
International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-4, Issue-12, Dec- 2017]

https://dx.doi.org/10.22161/ijaers.4.12.12 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 66

Updating and Rendering Content on Objects in

a three Dimensional Virtual Environment
Le Anh, Nguyen Trung Kien

Institute of Simulation Technology, Le Quy Don Technical University, Hanoi, Vietnam

Abstract—The virtual reality applications are increasingly

popular in social life from culture, education, health to

entertainment. In a three-dimensional virtual environment,

the features of objects such as shape, color, movement, etc.

are digitized and simulated using basic computer graphics

techniques. In addition to the above characteristics,

objects can contain content which changes in the form of

images or text, with diverse information. The problem is

that these content should be rendered on the virtual object,

so that both the content and the real time of the

application can be satisfied. In this paper we present an

approach for updating and rendering content on objects in

a three-dimensional virtual environment based on GPU

architecture.

Keywords— Virtual reality, texture, GPU programming.

I. INTRODUCTION

In everyday activities, people often communicate and

manipulate objects based on the content of the images and

text displayed on them (Fig. 1). Building the objects in a

three-dimensional virtual environment usually goes

through two steps . Step one is object modeling that is

supported by the software such as 3DSMax, Blender, etc.

The second step is to render the characteristics of color and

content on the objects by texture mapping [1, 2, 3]. The

problem is that when the objects are rendered in the virtual

environment, the change of content on the objects must

also be simulated. In this paper, an GPU based approach

will be presented for updating and rendering the content on

the three-dimensional objects.

(a) (b) (c)

Fig. 1. Objects with the content of the images and text

(a) smartphone screen, (b) radar screen, (c) speedometer

II. THE GRAPHICS PIPELINE

Texture mapping technique is used to render texture on the

objects. The three-dimensional object model and texture

files of the model are stored on a computer hard drive, then

are uploaded to main memory by the program on the CPU.

The CPU handles memory usage, controlling the flow of

data between the CPU and the GPU (Fig. 2). Data

exchange between CPU and GPU via PCI-Express (PCIe)

[9, 10]. At present, PCIe 2.0 and PCIe 3.0 are two

commonly used, two-way transfer rates (CPU-GPU, GPU-

CPU) respectively 16GB/s and 32 GB/s. This data rate

satisfies the data transfer needs between CPU and GPU.

Fig. 2. Rendering texture on a three-dimensional object

Fig. 3.

Commands required to perform computation on the GPU

are passed from the CPU via the command buffer. When

the program on the CPU calls object drawing commands to

execute on the GPU, vertex data and texture data are

transferred to GPU memory, and the graphics pipeline on

the GPU is executed (Fig. 3). On GPU memory, vertex

data is stored in vertex buffers and index buffers, and

texture data is stored on texture buffer. These buffers are

inputs to the graphics processing steps on the GPU.

Fig. 4. The graphics pipeline

III. THE PROPOSED METHOD

Render target is a buffer that pixel processing can be

executed, and the output can be used as a texture that is an

input of the next step. In this section, render target is used

to solve the problem of updating and rendering content on

a three-dimensional virtual object. Using memory buffers

on GPU memory and leveraging parallel GPU processing

capabilities reduce CPU computations. At the same time,

the image rendering speed is enhanced and the real-time

processing is remained. We classify the contents displayed

on an object into three types as follow icons, movie

frames, and text.

3.1. Rendering icons

https://dx.doi.org/10.22161/ijaers.4.12.12
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-4, Issue-12, Dec- 2017]

https://dx.doi.org/10.22161/ijaers.4.12.12 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 67

Using icons to represent the objects on the screen or on a

three-dimensional virtual object is a common choice. The

information of the object such as position, direction,

velocity, etc., should be updated accurately and

continuously on the screen or on the surface. To do that,

the position the objects must be converted from world

space to screen space (Fig. 4).

(a)

(b)

Fig. 5. P in world space (a), P’ in screen space (b)

where P(Px, Py) is in world space, P’(P’u , P’v) is in screen

space, W and H are respectively the width and the length

in world space, w and h are respectively the width and the

height in screen space. The transformation is written in the

form of a matrix as follows:

(
𝑃𝑢

′

𝑃𝑣
′

1

) = (

𝑤

𝑊
0 0

0
−ℎ

𝐻
ℎ

0 0 1

) (
𝑃𝑥

𝑃𝑦

1

) (1)

Here are the steps in the proposed method to render icons

on the screen or on a three-dimensional virtual object:

Fig. 6. Rendering icons on a render target

First, the icons are uploaded to main memory by the

program on the CPU. At the same time, a render target is

initialized on the GPU memory space. The size of render

target is usually the power of two for optimal graphical

process, especially for texture-related process.

Second, the icons would be rendered on the render target.

Assume that there are N icons that are stored on main

memory in the form of N textures. When the program on

the CPU calls the drawing commands, the icon textures

and object information such as coordinate, direction are

transferred from main memory to GPU memory. On GPU

memory, N textures (Texture1,..,TextureN) are the input of

fragment shader 1. The fragment shader 1 performs color

updates for the render target, instead of screen buffers.

Specifically, icon textures are rendered on the render target

based on the object information such as coordinates and

direction. The result of the color update on render target is

stored on the GPU memory and are reused for the next

step. Note that the rotation of texture representing the

direction of object can is written in the form of a matrix as

follows:

[𝑢′
𝑣′

] = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] [
𝑢 − 0.5
𝑣 − 0.5

] + [
0.5
0.5

] (2)

where [u, v] and [u', v'] respectively are the texture

coordinates of the points before and after the rotation.

Third, the icon textures would be displayed on the screen

as shown below:

Fig. 7. Rendering RT texture on the screen or on a three-

dimensional virtual object.

The data on the render target is the color value of the icon

textures and is copied to another texture called render

target texture (RT texture). On GPU memory, the RT

texture is the input of fragment shader 2. The fragment

shader 2 performs texture mapping technique to render the

icon textures on the screen or on a three-dimensional

virtual object. Finally, the result would be output to the

screen buffer.

3.2. Rendering movie frames

The input is a movie file, the requirement is that the movie

content should be displayed on a three-dimensional objects

such as smartphone screen, computer screen, TV screen,

etc. A movie file is a sequence of frames and each frame

corresponds to a image at a given moment. Each frame has

a specified width (w) and height (h). The number of

frames (F) is determined by frame per second (fps) and the

duration (t), ie: F = fps * t

Here are the steps in proposed rendering pipeline to render

the frames on the screen or on a three-dimensional virtual

object:

Fig. 8. Rendering frames on a render target

First, the movie file is uploaded to main memory by the

program on the CPU. The properties of the video include

the frame rate in fps, the size (w, h) of each frame defined

in the program. At the same time, a render target is

initialized on the GPU memory space, which is used to

https://dx.doi.org/10.22161/ijaers.4.12.12
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-4, Issue-12, Dec- 2017]

https://dx.doi.org/10.22161/ijaers.4.12.12 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 68

store the frame data. The size of render target is initialized

by the size of a frame (w, h).

Second, each frame would be read by the program at each

loop of rendering pipeline. When the program on the CPU

calls the drawing commands, the frame data is transferred

from main memory to GPU memory. On GPU memory,

there is a texture containing the frame data received from

the CPU, known as the Frame Texture, which is the input

of fragment shader 1. The fragment shader 1 performs

color updates for the render target. The result of the color

update on render target is stored on the GPU memory and

are reused for the next step.

The next step is the same as the final step in the previous

section, except that the RT texture contains the content of

the frame data stored in the render target.

3.3. Rendering text

In this paper, we use a bitmapped font to render text on the

screen or on the surface of the three-dimensional virtual

object because the advantages of a bitmap font are fast,

flexible and platform independent. In fact, a bitmapped

font is simply an atlas texture containing a collection of

glyphs and symbols as follows:

Fig. 9. Atlas texture font bitmap

The process of rendering lines of text on the screen or on a

three-dimensional virtual object we perform is similar to

the process of rendering icons because these character

lines are essentially sets of character images that are

arranged sequentially.

IV. EXPERIMENT

The computer configuration used to experiment as follows:

: CPU Intel Core i5-4210H CPU 2.90GHz, RAM 8GB,

graphics card Nvidia GTX850M, PCI-Express 2.0, display

support H.264, VC1, MPEG2 1080p video decoder. The

simulator is based on the open source engine Unreal 4.15.

Applying the proposed rendering pipeline, we built the

three-dimensional objects with the content that change

over time. In the first implementation, Fig. 9 shows the

cockpit of UH-60 helicopter being seen from the pilot's

position. The radar screen in the cockpit can scan and

locate the other helicopters, where two other helicopters

rendered on the screen with two blue dots (Fig. 9).

Fig. 10. Two helicopters are rendered on the radar screen

by two blue dots

In the second implementation, we experimented with a

movie on the TV screen in a virtual three-dimensional

environment (Fig. 10). The video is selected in *.mp4

format, 13 seconds in length, frame rate 25 frames per

second, and frame size is 1280 x 720.

Fig. 11. Rendering a movie on the TV screen

In the third implementation, the chosen objects with

contents in the form of characters and numbers are a

digital clock (Fig. 11.a) and an electronic LED panel (Fig.

11.b). Time clocks represent the types of clocks that have

digital displays such as temperature meter, moisture meter,

pressure meter, speedometer, etc. For electronic LED

panels, the content is text shown on the LED panel. These

lines can be run from left to right, top to bottom or vice

versa, by changing the texture coordinates of the pixel in

the fragment shader:

(u’, v’) = (u, v) + (uOffset, vOffset) (3)

where uOffset and vOffset are the time intervals.

(a) (b)

Fig. 12. Rendering numbers on a digital clock (a),

rendering text on an electronic LED panel

V. CONCLUSION

Taking advantage of the support for programming on

graphics cards, we proposed an approach to update and

render content on a three-dimensional virtual objects based

https://dx.doi.org/10.22161/ijaers.4.12.12
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-4, Issue-12, Dec- 2017]

https://dx.doi.org/10.22161/ijaers.4.12.12 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 69

on GPU programming. The change of content is updated to

a render target, which is a memory location located on the

video memory. The result of the render target is then used

as an input of texture mapping on a three-dimensional

virtual object. Most of the computations are done on the

GPU so the computations on the CPU have been reduced

to improve the rendering speed and remain real-time

processing.

REFERENCES

[1] Gerald Farin , State of the art in 3D modeling.

In Proceedings - 5th International Conference on

Frontier of Computer Science and Technology, FCST

2010 [5577356] DOI: 10.1109/FCST.2010.114, 2010.

[2] Georgios Kordelas , Juan Diego P`erez-Moneo

Agapito, Jes`us M. Vegas Hernandez , and Petros

Daras, State-of-the-art Algorithms for Complete 3D

Model Reconstruction, University of Valladolid,

Valladolid, Spain.

[3] Catmull, E. A subdivision algorithm for computer

display of curved surfaces, University of Utah, 1974.

[4] Wojciech Matusik, Frédo Durand, Texture Mapping &

Shaders - Computer Graphics Course, MIT

OpenCourseWare, http://ocw.mit.edu, Fall 2012.

[5] Magnenat-Thalmann, Nadia, Thalmann, Daniel (Eds.),

State-of-the-art in Computer Animation, Proceedings

of Computer Animation ‘89, Springer Japan, eBook

ISBN: 978-4-431-68293-6, DOI: 10.1007/978-4-431-

68293-6, 1989.

[6] Nicolas P.Rougier (INRIA), Higher Quality 2D Text

Rendering, Journal of Computer Graphics Techniques,

vol.2, No.1, 2013.

[7] Charalampos Koniaris, Darren Cosker, Xiaosong

Yang, Survey of Texture Mapping Techniques for

Representing and Rendering Volumetric

Mesostructure, Journal of Computer Graphics

Techniques, vol.3, No.2, 2014.

[8] F.Klose, O.Wang, J.-C.Bazin, M.Magnor, A.Sorkine-

Hornung, Efficient GPU Based Samping for Scene-

Space Video Processing; Vision, Modeling, and

Visualization, 2015.

[9] John Nickolls, David Kirk (NVIDIA), Graphics and

Computing GPUs.

[10] John Nickolls, William J.Dally (NVIDIA), The GPU

Computing Era, IEEE Micro (Volume: 30, Issue: 2,

March-April 2010, ISSN: 0272-1732,

DOI: 10.1109/MM.2010.41.

https://dx.doi.org/10.22161/ijaers.4.12.12
http://www.ijaers.com/
http://dx.doi.org/10.1109/FCST.2010.114
http://ocw.mit.edu/
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=40
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5446241
https://doi.org/10.1109/MM.2010.41

