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Abstract—This work presents a study and evaluation of 

intelligent control techniques applied to the problem of 

temperature control of a stirring tank with heat 

exchanger. This problem is represented by the example 

provided and documented by MathWorks in 

MATLAB/Simulink software, called Heatex. The 

intelligent techniques used are Fuzzy Logic Controller 

(FLC), Fuzzy Cognitive Maps (FCM), Artificial Neural 

Networks (ANN) and the combination of these. The 

proportional-integral (PI) controller provided in the 

Heatex example is considered as a reference basis during 

the evaluation of the intelligent control techniques in 

different test scenarios. The metrics Integral of Absolute 

Error (IAE) and Integral Time-weighted Absolute Error 

(ITAE), as well as the parameters overshoot percentage 

and settling time are the criteria used to evaluate the 

control techniques performance. 

Keywords—Heat Exchanger, Fuzzy Logic Controller, 

Fuzzy Cognitive Maps, Artificial Neural Networks. 

 

I. INTRODUCTION 

Heat exchangers have wide industrial application, e.g. in 

power generation, in combustion and chemical processes 

[1]. In this context, this process is a target for researchers 

in applying different control techniques, including 

intelligent strategies [2]. 

In work [2], a shell and tube heat exchanger was 

controlled. The control techniques analyzed were the 

Internal Model Controller (IMC) with a disturbance 

rejection function, proportional-integral-derivative (PID) 

controller with feed-forward and the combination of both, 

the IMC-PID. For the studied process, the IMC-PID 

control presented better results. 

The work [3] presented the control of a plate heat 

exchanger performed using a Fuzzy model in the form of 

Takagi-Sugeno (T-S) type. The output signal from the 

Fuzzy controller acted on a motor driven valve adjusting 

the hot water flow to the exchanger. This problem was 

approached by a predictive control method, because it 

presented a non-linear behavior. 

The work presented in [4] compared different control 

techniques for a double pipe heat exchanger. The methods 

studied were the Type-II Fuzzy Logic Controller (FLC) 

and a proportional-integral (PI) controller combined with 

a genetic algorithm (GA). For the studied process, the 

Type-II FLC presented better performance with lower 

value of the Integral Time-weighted Absolute Error 

(ITAE) criterion. 

There are works in the literature that employ Fuzzy 

Cognitive Maps (FCM) or its extensions in control. In this 

context, the work [5] presents a Dynamic Fuzzy 

Cognitive Maps (D-FCM) applied in the supervisory 

control of a chemical process, the industrial fermenter. 

In this work, the objective is to study and evaluate the 

performance of intelligent control techniques applied to 

the Heatex problem. This is the example of a heat 

exchanger in a chemical reactor, provided and 

documented by MathWorks in MATLAB/Simulink 

software [6]. 

The intelligent control techniques used in this work are 

the FLC, FCM, Artificial Neural Networks (ANN) and 

the combination of these. A comparison with the PI 

controller provided in the Heatex example is done to 

validate the developed controllers. The criteria used to 

compare the performance of the controllers are the 

Integral of Absolute Error (IAE) and ITAE metrics, and 

the percentage of overshoot and settling time parameters. 

This work is organized as follows. Section II presents the 

Heatex's system, model and PI control. Section III 

presents the development of the control techniques based 

on Fuzzy logic. In Section IV the development of the 

controllers using ANN is presented.Section V discusses 

the results. Section VI presents the conclusions and future 

works. 

 

II. HEATEX TEMPERATURE CONTROL 

Fig. 1 shows the diagram of the heat exchange process in 

a chemical reactor called stirring tank. This diagram 

shows the liquid inflow, the stirring tank, the heat 

exchanger, the heat sensor and the actuating valve. The 

liquid coming from the top inlet is mixed in the tank. A 
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sensor captures the temperature of this mixture in real 

time. The temperature must be kept constant by varying 

the steam flow in the heat exchanger, through the 

actuating valve. The greatest source of disturbance of the 

system is the temperature variation of the fluid entering 

the tank [6]. 

 
Fig. 1: Chemical reactor with heat exchanger [6]. 

 

2.1 Model Identification of the Heat Exchanger and 

the Disturbance 

In the work [6], by means of a step input the first-order 

plusdead-time(FOPDT) models of the heat exchanger and 

the disturbance were identified. The transfer functions of 

the heat exchanger and the disturbance are shown in (1) 

and (2), respectively. First-order plusdead-timemodels 

have the ability to capture the essential dynamics of 

several industrial processes, as well as to describe linear 

and monotonic chemical processes with good precision 

[7,8,9]. 

𝐺𝑝(𝑠) =  
𝑒−𝜃𝑝𝑠

𝜏𝑝𝑠 + 1
=

𝑒−14.7𝑠

21.3𝑠 + 1
. . . . . . . . . . . . . . . . . . . . . . . . . (1) 

In (1), 𝜏𝑝 = 21.3 is the time constant and 𝜃𝑝 = 14.7 is 

the dead time of the heat exchanger process. The unit of 

time of the parameters 𝜏𝑝 and 𝜃𝑝 is the second[6]. 

𝐺𝑑(𝑠) =  
𝑒−𝜃𝑑𝑠

𝜏𝑑𝑠 + 1
=

𝑒−35𝑠

25𝑠 + 1
. . . . . . . . . . . . . . . . . . . . . . . . . . (2) 

In (2), 𝜏𝑑 = 25 is the time constant and 𝜃𝑑 = 35 is the 

dead time of the disturbance. The unit of time of the 

parameters 𝜏𝑑 and 𝜃𝑑 is the second[6]. 

2.2 Closed Loop PI Control  

The work [6] developed a PI control with feedback to 

keep the temperature of the liquid constant inside the 

tank, the structure of the PI controller is presented in (3). 

𝐶(𝑠) =  𝐾𝑐 (1 +
1

𝜏𝑐𝑠
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3) 

The parameters of the proportional gain 𝐾𝑐 and integral 

time 𝜏𝑐 of (3) are given in (4) and (5), respectively. The 

adjustment of these parameters was performed by the 

ITAE criterion, according to [6]. 

𝐾𝑐 = 0.859 (
𝜃𝑝

𝜏𝑝

)

−0.977

= 0.859 (
14.7

21.3
)

−0.977

. . . . . . . . . (4) 

𝜏𝑐 = (
𝜃𝑝

𝜏𝑝

)

0.680
𝜏𝑝

0.674
= (

14.7

21.3
)

0.680 21.3

0.674
. . . . . . . . . . . . (5) 

According to [10] the tuning of the PI control through the 

ITAE, for first-order plus dead time models, presents 

good results in comparison to the tuning performed by the 

Ziegler-Nichols method. 

 

III. FUZZY LOGIC 

Fuzzy logic is closer to human language and thinking 

than traditional logical systems, implying an effective 

way of capturing approximate and inaccurate real-world 

behavior [11]. In this work, two control techniques based 

on Fuzzy logic were developed, the FLC and the FCM. 

The FLC provides an algorithm for transforming a 

linguistic control strategy from a specialist into an 

automatic control strategy. Then, the FLC can be 

considered an approximation between conventional 

mathematical control and human decision making [11]. 

The FLC differs from conventional techniques focusing 

on modeling and description of control by differential 

equations, e.g. PID and state feedback. In developing the 

Fuzzy control the intuitive understanding of how is the 

best way to control the process is attributed to the FLC, 

i.e. the FLC represents a means of imitating a skilled 

human operator [11, 12, 13]. 

The FCM is a modeling method for complex systems 

based on human experience and prior knowledge about 

the applied system. In addition, this method presents 

characteristics and learning capacity that improve its 

structure and computational behavior. Originally, Kosko 

introduced this concept as an extension of the cognitive 

maps, providing a powerful feature for modeling dynamic 

systems [14]. 

The representation of the knowledge and reasoning 

technique of a FCM is similar to that performed by 

humans. The FCM is able to incorporate the knowledge 

of data experts into the rules format. This approach 

represents knowledge through causal connections and the 

map structure [15]. 

A FCM consists of a graph formed by concepts or nodes 

that represent the important elements of the mapped 

system, in addition to directed arcs, responsible for 

representing the causal relations between the concepts. 

The directed arcs are labeled with Fuzzy values in the 

interval of [0, 1] or [-1, 1] that demonstrate the degree of 

influence between the concepts. The Fuzzy part allows 

the use of degrees of chance that are represented as links 

between the concepts of the graph. When the FCM 

converges, it can reach a chaotic state or a limit cycle, in 

this work the FCM reached the limit cycle [15]. Fig. 2 

shows an example of the FCM structure. 

http://www.ijaers.com/
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Fig. 2: Example of FCM structure. 

 

3.1 Development of a FLC for Heatex 

To obtain the intuitive understanding of the Heatex 

process, the PI control and all structure presented in 

Section II were studied. As input to the FLC, the 

error𝑒(𝑡), which is the difference between the setpoint 

and the process output, and thechange of error ∆𝑒(𝑡) were 

chosen. From the inputs used it was determined that the 

output of the FLC should be the change of the control 

action ∆𝑢(𝑡). Fig. 3 presents the structure of the FLC, 

which represents an intuitive control strategy presented in 

[12]. 

Figs. 4, 5 and 6 present the universes of discourse and 

regions of the membership functions for the FLC input 

and output variables, respectively, change of error, error 

and change of the control action. 

 
Fig. 3: FLC structure. 

 

The limits of the variables universe of discourse were 

determined by observing the PI controller response of 

Section II. The membership functions of the inputs and 

outputs are negative large (NL), negative (N), zero (Z), 

positive (P) and positive large (PL). 

 
Fig. 4: Universe of discourse and regions of the 

membership functions for the change of error. 

 

In Figs. 5 and 6, the peaks of the membership 

functionsforthe error and the change of the control action 

were shifted. This adjustment was made with the 

intention of increasing the stability region and making the 

control response less oscillatory. 

 
Fig. 5: Universe of discourse and regions of the 

membership functions for the error. 

 

 
Fig. 6: Universe of discourse and regions of the 

membership functions for the change of the control 

action. 

 

Table 1 presents the rule base used for the FLC, which 

uses the strategy presented in [12]. 

 

 

 

 

 

http://www.ijaers.com/


International Journal of Advanced Engineering Research and Science (IJAERS)                            [Vol-4, Issue-12, Dec- 2017] 

https://dx.doi.org/10.22161/ijaers                                                                                 ISSN: 2349-6495(P) | 2456-1908(O) 

www.ijaers.com                                                                                                                                                                            Page | 179  

 

Table 1: FLC rule base. 

Change of the 

control action 

(∆𝒖(𝒕)) 

Change of error (∆𝒆(𝒕)) 

NL N Z P PL 

Error 

(𝒆(𝒕)) 

NL NL NL NL N Z 

N NL NL N Z P 

Z NL N Z P PL 

P N Z P PL PL 

PL Z P PL PL PL 

 

Fig. 7 shows thesurface of the developed FLC. 

 
Fig. 7: Surface for the FLC. 

 

3.2 Development of a FCM controller for Heatex 

Fig. 8 presents the FCM structure defined and used as 

controller in this work. Thus, the FCM has two input 

concepts, the error and change of error, and one output 

concept, the change of the control action. The FCM also 

presents two directed arcs, one for each of the causal 

relations, with their respective values. 

 
Fig. 8: FCM structure. 

 

For the development of the FCM it is necessary to choose 

the ideal activation function for the application, since it is 

responsible for inferring the value of the output concept 

from the values of the input concepts and the causal 

relations. 

At first, the sigmoid function was used. However, it was 

replaced because it only infers positive values for the 

output concept. The change of the control action also 

assumes negative values.Then, the activation function 

chosen for the FCM was the hyperbolic tangent sigmoid, 

presented in (6), which meets the needs of the developed 

controller. 

𝑡𝑎𝑛𝑠𝑖𝑔(𝑥) =  
2

(1 + 𝑒−2𝜆𝑥)
− 1. . . . . . . . . . . . . . . . . . . . . . . . . (6) 

The activation function in (6), in this work, is similar to 

the hyperbolic tangent sigmoid function used in 

MATLAB's ANN toolbox, where λ is the forgetting factor 

adjusted with value 1. 

In order to determine the values of the causal relations 

𝑊1and 𝑊2 meeting the needs of the Heatex control, a 

GA was used.The objective was to minimize the quadratic 

difference between the setpoint and output response of the 

system with the FCM controller. The objective function 

used in the GA is presented in (7). The 𝑂. 𝐹. denotes the 

objective function, 𝑚𝑖𝑛 represents the smallest value that 

will be found and 𝑛 represents the length of the setpoint 

and output vectors. 

𝑂. 𝐹. = 𝑚𝑖𝑛 ∑(𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡𝑖 − 𝑜𝑢𝑡𝑝𝑢𝑡𝑖)
2

𝑛

𝑖=1

. . . . . . . . . . . . . . (7) 

The GA implementation was performed using the toolbox 

of the MATLAB/Simulink software with the 

configuration presented in Table 2. 

 

Table 2: GA parameters configuration. 

Parameter Value 

Generations 10 

Population 10 

Mutation Adaptive feasible (toolbox) 

Crossover  0.8 

Elitism 0.05 

Selection 
Tournament with 3 

individuals 

Project scope [-1 to 1]  

 

The values obtained for the causal relations were  

𝑊1 = 0.0313and 𝑊2 = 1.Therefore, for this problem, 

the change of error has a more significant influence when 

compared to the error. 

 

IV. ARTIFICIAL NEURAL NETWORKS 

ANNs are computational models inspired by the nervous 

system of living beings. An ANNis defined as an 

arrangement of processing units, called artificial neurons, 

highly interconnected by synaptic weights. These 

represent the connection strength between the neurons 

and are used to store the acquired knowledge [16, 17]. 

The main applications of this computational intelligence 

technique are related to the capacity of adaptation by 

experience, fault tolerance, data organization, learning 

capacity, ease of prototyping and generalization ability 
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[16, 17]. In this context, the ANN was used in this work 

with the intention of learning and improving the 

responses of the FLC and the FCM controller through its 

ability to generalize the acquired knowledge. 

4.1 ANN-Fuzzy Controller 

The ANN-Fuzzy controller consists of a neural network 

with 3 layers: the input layer where the error 𝑒(𝑡)and 

change of error ∆𝑒(𝑡) values are presented, the hidden 

layer containing 8 neurons and the layer of the controller 

output, where the change of the control action ∆𝑢(𝑡) is 

provided. This input and output structure is the same for 

the FLC and the FCM controller developed in Section III. 

Fig. 9 illustrates the architecture used in the ANN-Fuzzy 

controller. 

The neural network training is supervised and based on 

the backpropagation method, it was developed in the 

MATLAB/Simulink software on a computer with the 

Intel i5 1.80 GHz processor, 10 GB RAM and the 

Windows 10 Education operating system. In this context, 

the training and validation samples were obtained based 

on the response curves of the FLC, in which the setpoint 

value was maintained at zero, but the value of the 

disturbance varied in the range of -1 to 1 in intervals of 

0.1. Therefore, 20 response curves for the error, change of 

error and change of the control action were collected and 

stored to train the network. 

 
Fig. 9: ANN-Fuzzy controller architecture. 

 

For the validation of the neural network, another 4 curves 

were obtained with values of disturbance belonging to the 

training interval, but different from those that were used 

to train the network. Overall, 24 curves were obtained 

where each curve contained 1200 samples and the sample 

time used for this scenario was 1 second. In total, 24,000 

samples were used to train the network and 4,800 samples 

were used for the network validation. Table 3 presents the 

parameters configuration to train and validate the ANN-

Fuzzy controller. 

 

Table 3: ANN-Fuzzy parameters configuration.  

Parameter Configuration 

Network Architecture Multilayer Perceptron 

Training Algorithm 
Levenberg-Marquardt 

(backpropagation) 

Learning Rate 0.01 

Quadratic Error 1.62 × 10−8 

Epochs 5,000 

Activation Function 

(Hidden Layer) 

Hyperbolic Tangent 

Sigmoid (tansig) 

Activation Function 

(Output Layer) 
Linear (purelin) 

Training Samples 24,000 

Validation Samples 4,800 

 

4.2 ANN-FCM Controller 

The neural network assembled for the ANN-FCM 

controller has the same architecture shown in Fig. 9. In 

addition, the scenario and computer used to train the 

network are similar to the ANN-Fuzzy controller. The 

only differences are related to the way the samples were 

obtained, which in this case was by means of the 

developed FCM controller. Overall, 24 curves were 

obtained, each curve contained 500 samples and the 

sample time used for this scenario was 1 second. In total 

12,000 samples were obtained, in which 10,000 were 

used for training and 2,000 for validation of the network. 

Table 4 presents the parameters configuration to train and 

validate the ANN-FCM controller. 

 

Table 4: ANN-FCM parameters configuration.  

Parameter Configuration 

Network Architecture Multilayer Perceptron 

Training Algorithm 
Levenberg-Marquardt 

(backpropagation) 

Learning Rate 0.01 

Quadratic Error 1 × 10−12 

Epochs 1,000 

Activation Function 

(Hidden Layer) 

Hyperbolic Tangent 

Sigmoid (tansig) 

Activation Function 

(Output Layer) 
Linear (purelin) 

Training Samples 10,000 

Validation Samples 2,000 

 

V. RESULTS AND DISCUSSIONS 

This Section presents the results and analyzesthe 

performance of the FLC, FCM, ANN-Fuzzy, ANN-FCM 

and PI controllers in six different control scenarios. In 

each of these the setpoint and disturbance values acting 

on the system were varied.The total simulation time for 

each scenario was 500 seconds because of the slow 

response characteristic of the system. 

5.1 Metrics and Parameters for Evaluation 

http://www.ijaers.com/
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To evaluate the performance of the controllers, the IAE 

and ITAE metrics, and the maximum overshoot and 

settling time parameters were used. 

ITAE is a criterion that penalizes errors that persist for 

long periods. On the other hand, IAE is an intermediate 

metric between the Integral of Squared Error (ISE) and 

the ITAE, penalizing in greater intensity the errors in the 

initial instants of the control [18]. 

The overshoot 𝑀𝑜 is the difference between the value of 

the highest peak of the response and the value in steady 

state, being indicated in percentage [19]. The formula 

used for the calculation is presented in (8). 

𝑀𝑜% = 100 ∙
𝑀𝑝𝑡 − 𝑠𝑝

𝑠𝑝
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8) 

Where: 𝑀𝑝𝑡 is the maximum value of the response and 

𝑠𝑝is the desired reference value (setpoint). 

Finally, the settling time 𝑡𝑠 is the time required for the 

curve to remain within a range around the steady 

state[19]. For this work, the chosen range was ± 3% over 

the steady state or setpoint. 

5.2 Control Scenario 1 

This scenario maintained the setpoint at 0 and inserted a 

small disturbance value of 0.17 into the system. Figs. 10 

and 11 present, respectively, the control response and the 

control action comparison for all the controllers in 

scenario 1. 

 
Fig. 10: Control responses for the scenario 1. 

 

Fig. 11: Control actions for the scenario 1. 

 

Table 5 presents the evaluation results for all the 

controllers’ responses in scenario 1. As it is not possible 

to calculate the overshoot percentage for the setpoint at 0, 

it was used the maximum response value 𝑀𝑝𝑡. 

Table 5: Results for the scenario 1.  

Controller ITAE IAE 𝑴𝒑𝒕 𝒕𝒔(s) 

Fuzzy 763,7 7,270 0,1061 146 

ANN-Fuzzy 826,6 7,670 0,1070 151 

FCM 585,9 5,431 0,0944 119 

ANN-FCM 585,6 5,429 0,0944 119 

PI 314,6 3,518 0,0926 103 

 

The analysis of Fig. 10 shows that the PI controller 

presented the lowest overshoot value in relation to the 

other control techniques, in addition to a shorter 

settlingtime, despite its response being oscillatory.The 

FCM and ANN-FCM controllers had practically the same 

responses and were closer to the PI controller.Fig. 11 

shows that the PI response is faster, but is aggressive and 

oscillatory, whereas the FCM and the ANN-FCM 

presented faster responses than the Fuzzy-based 

controllers and were smoother compared to the PI 

controller.As seen in Table 5, the best controller for this 

scenario was the PI, since it obtained the best values in all 

analyzed metrics and parameters. 

5.3 Control Scenario 2 

In this scenario, the setpoint wasmaintainedat 0 and 

theinserted disturbance value was changed to 0.37. Figs. 

12 and 13 present, respectively, the control response and 

the control action comparison for all the controllers in 

scenario 2. 

 
Fig. 12: Control response for the scenario 2. 
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Fig. 13: Control action for the scenario 2. 

 

Table 6 presents the evaluation results for all the 

controllers’ responses in scenario 2. As it is not possible 

to calculate the overshoot percentage for the setpoint at 0, 

it was used the maximum response value 𝑀𝑝𝑡. 

Table.6: Results for the scenario 2.  

Controller ITAE IAE 𝑴𝒑𝒕 𝒕𝒔(s) 

Fuzzy 1471,6 14,426 0,2253 157 

ANN-Fuzzy 1474,1 14,462 0,2252 158 

FCM 1275,2 11,821 0,2054 164 

ANN-FCM 1275,1 11,820 0,2054 164 

PI 684,7 7,656 0,2016 109 

 

The analysis of Figs. 12 and 13 shows that, in general, the 

behavior of the responses and the control action was 

similar to that of scenario 1. This is also confirmed by 

Table 6. 

5.4 Control Scenario 3 

This scenario changed the setpoint to 0.50 and inserted a 

small disturbance value of 0.17 into the system. Figs. 14 

and 15 present, respectively, the control response and the 

control action comparison for all the controllers in 

scenario 3. 

 
Fig. 14: Control response for the scenario 3.  

 

 
Fig. 15: Control action for the scenario 3. 

 

Table 7 presents the evaluation results for all the 

controllers’ responses in scenario 3. 

Table 7: Results for the scenario 3.  

Controller ITAE IAE 𝑴𝒐% 𝒕𝒔(s) 

Fuzzy 1173,8 27,839 20,02 161 

ANN-Fuzzy 1140,9 27,465 16,86 167 

FCM 516,0 17,055 9,05 119 

ANN-FCM 502,5 20,402 2,59 72 

PI 532,3 17,988 29,79 99 

 

The analysis of Fig. 14 shows that the ANN-FCM control 

presented the lowest settling time and overshoot 

percentage. However, this controller did not respond as 

quickly as the FCM and PI controllers. Due to this, the 

ANN-FCM controller presented the best value for the 

ITAE criterion, but not for the IAE, as seen in Table 7. 

Fig. 15 shows that the control action was more aggressive 

for the PI and FCM controllers, and the ANN-FCM 

controller presented the smoother control action. 

5.5 Control Scenario 4 

This scenario kept the set point at 0.50 and increased the 

inserted disturbance value to 0.37. Figs. 16 and 17 present 

the control response and the control action comparison, 

respectively, for all the controllers in scenario 4. 

 
Fig. 16: Control response for the scenario 4. 
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Fig. 17: Control action for the scenario 4. 

In Table 8, the evaluation results for all the controllers’ 

responses in scenario 4 are presented. 

Table 8: Results for the scenario 4.  

Controller ITAE IAE 𝑴𝒐% 𝒕𝒔(s) 

Fuzzy 1774,6 33,868 41,93 169 

ANN-Fuzzy 1705,4 33,221 38,57 172 

FCM 1203,1 23,407 31,25 182 

ANN-FCM 1090,2 25,434 24,38 169 

PI 881,7 21,984 33,35 115 

Fig. 16 shows that the PI controller had the shortest rise 

and settling time. Consequently, the PI control presented 

the lowest values for the ITAE and IAE criteria, as seen 

in Table 8. However, Fig. 16 shows that the overshoot 

presented by the PI controller is higher than that of the 

FCM and ANN-FCM controllers. Fig. 17 shows that the 

control action was more aggressive for the PI and FCM 

controllers. In this scenario, the RNA-FCM controller 

also presented the smoother control action, compared to 

the others. 

5.6 Control Scenario 5 

In this scenario, the setpoint was changed to 0.70 and a 

small disturbance value of 0.17 was inserted into the 

system. Figs. 18 and 19 present the control response and 

the control action comparison, respectively, for all the 

controllers in scenario 5.Table 9 presents the evaluation 

results for all the controllers’ responses in scenario 5. 

 
Fig. 18: Control response for the scenario 5. 

The analysis of Fig. 18 shows that the FCM control had 

the lowest overshoot, which is considerably smaller than 

that of the PI control. The FCM control also had the 

shortest settling time. Fig. 19 shows a fast action of the PI 

and FCM controls, the latter being smoother. 

 
Fig. 19: Control action for the scenario 5. 

Table 9 shows that the FCM control was superior in all 

metrics and parameters, even in overshoot percentage, 

since the ANN-FCM response was underdamped. 

Table 9: Results for the scenario 5.  

Controller ITAE IAE 𝑴𝒐% 𝒕𝒔(s) 

Fuzzy 1283,9 35,905 11,10 151 

ANN-Fuzzy 1202,4 35,570 7,46 145 

FCM 479,8 22,282 2,83 61 

ANN-FCM 1036,7 32,737 0,00 128 

PI 631,2 23,849 29,79 81 

 

5.7 Control Scenario 6 

In this scenario, the set point was maintained at 0.70 and 

the inserted disturbance value was changed to 0.37. Figs. 

20 and 21 present, respectively, the control response and 

the control action comparison for all the controllers in 

scenario 6. Table 10 presents the evaluation results for all 

the controllers’ responses in scenario 6. 

 
Fig. 20: Control response for the scenario 6. 

Fig. 20 shows that the PI control had the shortest rise time 

and a low settling time relative to the other controllers. 
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Due to this, the PI controller presented low values for the 

ITAE and IAE criteria, as seen in Table 10. 

 
Fig. 21: Control action for the scenario 6. 

Fig. 21 shows a fast action of the PI and FCM controls, 

the latter being smoother. Although the ANN-FCM had 

the lowest overshoot and settling time, the ascent of the 

control was slow. 

Table 10: Results for the scenario 6.  

Controller ITAE IAE 𝑴𝒐% 𝒕𝒔(s) 

Fuzzy 1844,7 41,322 26,09 161 

ANN-Fuzzy 1759,2 40,815 22,59 163 

FCM 1150,3 28,359 18,60 161 

ANN-FCM 1034,1 32,488 11,18 109 

PI 975,4 27,819 29,79 114 

 

VI. CONCLUSIONS 

This work presented the techniques FLC, FCM, ANN-

Fuzzy and ANN-FCM applied to the Heatex problem. For 

the evaluation of these intelligent control techniques, the 

PI control of the Heatex example was used as a reference 

basis. The ITAE and IAE metrics, and the overshoot 

percentage and settling time parameters were used to 

compare the control responses. All this led to the 

following conclusions. 

The PI technique was among the best controllers for the 

scenarios in which the value of the disturbance is 

considerable when compared to the setpoint value. As in 

scenarios 1 and 2, where the control acts only on the 

effect of the disturbance, since the setpoint is zero. In 

addition to scenarios 4 and 6, where the disturbance range 

around 0.37 represents a considerable value compared to 

the setpoints 0.50 and 0.70. 

The techniques related to FCM werethe best for scenarios 

where the value of the disturbance is small when 

compared to the setpoint value. As in scenarios 3 and 5, 

where the disturbance range around 0.17 represents a 

small value compared to the setpoints 0.50 and 0.70. The 

ANN-FCM may be an alternative to FCM, in these 

scenarios, when a controller with a smoothcontrol action 

and a dampened response is desired. 

The FLC and ANN-Fuzzy techniques had poor results 

when compared to the other techniques, in all the test 

scenarios. However, the FLC technique has a good 

performance when applied to the Heatex problem without 

the disturbances. 

Finally, each of the control scenarios presents one or two 

controllers with better performance than the others. If the 

goal is to develop a controller with smooth control action, 

FCM and ANN-FCM techniques were the best options, 

for this problem. In the future, the techniques presented in 

this article will be applied to problems of higher order 

than Heatex. 
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