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Abstract—In this work, we pretended to show and 

compare three methodologies used to solve the inverse 

kinematics of a 3 DOF robotic manipulator. The 

approaches are the algebraic method through Matlab® 

solve function, Genetic Algorithms (GAs), Artificial 

Neural Networks (ANNs). Another aspect considered is 

the trajectory planning of the manipulator, which allows 

the user to control the desired movement in the joint 

space. We compare polynomials of third, fourth and fifth 

orders for the solution of the chosen coordinates. The 

results show that the ANN method presented best results 

due to its configuration to show only feasible joint values, 

as also do the GA. In the trajectory planning the analysis 

lead to the fifth-order polynomial, which showed the 

smoothest solution. 

Keywords—Robotic Manipulator, Genetic Algorithms, 

Artificial Neural Networks, Trajectory Planning, 

Comparative Analysis. 

 

I. INTRODUCTION 

In the past years, we can found several approaches to the 

robotics’ research field due to its wide-range applications, 

such as in industrial production, space exploration and 

medical surgery (Zou, Hou, Fu, & Tan, 2006).Thus, the 

study and development of mobile robots, e.g. robotic 

manipulators, became a recurrent theme in engineering. 

A key concept in the research of robotic manipulators 

is the trajectory planning. To reach a determined 

coordinate with the smoothest sequence of movements in 

a plausible solution, and the ability to avoid obstacles in 

the manipulator’s workspace are essential tasks in this 

application (Zou et al., 2006). 

Trajectory planning refers to how a robot goes from 

one location to another in a controlled manner. Composed 

of straight-line motions or sequential motions, the use of 

kinematics and dynamics of a robot is required. In 

comparison to a simple path, its advantage is the 

possibility of configuring the trajectory for each portion 

of the motion segments between the points through 

desired speed and acceleration(Niku, 2010). 

A commonly used methodology of movement analysis 

of a robotic manipulator is the kinematic study. When this 

analysis is done, the geometric complexity increases if the 

manipulator present several DOF, mainly if we use the 

inverse kinematics method. 

Thekinematic study is an important aspect of a 

manipulator calibration.In this way, two models are used, 

the direct and inverse kinematics. The inverse kinematics, 

used in this work, exhibit challenge due to its equations 

are non-linear, the manipulators present elevate DOF, 

with the possibility of presenting multiple 

solutions(Nunes, 2016). 

Some traditional methods as geometric, algebraic and 

numerical-interactive are used for inverse kinematics 

solution and are from inappropriate usage whenever in a 

complex manipulator structure (Alavandar & Nigam, 

2008). In this way, some alternative approaches in 

solution and ANNs application can be found in the 

literature. Hence, its effectiveness to understand the 

manipulator is due to the flexibility and capability of 

learning through training. 

In order to accomplish a desired purpose, a recurrent 

methodology is the use of redundant manipulators, which 

present more degrees of freedom (DOF) than required to 

a specific task. Otherwise, the manipulator’s end-effector 

will not have the necessary accuracy (Xiao & Zhang, 

2014).  

In this work, for a two-dimensional (2D) space, a 3 

DOF robotic manipulator is used to reach desired points 

within its workspace. Three different methodologies are 
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used to solve the inverse kinematics of the manipulator: 

Geometric Equations System through Matlab® solve 

function, Genetic Algorithms (GAs) and Artificial Neural 

Networks (ANNs). Thus, the second step is the trajectory 

planning for a specified point in the manipulator’s 

workspace. In this work, all the manipulator’s joints have 

simultaneous movement in the same crossing time. 

Some similar papers can be cited. In work (Tian & 

Collins, 2004), Tian and Collins propose a GA method 

for trajectory planning with obstacles in workspace. 

Polynomials represent the trajectory and are formulated 

for internal points interpolated with GA parameters. The 

objective is to search for an optimal solution in the 

manipulator’s workspace. 

An intelligent posture calibration method is proposed 

in (Kuo, Liu, Ho, & Li, 2016) for a robot arm calibration 

which integrates Particle Swarm Optimization (PSO) and 

ANN methods. The problem describes an error due to a 

not ideal mechanism design. The results demonstrated the 

feasibility and practicability of the proposed method. 

In(Savsani, Jhala, & Savsani, 2013), a robotic 

manipulator trajectory is optimized through Teaching 

Learning Based Optimization (TLBO) and Artificial Bee 

Colony (ABC) optimization techniques. The objective 

was a trajectory planning with less travelling time and 

distance between joints. The results show better 

performance of TLBO and ABC in comparison with a 

GA. 

This work is developed as follows: Section II presents 

the fundamentals of robotic manipulators and the solve, 

GA and ANN techniques. Section III shows the 

methodology used and the constructive aspects of the 

studied manipulator. In Section IV, we show and discuss 

the obtained results for the three approaches, as the 

trajectory planning for a desired coordinate. Finally, 

Section V concludes the paper and addresses future 

works. 

 

II. BACKGROUND 

In this section, we present the concepts of robotic 

manipulators and three polynomial methods used for 

trajectory planning. In addition, we briefly discuss the GA 

and ANN techniques used for the manipulator calibration. 

1. Robotic Manipulators 

Robotic manipulators are devices used in engineering that 

interact and execute tasks within a workspace, with 

similar characteristics to the human arms. Several 

manipulators are installed in industries to handle objects 

through stations, to welding, assembling etc. (Hexmoor, 

2013). Fig. 1 shows an example of robotic manipulator 

with 2 DOF; l1 and l2 are the joints’ lengths, θ1 and θ2 the 

angles of the first and second joints, and P the desired 

point. 

 
Fig. 1: 2 DOF Robotic manipulator  

 

Robots are unable to respond in emergency situations 

unless through situation prediction and the response is 

already included in the system. This scenario divides 

robotics into the fields of programmed and autonomous 

robotics. The PUMA, Stanford and others known robots 

are arms mechanical systems exhibit complex kinematics, 

static and dynamics, which makes difficult its analysis, 

control (Niku, 2010)and the interaction between the 

manipulator and environment (Hu & Xiong, 2018). 

With the increase in the use of manipulators, their 

environments present in several forms. Their interaction 

with non-static environments led to adaptive 

manipulator’s controllers in order to maintain acceptable 

performance levels. The applications involve changing 

loads, varying geometry etc.(Zhang & Wei, 2017). 

In this way, intelligent systems such as Adaptive 

Neuro-Fuzzy Inference System (ANFIS), ANNs and GAs 

have been used in robotics mainly due to the design of 

autonomous robots and their controllers for unstructured, 

flexible, and/or partially unknown environments is a very 

difficult task for a human designer. 

Inherent to inverse kinematics is the problem of 

multiple solutions. In this case, the angles set that lead to 

the same initial and final points, but with impossible 

solutions due to the constructive aspect of the manipulator 

or also through undesirable paths, as also redundant 

solutions. In addition, the number of possible solutions 

increases exponentially with increasing DOF. 

From the position of origin of a manipulator, i.e. the 

reference of its base represented by O and the desired 

position at the other end of the manipulator represented 

by P, multiple solutions could satisfy the joints’ angle 

configuration. Thus, there are redundancies in the inverse 

kinematics solution, as shown in Fig. 2, for 2 and 3 DOF 

manipulators, respectively(Nunes, 2016). 
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Fig. 2: The problem of multiple solutions 

 

In Fig. 2, θ1 and θ2 are the angles of the first and 

second joints, a1 and a2 are the joints lengths and P the 

desired point. 

2. Trajectory Planning 

The trajectories are composed by a sequence of 

displacements of a robotic manipulator. It can be seen as 

a sequence of points in which the end-point must course. 

Due to the manipulator’s discretized movement, we 

obtain a continuous trajectory. Thus, the trajectory 

optimization of robotic manipulators is the identification, 

the optimal combination and the number of intermediary 

positions (Pires, 1998). 

The trajectory planning is presented generally in two 

forms, the operating space and joint space. In the first 

one, the trajectory of end-effectors (the manipulator itself) 

is trivially described. However, it lead to kinematic 

singularities and manipulator redundancy. In this way, the 

joint space approach guarantee the smoothness of the 

joints movement, but reducesthe position accuracy in the 

operating space. The joint space is the method used in 

most cases, and the trajectories have been formed by 

several interpolation functions such as the polynomials 

used in this work (Huang, Hu, Wu, & Zeng, 2018). 

The general form of the polynomials used in the joint 

space is given as follows. For joints’ speed and 

acceleration, we trivially derive (1) one time for joint 

speed and again for joint acceleration. 

𝜃(𝑡) = 𝑐0 + 𝑐1. 𝑡 + 𝑐2. 𝑡
2 +⋯+ 𝑐𝑛−1. 𝑡

𝑛−1 + 𝑐𝑛 . 𝑡
𝑛(1) 

In (1), t is the time vector, θ(t) represent the angles in 

time and cn are the constants associated with the n-order 

polynomial. The n-order polynomial enables the user to 

choose n+1specifications, such as initial and final speed 

and positions, a desired acceleration etc.  

3. Genetic Algorithms 

The development of computational simulations of 

genetic systems began in the 50s and 60s through many 

biologists, with John Holland developing the first 

researches in the area, in 1975 (Holland, 1992). Since 

then, they have been applied successfully in several real-

world search and optimization problems, like regression, 

feature selection(Kramer, 2017), classification or machine 

learning (Goldberg, 1989; Pedrycz, Stach, Kurgan, & 

Reformat, 2005). 

GAs are known as a powerful tool for optimization. It 

is a model designed to emulate natural selection and 

genetics (Holland, 1992). It has several benefits over 

conventional optimization methods. The GA use do not 

require an entire system model, therefore employed 

trivially to solve optimization problems. According to 

(Kramer, 2017), GAs are heuristic research approaches 

applicable to a wide range of optimization problems, 

which makes them attractive for various problems in 

practice. 

These algorithms are composed of a population of 

individuals and a set of operators over the population. A 

priori, an initial population consisting of random 

individuals is selected. Each individual into population 

represents a solution of the optimization problem, which 

is coded to the parameter set (chromosome). If the 

population of individuals is large, the algorithm lacks in 

efficiency and if it is small GA lacks in diversity.  

Posteriori the fitness function is defined. In this work, 

the Euclidean distance is the fitness function. The 

individuals are crossed and mutated until the most 

adequate solution is found. According to the evolutionary 

theories, through which the GA was developed, the 

better-adapted individuals to its environment are more 

likely to survive and reproduce, transmitting their genetic 

material to the new generations. 

In this work, it is used to search for the optimal 

solution for the inverse kinematics of the manipulator 

(Tian & Collins, 2004). Fig. 3 show a flowchart used for 

the GA development (Lopes, Rodrigues, & Steiner, 

2013). 

In Fig. 3, at first, we generate an initial population of 

possible solutions. Thus, the individuals are evaluated 

according to the fitness function. Then, we check if the 

GA stop criterion was reached: if not, the most adequate 

individuals are selected through a selection or 

reproduction method. The selected ones are exposed to 

the genetic operators (crossing, reproduction, mutation) 

and a new generation is formed from the previous one. 

This cycle repeats until the stop criterion is reached. At 

this moment, the algorithm converges presenting the 

solution found for the problem (Lopes et al., 2013). 
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Fig. 3: GA flowchart used  

 

4. Artificial Neural Networks 

By a neurobiological analogy, ANNs are based in a 

fast and powerful brain. In engineering, it as an 

opportunity to solve complex problems and, to 

neurobiologists, is a research tool to understand the 

neurobiology behavior(Haykin, 1998). 

The ANNs have a computational power from 

massively distributed structure and its ability to learn. 

These two capabilities make it possible for solving 

complex problems(Haykin, 1998). Thus, ANNs have 

some capabilities such as nonlinearity, input-output 

mapping, adaptiveness, evidential response, contextual 

information, fault tolerance, very-large-scale-integrated 

(VLSI) implement ability and uniformity of analysis and 

design (da Silva, Spatti, Flauzino, Liboni, & Alvez, 

2017). These concepts are exploited in the next 

paragraphs. 

For nonlinearity, ANNs are a nonlinear structure of 

artificial neurons distributed throughout the network and 

are an important figure due to the nonlinearity of input 

signals(Haykin, 1998).The ANNs also present input-

output mapping. The synaptic weighs are modified by 

training the network with a task-determined number of 

samples randomly picked in order to minimize de 

difference between output and desired response. The 

network learns from the examples as mapping the input-

output problem(da Silva et al., 2017). 

To become adaptive, an ANN may react at minimum 

changes in the environment of study causing changing by 

the synaptic weights. A more robust performance for a 

non-stationary environment depends on a greater 

adaptability of the system. However, adaptiveness and 

robustness are not always proportional. Another aspect of 

the ANNs is the evidential response. It can provide 

information about pattern selection and its confidence. 

The objective is for a better performance and pattern 

classification(Haykin, 1998). 

By meanings of a contextual information,the 

activation and structure of an ANN define the knowledge 

which affects all neurons in the network by information 

dealing. In terms of fault tolerance, anANN is a capable 

of robust computation by adverse conditions. However, it 

is uncontrollable and the algorithm must be carefully 

optimized(Haykin, 1998). 

The very-large-scale-integrated (VLSI) 

technologyimplementability means that some complex 

behavior tasks are well solved due to a parallel 

computation by the network. In the feature of uniformity 

of analysis and design,a notation is used in all domains in 

a network and manifests through neurons, share of 

theories and algorithms by many applications, and 

seamless integration of modules building modular 

networks(Haykin, 1998). 

 

III. MATERIALS AND METHODS 

The first step was to determine the joints’ physical 

limitations. In this case, for all the joints we use a 

maximum angle of 60º.Then, we generate the point cloud 

considering the first and second quadrants in the xy plane 

using forward kinematics. 

The next step was to choose five test points in order to 

verify the accuracy of the three methods used to compare 

them and choose the best method to use in the second 

phase: the trajectory planning. The point cloud and the 

test points are shown in Fig. 4. The desired points were (-

10,20); (-5,22); (3,25); (10,22); (23,18). 

 
Fig. 4: Point cloud and test points 

 

For the solve method, we used (2) to (4) to describe 

the(x, y) positions for each manipulator’s joints. Each 

equation describes one of the DOF of the manipulator, 

with l1, l2 and l3 being the joint lengths, respectively 7, 10 

and 14 cm. 𝜃1, 𝜃2and 𝜃3 are the angles of joints 1, 2 and 

3. 

𝑋 = 𝑙1 𝑐𝑜𝑠(𝜃1) + 𝑙2 𝑐𝑜𝑠(𝜃1 + 𝜃2) + 𝑙3 𝑐𝑜𝑠(𝜃1 + 𝜃2 +

𝜃3)(2) 
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𝑌 = 𝑙1 𝑠𝑖𝑛(𝜃1) + 𝑙2 𝑠𝑖𝑛(𝜃1 + 𝜃2) + 𝑙3 𝑠𝑖𝑛(𝜃1 + 𝜃2 +

𝜃3)(3) 

𝑐𝑜𝑠2(𝜃1) + 𝑠𝑖𝑛2(𝜃1) = 1(4) 

For the GA method, several heuristic configurations 

were tested for initial number of individuals, mutation 

rate and tournament size. The worst and best 

configurations tested are shown in Table 1.  

 

Table.1: GA tested configurations 

Configuration 
Initial 

population 

Tournament 

size 

Stop 

error 

[cm] 

1 20 5 0.10 

2 50 5 0.05 

 

For both GA configurations used in Table 1, we 

defined a maximum of 500 generations for convergence, 

simple cross and a 1% mutation. In this work, the second 

configuration obtained better results, using an initial 

population of 50 individuals. 

For the ANN method, we used a Multilayer 

Perceptron (MLP) with an offline calibration (training) 

process. The input layer is composed of two neurons asx 

and y coordinates of the manipulator end-effector. There 

are 100 neurons in the hidden layer and two in the output 

layer representing the calibration angles𝜃1, 𝜃2 and 𝜃3.  

The training algorithm used was back-propagation 

with Levenberg-Marquardt (L-M) method and the 

sigmoid was used as activation function for the hidden 

layer and a ramp for the output layer.A limit of 1000 

epochs or a network error in order of 10-6 for the 

convergence of the ANN was defined. After the training 

step, the MLP is able to generalize the output within the 

point cloud of the manipulator’s workspace. 

To compare the three methods used, we use the 

Euclidean error. However, since the geometric solve 

method is exact in this work, it was inconsiderate in the 

comparisons made. Its use is justified in Section 4. 

For the trajectory planning, we chose the method with 

the lowest relative Euclidean error at the point that 

presented the smaller error. In this work, due to the 

offline calibration, the comparison of algorithms’ 

execution times are not discussed. Thus, we show the 

performance only for the best method in this case. 

Once the method has been chosen, the last step is to 

execute a trajectory planning using the third, fourth and 

fifth-order polynomials using (1) as reference. In (5) to 

(13), θ is the angular position of the joint, 𝜃̇ is the angular 

speed and 𝜃̈ the angular acceleration. 

The third-order polynomial equations are shown in 

(5), (6) and (7). 

𝜃(𝑡) = 𝑐0 + 𝑐1. 𝑡 + 𝑐2. 𝑡
2 + 𝑐3. 𝑡

3(5) 

𝜃̇(𝑡) = 𝑐1 + 2. 𝑐2. 𝑡 + 3. 𝑐3. 𝑡
2(6) 

𝜃̈(𝑡) = 2. 𝑐2 + 6. 𝑐3. 𝑡(7) 

The fourth-order polynomial equations are given by 

(8), (9) and (10). 

𝜃(𝑡) = 𝑐0 + 𝑐1. 𝑡 + 𝑐2. 𝑡
2 + 𝑐3. 𝑡

3 + 𝑐4. 𝑡
4(8) 

𝜃̇(𝑡) = 𝑐1 + 2. 𝑐2. 𝑡 + 3. 𝑐3. 𝑡
2 + 4. 𝑐4. 𝑡

3(9) 

𝜃̈(𝑡) = 2. 𝑐2 + 6. 𝑐3. 𝑡 + 12. 𝑐4. 𝑡
2(10) 

Finally, (11), (12) and (13) describe the fifth-order 

polynomial system. 

𝜃(𝑡) = 𝑐0 + 𝑐1. 𝑡 + 𝑐2. 𝑡
2 + 𝑐3. 𝑡

3 + 𝑐4. 𝑡
4 + 𝑐5. 𝑡

5(11) 

𝜃̇(𝑡) = 𝑐1 + 2. 𝑐2. 𝑡 + 3. 𝑐3. 𝑡
2 + 4. 𝑐4. 𝑡

3 +

5. 𝑐5. 𝑡
4(12) 

𝜃̈(𝑡) = 2. 𝑐2 + 6. 𝑐3. 𝑡 + 12. 𝑐4. 𝑡
2 + 20. 𝑐5. 𝑡

3(13) 

In this work, in order to obtain a smooth trajectory for 

the manipulator we design the polynomials to move all 

the joints simultaneously. For the three cases, we 

determined initial and final joint speed and position. In 

the fourth-order polynomial, only the initial acceleration 

was controlled, while in the fifth-order one both initial 

and final accelerations were determined. 

It is noteworthy that simulation environment is ideal 

in this work, in other words, it is noise-free, there are no 

obstacles in the manipulator’s workspace and its weight is 

not considered for the calculations. 

 

IV. RESULTS AND DISCUSSION 

In this section, we present and discuss the obtained results 

for the three methods used for the solution of the robotic 

manipulator’s inverse kinematics and the methods used 

for its trajectory planning.  

 

1. Robotic manipulator inverse kinematics 

In this comparison step, Tables2, 3 and 4 show the results 

for solve, GA and ANN methods used. In Table 2, we 

zeroed the error due to its Matlab® value was in the order 

of 10-29, considered as a memory trash. It is also 

necessary to point out that in Table 4 the ANN method 

chosen omits the angles values. 

 

Table 2: Matlab® solver results  

P 

Desired 

[cm] 
Obtained Angles[º] 

Obtained 

[cm] 

Erro

r 

[cm] 𝑿 𝒀 𝜽𝟏 𝜽𝟐 𝜽𝟑 𝑿 𝒀 

1 
-

10.00 

20.0

0 
1.25 -9.39 65.00 

-

10.00 
20.00 0 

2 -5.00 
22.0

0 
28.00 64.00 50.00 -5.00 22.00 0 

3 3.00 
25.0

0 
25.00 47.00 44.00 3.00 25.00 0 

4 10.00 
22.0

0 

-

12.97 
5.50 3.58 10.00 22.00 0 

5 23.00 
18.0

0 
27.38 

-

10.44 
-2.84 23.00 18.00 0 

https://dx.doi.org/10.22161/ijaers.5.4.30
http://www.ijaers.com/


International Journal of Advanced Engineering Research and Science (IJAERS)                                 [Vol-5, Issue-4, Apr- 2018] 

https://dx.doi.org/10.22161/ijaers.5.4.30                                                                                  ISSN: 2349-6495(P) | 2456-1908(O) 

www.ijaers.com                                                                                                                                                                            Page | 212  

 

Table 3: GA results  

P 

Desired 

[cm] 

Obtained 

Angles[º] 

Obtained 

[cm] 
Error 

[cm] 
𝑿 𝒀 𝜽𝟏 𝜽𝟐 𝜽𝟑 𝑿 𝒀 

1 
-

10.00 

20.0

0 

52.6

9 

45.1

8 

61.2

9 

-

10.21 

20.4

5 
0.49 

2 -5.00 
22.0

0 

38.4

6 

47.4

7 

58.0

0 
-5.13 

22.5

6 
0.58 

3 3.00 
25.0

0 

30.2

0 

35.5

5 

54.2

5 
3.15 

24.7

6 
0.28 

4 10.00 
22.0

0 

17.2

7 

26.4

6 

61.4

7 
10.23 

22.5

0 
0.55 

5 23.00 
18.0

0 
5.24 

27.5

3 

24.4

4 
22.66 

18.1

9 
0.38 

 

Table 4: ANNresults  

P 
Desired [cm] Obtained [cm] Error 

[cm] 𝑿 𝒀 𝑿 𝒀 

1 -10.00 20.00 -10.04 19.96 0.05 

2 -5.00 22.00 -4.97 22.04 0.05 

3 3.00 25.00 3.06 25.09 0.11 

4 10.00 22.00 9.97 22.02 0.04 

5 23.00 18.00 23.15 18.03 0.16 

 

To graphical represent the obtained points, Fig. 5 

present the point cloud, desired and solve, GA and ANN 

reached points. 

By the analysis of Tables 2, 3 and 4 we conclude that 

the solve method obtained better results in comparison to 

GA and ANN. However, its present solution is one 

among several ones, constituting the multiple solution 

described in first sections. Hence, this method was 

discarded since the other methods obtained only one 

solution.  

 
Fig. 5: Point cloud and reached points 

 

Thus, in this case, the ANN presented errors up to ten 

times lower than the GA approach. Due to that it was 

chosen for the trajectory planning comparison between 

the third, fourth and fifth-order polynomials. 

 

2. Trajectory planning 

In this step of the work, the trajectory chosen was from 

the initial point (manipulator in the x axis) to Point 2 of 

Tables2, 3 and 4. The desired trajectory time chosen was 

5 s.For all polynomials, we chose initial and final speeds 

as zero. In the fourth-order one, the final acceleration was 

designed zero, and in the fifth-order polynomial, both 

initial and final accelerations are zero. 

The angles in discrete time are shown in Tables 5, 6 

and 7, respectively for third, fourth and fifth orders. The 

trajectory planning is shown in Fig. 6. Each joint’s 

angular speed, position and acceleration are seen in Figs. 

7(third-order), 8 (fourth-order) and 9 (fifth-order). 

 

Table 5: Third-order polynomial results 

Time [s] 𝜽𝟏[º] 𝜽𝟐[º] 𝜽𝟑[º] 

0 0.00 0.00 0.00 

1 2.88 6.65 5.14 

2 9.75 22.50 17.40 

3 17.95 41.43 32.04 

4 24.82 57.28 44.30 

5 27.70 63.93 49.44 

 

Table 6: Fourth-order polynomial results 

Time [s] 𝜽𝟏[º] 𝜽𝟐[º] 𝜽𝟑[º] 

0 0.00 0.00 0.00 

1 5.01 11.56 8.94 

2 14.53 33.55 25.95 

3 22.73 52.47 40.58 

4 26.94 62.19 48.10 

5 27.70 63.93 49.44 

 

Table 7: Fifth-order polynomial results 

Time [s] 𝜽𝟏[º] 𝜽𝟐[º] 𝜽𝟑[º] 

0 0.00 0.00 0.00 

1 1.60 3.70 2.86 

2 8.79 20.29 15.69 

3 18.90 43.63 33.75 

4 26.09 60.23 46.58 

5 27.70 63.93 49.44 

 

In Tables 5, 6 and 7, we can note that the fourth-order 

polynomial has the highest acceleration and deceleration. 

In a real scenario, this fact can cause malfunction and/or 

damage the motors used to control the joints.  
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Fig. 6: ANN trajectory planning 

 

In Fig. 6, in its initial position, the manipulator are 

black and, in the final point, it is green. In its analysis, we 

can note that third and fifth-order polynomials present 

higher speeds at the intermediate points of the trajectory, 

but decelerate in a smaller rate compared to the fourth-

order one. Figs. 7, 8 and 9 complement the solution 

visualization. The y-axis represent position (º), speed (º/s) 

and acceleration (º/s2) of each joint. 

In Fig. 7, the first approach presented a linear 

response in the acceleration, initiating with high values, 

which can harm the motors in a possible real application. 

As seen in Fig. 8, the fourth-order polynomial present 

values that, in a real prototype, may harm motors’ 

functioning due to the drastic changes in acceleration and 

higher speeds in comparison to the other two methods 

used.  

Finally, for Fig. 9, the fifth-order polynomial provides 

a smooth curve due to its full controllability of position, 

speed and acceleration, generating a continuous trajectory 

without discontinuities. 

 
Fig. 7: Third-order ANN trajectory planning 

 
Fig. 8: Fourth-order ANN trajectory planning 

 

 
Fig. 9: Fifth-order ANN trajectory planning 

 

V. CONCLUSION 

The results provided key-information to future works. 

Its analysis of the inverse kinematics solution prove that 

different topologies of MLP can be tested and get feasible 

results to a three dimensional space and to a more DOF 

manipulators. It is also noteworthy that this study can be 

extended to serial and parallel educational and industrial 

robots. 

The fifth-order polynomial trajectory planning results 

presented the desired smooth curves principally for speed 

and acceleration, which can be totally user-controlled, 

that is, assuming values to preserve the components used, 

e.g. servo or step motors.  

This work next step is to use computer vision, through 

a calibration of a two-camerastereo system in order to use 

the images to coordinate the robotic manipulator to 

identify and pick up targets, such as screws, or even 

execute more complex tasks like welding and cutting 

operations in three dimensions. The trajectory planning 

will be done in order to enable the manipulator to avoid 
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possible static or dynamic obstacles autonomously, using 

intelligent systems like Fuzzy and Fuzzy Cognitive Maps 

(FCM) to the decision-making. 
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