled as e1, e2, . . . , em such that d(e1) ≥ d(e2) ≥ · · · ≥ d(em)

m
∑

i=1

d(ei)
2 =

m
∑

i=1

[d(ei) (d(ei)− d(em)) + d(ei)d(em)]

≤

m
∑

i=1

[d(e1) (d(ei)− d(em)) + d(ei)d(em)]

≤
m
∑

i=1

[2(∆− 1) (d(ei)− 2(δ − 1)) + d(ei)2(δ − 1)]

= (2(∆ + δ)− 4)
m
∑

i=1

d(ei)− 4(∆− 1)(δ − 1)
m
∑

i=1

1.
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∑

uv∈E(G)

[d(u) + d(v)− 2]2 ≤ (2(∆ + δ)− 4)
∑

uv∈E(G)

[d(u) + d(v)− 2]

− 4(∆− 1)(δ − 1)
∑

uv∈E(G)

1.

Finally, by (1), we have

χ2(G) ≤ 2(∆ + δ)
∑

uv∈E(G)

[d(u) + d(v)] + 4m− 4 (∆ + δ)m− 4m(∆− 1)(δ − 1).

The equality holds if and only if G is regular. This completes the proof.

Now, we improve (9). Next we contemplate on the Harmonic index, which is the another

variant Randić index. The Harmonic index H(G) was first emerged in the conjectures of the

computer program Graffiti [10]:

H(G) =
∑

uv∈E(G)

2

d(u) + d(v)
.

Theorem 3.5. Let G be any simple graph with n vertices and m edges. Then

χ2(G) ≤ (2∆ + 2δ + 1)M1(G) + 2∆δH(G)− 2m(2∆δ +∆+ δ) (10)

with equality if and only if G is regular.

Proof. Followed by the same argument as in the proof of the Theorem 3.4, we have

∑

uv∈E(G)

[d(u) + d(v)]2 ≤
∑

uv∈E(G)

(2∆ + 2δ) [d(u) + d(v)]−
∑

uv∈E(G)

(2∆)(2δ)

For any edge uv ∈ E(G), it is true that
1

d(u) + d(v)
< 1 and using in the above inequality, we

have

∑

uv∈E(G)

[

1−
1

d(u) + d(v)

]

[d(u) + d(v)]2

≤ 2(∆ + δ)
∑

uv∈E(G)

[

1−
1

d(u) + d(v)

]

[d(u) + d(v)]− 4∆δ
∑

uv∈E(G)

[

1−
1

d(u) + d(v)

]

∑

uv∈E(G)

[d(u) + d(v)]2 −
∑

uv∈E(G)

[d(u) + d(v)]

≤ 2(∆ + δ)
∑

uv∈E(G)

[d(u) + d(v)]− 2(∆ + δ)
∑

uv∈E(G)

1

− 4∆δ
∑

uv∈E(G)

1−
∑

uv∈E(G)

4∆δ

d(u) + d(v)
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after expanding, we get

χ2(G)−M1(G) ≤ 2(∆ + δ)M1(G)− 2(∆ + δ)m− 4m∆δ + 2∆δH(G).

The equality holds for the regular graphs and this completes the proof.

Naurmi [18] introduced the inverse degree and also it was attracted attention through conjec-

tures of the computer program Graffiti [10]. The inverse degree of a graph G with no isolated

vertices are defined as

ID(G) =
∑

u∈V (G)

1

d(u)
.

For the recent results of the inverse degree, see [2, 21]. In analogy, we now define the inverse edge

degree of a graph G with n(> 2) vertices and with non isolated edges are defined as

IED(G) =
∑

e∈E(G)

1

d(e)
.

Theorem 3.6. Let G be any simple graph with n(> 2) vertices and with non isolated edges. Then

χ2(G) ≤ (2∆ + 2δ + 1)M1(G) + 4(∆− 1)(δ − 1)IED(G)− 2m(2∆δ +∆+ δ − 1) (11)

with equality if and only if G is regular.

Proof. Since G has no isolated edges, then d(u) + d(v) > 2 and with the assumptions of the proof

of Theorem 3.4, we have

m
∑

i=1

[

1−
1

d(ei)

]

d(ei)
2 ≤ 2(∆ + δ − 2)

m
∑

i=1

[

1−
1

d(ei)

]

d(ei)− 4(∆− 1)(δ − 1)
m
∑

i=1

[

1−
1

d(ei)

]

after expanding, we get

∑

uv∈E(G)

[d(u) + d(v)]2 ≤ (2∆ + 2δ + 1)
∑

uv∈E(G)

[d(u) + d(v)] + 6m− 4m(∆− 1)(δ − 1)

− 4m(∆ + δ) + 4(∆− 1)(δ − 1)
∑

uv∈E(G)

1

d(u) + d(v)− 2
.

The equality holds for the regular graphs and this completes the proof.

Remark 3.1. Let x, y ∈ N, we have 1 − 1
x+y−2

< 1 − 1
x+y

< 1. Thus, by fixing x = d(u) and

y = d(v), for any uv ∈ E(G), we have 1− 1
d(u)+d(v)−2

≤ 1− 1
d(u)+d(v)

, which concludes that the

upper bound in (11) is always finer than (10) and also it is easy to see that, the upper bound (10) is

always finer than (9).

In 2012, Ilić and Zhou [13] proposed a new upper bound for F (G).
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Theorem 3.7. (See [13]) Let G be a graph on n vertices and m edges. Then

F (G) ≤ (∆ + δ)M1(G)− 2m∆δ (12)

with equality holds if and only if G is regular or bidegreed graph.

By comparing the bounds in (9) and (12) and using the fact

χ2(G) = F (G) + 2M2(G)

immediately leads to the following corollaries.

Corollary 3.5. With the assumptions in Theorem 3.7 one has the inequality

χ2(G) ≤ 2M2(G) + (∆ + δ)M1(G)− 2m∆δ. (13)

Corollary 3.6. Let G be any simple graph with n vertices and m edges. Then

χ2(G) ≤ 2F (G) (14)

with equality holds if and only if G is regular.

G3G1 G2

Figure 1. Graphs on 8 vertices.

Remark 3.2. Using the graphs in figure 1, we arrive the conclusion that the above mentioned upper

bounds are incomparable as described in the following table:

χ2(G) (8) (11) (13) (14)

G1 252 304 292 260 296

G2 696 756 918 792 780

G3 620 688 732 680 648

4. Identities on χ2(G) and χ2(G)

In 2015, Veylaki, Nikmehr and Tavallaee [20] presented the identities for χ2(G) and χ2(G).

Proposition 4.1. [20] Let G be a simple graph with n vertices and m edges. Then

χ2(G) = 4(n− 1)2m− 4(n− 1)M
2

1(G) + χ2(G) (15)

χ2(G) = 4(n− 1)2m− 4(n− 1)M1(G) + χ2(G) (16)
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The above mentioned identities gives the relation between χ2(G) and χ2(G). Still, it is not easy

to compute χ2(G) and χ2(G) for the given simple graph to reach the above identities. Now we

present the identities for χ2(G), χ2(G) only in-terms of the graph invariants of G.

Proposition 4.2. Let G be a simple graph with n vertices and m edges. Then

χ2(G) = 2n(n− 1)3 − 12m(n− 1)2 + 4m2 + (5n− 6)M1(G)− 2M2(G)− F (G),

χ2(G) = 4m2 + (n− 2)M1(G)− 2M2(G)− F (G).

Proof. By the definition of the general sum-connectivity index with α = 2 and using (1), we have

χ2(G) = F (G) + 2M2(G).

It is easy to see that

F
(

G
)

=
∑

uv∈E(G)

[

d(u)2 + d(v)2
]

=
∑

v∈V (G)

d(v)3 =
∑

v∈V (G)

(n− 1− d(v))3

= (n− 1)3
∑

v∈V (G)

1− 3(n− 1)2
∑

v∈V (G)

d(v) + 3(n− 1)
∑

v∈V (G)

d(v)2 −
∑

v∈V (G)

d(v)3

= n(n− 1)3 − 6m(n− 1)2 + 3(n− 1)M1 (G)− F (G) .

In analogous manner, we have

M1(G) = n(n− 1)2 − 4m(n− 1) +M1(G).

Mansour and Song have given the generalized version for Mα
1 (G) in [16] and from [7], we have

the following identity

M2

(

G
)

=
1

2
n(n− 1)3 − 3m(n− 1)2 + 2m2 +

(

n−
3

2

)

M1(G)−M2 (G) .

Using the above identity along with F (G) in χ2(G), we get

χ2(G) = 2n(n− 1)3 − 12m(n− 1)2 + 4m2 + (5n− 6)M1(G)− 2M2(G)− F (G).

Finally, substituting χ2(G) and M1(G) in (16) completes the proof.

5. Conclusion

In this paper, we determine few upper bounds for the hyper Zagreb index using forgotten topo-

logical index. Along in this line, determining new lower bounds for hyper Zagreb index using

second Zagreb index and forgotten index are considered to be studied in future.
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