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Abstract— The cryptocurrency is a decentralized digital 

money. Bitcoin is a digital asset designed to work as a 

medium of exchange using cryptography to secure the 

transactions, to control the creation of additional units, 

and to verify the transfer of assets. The objective of this 

study is to forecast Bitcoin exchange rate in high 

volatility environment. Methodology implemented in this 

study is forecasting using autoregressive integrated 

moving average (ARIMA). This study performed 

autocorrelation function (ACF) and partial 

autocorrelation function (PACF) analysis in determining 

the parameter of ARIMA model. Result shows the first 

difference of Bitcoin exchange rate is a stationary data 

series. The forecast model implemented in this study is 

ARIMA (2, 1, 2). This model shows the value of R-

squared is 0.444432. This value indicates the model 

explains 44.44% from all the variability of the response 

data around its mean. The Akaike information criterion is 

13.7805. This model is considered a model with good 

fitness. The error analysis between forecasting value and 

actual data was performed and mean absolute percentage 

error for ex-post forecasting is 5.36%. The findings of 

this study are important to predict the Bitcoin exchange 

rate in high volatility environment. This information will 

help investors to predict the future exchange rate of 

Bitcoin and in the same time volatility need to be monitor 

closely. This action will help investors to gain better 

profit and reduce loss in investment decision. 

Keywords— Cryptocurrency, Bitcoin, ARIMA model, 

Volatility, Error diagnostics. 

 

I. INTRODUCTION 

Technology is being presented as something new 

as it drives change at an ever-increasing rate 

(Chaharbaghi and Willis, 2000). The accelerating of 

technology give an impact on pervades aspect of human 

life. Technology is convergence of computing, 

telecommunications and imaging technologies has had 

radical impacts on IT users, their work, and their working 

environments. In its various manifestations, IT processes 

data, gathers information, stores collected materials, 

accumulates knowledge, and expedites communication 

(Chan, 2000), plays an important role in many aspects of 

the everyday operations of today's business world.   

In response to a new technological shift, 

criminals and consumers alike are increasingly finding 

new ways to evolve (Reynolds and Irwin, 2017). 

Therefore, accelerating technology was introduced many 

financial mechanisms such as bitcoin cryptocurrency. 

A bitcoin cryptocurrency transaction is a new 

mechanism in digital currency. A bitcoin transaction was 

introduced based on cryptographic, allowing two parties 

to transact directly with each other without the need for a 

trusted third party. This transaction are computationally 

impractical to reverse would protect sellers from fraud, 

and routine escrow mechanisms could easily be 

implemented to protect buyers (Nakamoto, 2009). 

Blockchains are a software protocol that underlie bitcoin 

cryptocurrency in one sense, are nothing more than a 

modernizing information technology, but in another 

sense, are novel and disruptive (Yeoh, 2017). 

Cryptocurrencies, such as Bitcoin, rely on a de-centralised 

system based on peer-to-peer public key addresses, rather 

than having a central regulating body, such as a financial 

institution or bank, which reviews and monitors 

transactions. This allows potential criminal transactions to 

be processed through cryptocurrencies, as the process of 

moving money is quicker and more efficient due to the 

bypassing of the regulatory controls that third-party 

institutions, such as banks, are legally bound to perform. 
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This situation makes a bitcoin transaction faced with high 

volatility due to uncontrolled by professional body.  

Volatility is a statistical measure of the 

dispersion of returns for a stock market. Volatility of 

stock markets has created much attention among investors 

because high volatility can bring high returns or losses to 

investors (Abu Bakar and Rosbi, 2017). This situation 

creates a risk to investors, because a rational investor 

always makes an investment decision based on risk and 

return (Lee, et al., 2016). Even there are many study focus 

on the volatility but no previous study are examine the 

volatility of bitcoin cyptocurrency using ARIMA model. 

Therefore this study try to fulfil this gap by investigates 

the volatility of bitcoin cryptocurrency using ARIMA 

model. According to Brailsford and Faff (1996) identify 

the best volatility forecasting technique is a critical job 

because a best predict volatility forecasting techniques not 

only depends on data availability and predefined 

assumption but also depends on the quality of data (Lee, 

et al., 2016; Abraham et al, 2007). 

 

II. LITERATURE REVIEW 

A number of studies have been undertaken on 

how the volatility is reflecting on the real returns that 

investors earn. Most of the previous study are investigates 

the performance of stock market. Study from Faff and 

McKenziet (2007) concluded that low or even negative 

return autocorrelations are more likely in situations 

where: return volatility is high; price falls by a large 

amount; traded stock volumes are high; and the economy 

is in a recessionary phase.  

While, Abu Bakar and Rosbi (2017) investigate 

the reliability of Box–Jenkins statistical method to 

forecast the share price performance for Oil and Gas 

sector in Malaysia Stock found that the performance of 

Gas Malaysia Berhad can be forecast accurately using 

Autoregressive integrated moving average (ARIMA) 

model of (5,1,5). Similar to Malaysia, Balli and 

Elsamadisy, (2012) compare the linear methods, the 

seasonal ARIMA model provides better estimates for 

short-term forecasts in the State of Qatar. The range of 

forecast errors for the seasonal ARIMA model forecasts 

are less than 100 million Qatar Riyadh for the short-term 

currency in circulation (CIC) forecasts.  

The significance of forecasting method in the 

stock market is also presented by Stevenson (2007), 

examines issues relating to the application of forecasting 

method. The results highlight the limitations in using the 

conventional approach in order to identify the best-

specified ARIMA model in sample, when the purpose of 

the analysis is to provide forecasts. The results show that 

the ARIMA models can be useful in anticipating broad 

market trends; there are substantial differences in the 

forecasts obtained using alternative specifications. 

Although study from Jadevicius and Huston 

(2015) suggests that ARIMA is a useful technique to 

assess broad market price changes. Government and 

central bank can use ARIMA modelling approach to 

forecast national house price inflation. Developers can 

employ this methodology to drive successful house-

building programme. Investor can incorporate forecasts 

from ARIMA models into investment strategy for timing 

purposes. If this player can predict the future changes in 

investment, they can modify future 

investment and reorganize strategic planning (Abu Bakar 

and Rosbi, 2017) 

A more recent study, Coskun and Ertugrul, 

(2016) suggest several points. First, city/country-level 

house price return volatility series display volatility 

clustering pattern and therefore volatilities in house price 

returns are time varying. Second, it seems that there were 

high (excess) and stable volatility periods during 

observation term. Third, a significant economic event 

may change country/city-level volatilities. In this context, 

the biggest and relatively persistent shock was the lagged 

negative shocks of global financial crisis. More 

importantly, short-lived political/economic shocks have 

not significant impacts on house price return volatilities. 

Fourth, however, house price return volatilities differ 

across geographic areas, volatility series may show some 

co-movement pattern.  

El-Masry and Abdel-Salam (2007) examine the 

effect of firm size and foreign operations on the exchange 

rate exposure of UK non-financial companies. They 

found that a higher percentage of UK firms are exposed to 

contemporaneous exchange rate changes than those 

reported in previous studies. In summary, while there has 

been a multitude of literature in the stock market literature 

concerned with the performance of stock market 

determinants, little attention has been placed on the 

forecasting of bitcoin cryptocurrency volatility.  

 

III. RESEARCH METHODOLOGY 

This section describes the forecasting procedure involving 

Bitcoin exchange rate. The process starting with data 

selection process then followed by forecasting process 

using autoregressive integrated moving average (ARIMA) 

method. 

3.1 Data selection process 

This study selects monthly data for Bitcoin exchange rate 

starting from January 2013 until October 2017. The data 

are collected from https://www.coindesk.com. 

3.2 Forecasting procedure 

This study forecast the performance of Bitcoin exchange 

rate using the statistical procedure as shown in Fig. 1. The 
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forecasting process is start with the identification of the 

data model using autoregressive integrated moving 

average (ARIMA). In developing ARIMA model, 

analysis of autocorrelation function (ACF) and partial 

autocorrelation function (PACF) need to be performed. 

Then, this research need to develop estimation of the 

parameter for chosen ARIMA model. In validating the 

model, diagnostics checking need to be developed. The 

residual is the difference between the observed value and 

the estimated value of the quantity of interest (sample 

mean). The residual should be uncorrelated, zero mean 

and zero variance. Then, forecasting and error checking 

stage can be performed. 

 
Fig. 1: Statistical forecasting procedure 

 

3.3 Mathematical derivation of ARIMA model 

This section describes mathematical derivation of 

autoregressive integrated moving average (ARIMA). This 

method is combining autoregressive (AR) with moving 

average (MA) method. Then, this hybrid method is 

integrated with data of difference process. The difference 

process is important to make sure data involved in this 

analysis can be represented as data with stationary 

characteristics. Therefore, the combination of this method 

is called as autoregressive integrated moving average. 

Firstly, this study describes the derivation of 

autoregressive (AR) method. An autoregressive (AR) 

model is a representation of a type of random process. It 

is used to describe certain time-varying processes in time 

series data. The autoregressive model specifies that the 

output variable depends linearly on its own previous 

values and on a stochastic term (an imperfectly 

predictable term). Thus, the model is in the form of a 

stochastic difference equation.  

The notation AR (p) indicates an autoregressive model of 

order p. The AR (p) model is defined as: 

1 1 ...t t p t p tX c X X         

1

p

t i t i t

i

X c X 



   ……………………………... (1) 

where ,...,i p  the parameters of the model, c  is 

constant, and t  is white noise. 

Then, this study derived the equation for moving average 

(MA). The moving-average model specifies that the 

output variable depends linearly on the current and 

various past values of a stochastic (imperfectly 

predictable) term. MA of current deviation from mean 

depends on previous deviations. 

The notation MA (q) refers to the moving average model 

of order q: 

1 1 ...t t t q t qX             

1

q

t t i t i

i

X     



   …………………..…………. (2) 

where   is the mean of the series, 1,..., q   are the 

parameters of the model, and 1, ,...,t t t q      are white 

noise error terms. The value of q is called the order of the 

MA model. 

Then, this study developed the mathematical derivation 

for autoregressive–moving-average (ARMA) models. In 

the statistical analysis of time series, autoregressive–

moving-average (ARMA) models provide a parsimonious 

description of a (weakly) stationary stochastic process in 

terms of two polynomials, one for the autoregression and 

the second for the moving average. 

Given a time series of data Xt the ARMA model is a tool 

for understanding and predicting future values in this 

series. The model consists of two parts, an autoregressive 

(AR) part and a moving average (MA) part. The AR part 

involves regress the variable on its own lagged values. 

The MA part involves modeling the error term as a linear 

combination of error terms occurring contemporaneously 

and at various times in the past.  

The notation ARMA (p, q) refers to the model with p 

autoregressive terms and q moving-average terms. This 

model contains the AR (p) and MA (q) models. Equation 

(3) is an equation from adding the left term of Equation 

(1) and Equation (2). 

1 1

p q

t i t i t t i t i

i i

X c X      

 

       …...…... (3) 
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where   is the mean of the series is expected as 

zero.Then, this study re-arranged the equation (3) to 

become Equation (4). 

1 1

p q

t t i t i i t i

i i

X c X    

 

     …………………. (4) 

where ,...,i p  the parameters of the AR model, 1 ,..., q   

are the parameters of the MA model, c  is constant, and 

t  is white noise. The white noise t  is independent and 

has identical probability normal distribution. The model is 

usually referred to as the ARMA (p,q) model where p is 

the order of the autoregressive (AR) part and q is the 

order of the moving average (MA) part.  

The error terms t  are generally assumed to be 

independent identically distributed random variables 

(i.i.d.) sampled from a normal distribution with zero 

mean: 
2(0, )t N σ   where  

2  is the variance. 

Then, this study performed the derivation of 

autoregressive integrated moving average (ARIMA). 

Given a time series of data Xt where t  is an integer index 

and the Xt are real numbers. An ARMA (p’, q) model is 

given by Equation (4). Then, this study re-arranged to 

become Equation (5). 

1 1 ' ' 1 1... ...t t p t p t t q t qX X X                  

'

1 1

1 1
p q

i i

i t i t

i i

L X L  
 

   
     

   
     ……………… (5)                                                                                                 

where L is the lag operator, i  are the parameters of the 

autoregressive part of the model, i  are the parameters of 

the moving average part and t  are error terms. The error 

terms t  are generally assumed to be independent, 

identically distributed variables sampled from a normal 

distribution with zero mean. 

In time series analysis, the lag operator, L  or backshift 

operator operates on an element of a time series to 

produce the previous element. For example, given some 

time series: 

 1 2, ,...X X X   

Then,  1t tLX X   for all 1t   . 

where L   is the lag operator.  

Note that the lag operator can be raised to arbitrary 

integer powers so that: 
k

t t kL X X                                                                                                                                                              

Referring to Equation (5), assume now that the 

polynomial 

'

1

1
p

i

i

i

L


 
 

 
  has a unit root (a factor 

 1 L  ) of multiplicity d. Then it can be rewritten as: 

 
' '

1 1

1 1 1
p p d

di i

i i
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L L L 


 

   
      

   
  …………..… (6)                                                                                                  

An ARIMA (p,d,q) process expresses this polynomial 

factorization property with p = p'−d, and is given by: 

 
1 1

1 1 1
p q

di i

i t i t

i i

L L X L  
 

   
      

   
   ……..…. (7)                                                                                                 

The Equation (7) can be generalized as follows, 

 
1 1

1 1 1
p q

di i

i t i t

i i

L L X L   
 

   
       

   
  ……. (8)                                                                                         

This defines equation for an ARIMA (p,d,q) process with 

drift δ/(1 − Σφi). 

IV. RESULT AND DISCUSSIONS 

This section describes the result for autoregressive 

integrated moving average (ARIMA) model for 

forecasting the Bitcoin exchange rate.  

4.1 Dynamic behavior of Bitcoin exchange rate  

This section describes characteristics of the data that 

involved in this study. Figure 1 shows the dynamic 

behavior of Bitcoin exchange rate. The observation data 

are selected from January 2013 until October 2017. The 

total number of observations is 58. In January 2013, the 

value of 1 Bitcoin is 15.6 USD. Meanwhile, the value of 

exchange rate increased to 5350.5 USD in October 2017.  

The increment is 5334.9 USD.  

Then, this study performed the autocorrelation function 

(ACF) and partial autocorrelation function (PACF) 

analysis. There is slow decay in autocorrelation analysis. 

Therefore, exchange rate data is a non-stationary data. 
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Fig. 1: Bitcoin exchange rate 
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Table 1: Correlogram for Bitcoin exchange rate 

 
 

4.2 Stationary transformation using first difference 

Figure 2 shows the first difference of Bitcoin exchange 

rate. The first difference results are calculated from 

February 2013 until October 2017. Figure 2 shows high 

volatility of exchange rate stating from May 2017 until 

October 2017. 

Then, this study evaluated the stationarity characteristics 

for first difference of Bitcoin exchange rate. Table 2 

shows the autocorrelation function (ACF) and partial 

autocorrelation function (PACF) analysis for first 

difference of Bitcoin exchange rate. Autocorrelation 

function (ACF) shows a significant spike on order of two 

with value of 0.539. This indicates the moving average is 

represented by order of two. In the same time, partial 

autocorrelation function (PACF) shows a significant spike 

on second order with value of 0.531. This indicates the 

autoregressive part can be represented by order of two. 

Therefore, the first difference of Bitcoin exchange rate 

can be represented by ARIMA (2, 1, 2). 

-400

-200

0

200

400

600

800

1000

1200

1400

1600

Dec.

2017

Dec.

2016

Dec.

2014

Dec.

2015

Dec.

2013

 

 

F
ir

st
 d

if
fe

r
e
n

c
e
 o

f 
ex

c
h

a
n

g
e
 r

a
te

Observation periods (month)

 First difference of exchange rate

Jan.

2013

Fig. 2: First difference of Bitcoin exchange rate 

 

 

 

Table 2: Correlogram for first difference of Bitcoin 

exchange rate 

 
4.3 Parameters estimation for ARIMA (2, 1, 2) 

This section describes the estimation of parameters for 

ARIMA (2, 1, 2) model. This section starts with the 

derivation of ARIMA (p, d, q). In this study the value of  

p is set as 2; d is set as 1 and q is set as 2. Therefore, this 

study derived equation for ARIMA (2, 1, 2). 

 

ARIMA (p, d, q)  is represented by: 

 

 
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Then, this study derived equation for ARIMA (2, 1, 2). 

 

 
2 2

1

1 1

1 1 1i i

i t i t

i i

L L X c L  
 

   
       

   
 

 

Then, this study expended the equation as below 

procedure. 

 

    
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Therefore, ARIMA (2, 1, 2) can be represented as below 
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equation: 

1 1 2 2 1 1 2 2t t t t t tx c x x                  ..(9) 

 

Table 3 shows parameter estimation for ARIMA (2, 1, 2). 

Therefore, historical data of Bitcoin exchange rate can be 

represented by below equation of ARIMA (2, 1, 2). 

1 2

1 2

218 0.237084 0.687976

0.281149 0.024093

t t t

t t t

x x x

  

 

 

     

  
...(10) 

 

R-squared is a statistical measure of how close the data 

are to the fitted regression line. R-squared is represented 

by the percentage of the response variable variation that is 

explained by a linear model. This model shows the value 

of R-squared is 0.444432. This value indicates the model 

explains 44.44% from all the variability of the response 

data around its mean. The Akaike information criterion is 

13.7805. This model is considered a model with good 

fitness. 

Table 3: Parameter estimation for ARIMA (2,1,2) 

 
 

4.4 Diagnostics checking for ARIMA (2, 1, 2) 

Diagnostics checking process is to prove this model 

adequately describes the time series under consideration 

by subjecting the calibrated model to a range of statistical 

tests. For the diagnostic checks in this paper, it is assumed 

that a maximum likelihood estimator is used to estimate 

the model parameters. A random pattern of residuals 

supports a linear model. In discrete time, white noise is a 

discrete signal whose samples are regarded as a sequence 

of serially uncorrelated random variables with zero mean 

and finite variance. Table 4 shows the residual for the first 

difference of Bitcoin exchange rate is not significant. 

Therefore, the residual is considered as white noise. 

 

 

Table 4: Residual diagnostics of ARIMA (2,1,2) 

 
4.5 Ex-post forecasting using ARIMA (2, 1, 2) model 

In validating the prediction model of ARIMA (2, 1, 2), an 

ex-post analysis is needed. Firstly, this study started with 

calculated the parameters for ARIMA (2, 1, 2). The 

selected data for developing parameters are started from 

January 2013 until August 2017. Table 5 shows the 

parameters for ARIMA (2, 1, 2). Therefore, the equation 

for ex-post forecasting validation is represented by: 

 

1 2

1 2

148.984 0.593 0.302

0.603 0.166

t t t

t t t

x x x

  

 

 

     

  
......... (11) 

 

Next, this study plotted the forecasted value using 

Equation (11). Figure 3 shows the ex-post forecasting 

validation. Figure 3 shows the actual value for September 

and October 2017 are in the range of 2 standard errors 

from the forecasted value. Therefore, ARIMA (2, 1, 2) is 

a reliable forecasting model. 

Table 5: Correlogram for first difference of Bitcoin 

exchange rate 
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Fig. 3: Ex-post forecasting validation  

Then, this study also checked the mean absolute 

percentage error (MAPE) between forecast value and 

actual value. Equation (12) shows the equation for 

calculating mean absolute percentage error (MAPE). 

1

100 n
t t

t t

A F
MAPE

n A


   ………………………. (12) 

where At is the actual value , Ft is the forecast value and n 

is number of fitted. 

Table 6 shows the error analysis between forecasting 

value and actual data. The mean absolute percentage error 

for ex-post forecasting is 5.36%. 

Table 6: Error analysis between forecasting value and 

actual data 

Observation 

periods (Month) 

Forecast 

data 

Actual 

data 

Absolute 

percentage 

error 

September 2017 4147.7 4090.7 1.4% 

October 2017 4851.8 5350.5 9.3% 

Mean absolute percentage error (MAPE) 5.36% 

 

4.6 Ex-ante forecasting using ARIMA (2, 1, 2) model 

This study performed ex-ante forecasting using ARIMA 

(2,1,2) model for November and December 2017. Figure 

4 shows ex-ante forecasting of Bitcoin exchange rate. 

Forecast value in November 2017 is 5700, and December 

2017 is 6659. Forecast value is represented by red line. 

Upper limit of forecast value is forecast value add with 2 

standard errors. Meanwhile, lower limit is forecast value 

minus with 2 standard errors. 
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Fig. 4: Ex-ante forecasting of Bitcoin exchange rate 

 

V. CONCLUSION 

The objective of this paper is to forecast cryptocurrency 

exchange rate. In this study, we focus on value of 1 

Bitcoin to United States Dollar (USD). The data selected 

for this study are started from January 2013 until October 

2017.We performed the forecasting approach using 

autoregressive integrated moving average (ARIMA) 

method. The main findings from this study are: 

 

(a) In January 2013, the value of 1 Bitcoin is 15.6 USD. 

Meanwhile, the value of exchange rate increased to 

5350.5 USD in October 2017.  The increment is 

5334.9 USD. 

 

(b) This study performed the autocorrelation function 

(ACF) and partial autocorrelation function (PACF) 

analysis for Bitcoin exchange rate. There is slow 

decay in autocorrelation analysis. Therefore, 

exchange rate data is a non-stationary data 

 

(c) Then, this study performed stationary transformation 

method with finding the correlogram analysis for first 

difference of Bitcoin exchange rate. Autocorrelation 

function (ACF) shows a significant spike on order of 

two with value of 0.539. This indicates the moving 

average is represented by order of two. In the same 

time, partial autocorrelation function (PACF) shows 

a significant spike on second order with value of 

0.531. This indicates the autoregressive part can be 

represented by order of two. Therefore, the first 

difference of Bitcoin exchange rate can be 

represented by ARIMA (2, 1, 2). 

(d) Therefore, historical data of Bitcoin exchange rate 

can be represented by below equation of ARIMA (2, 

1, 2). 
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(e) The error analysis is calculated between forecasting 

value and actual data. The mean absolute percentage 

error for ex-post forecasting is 5.36%. 

 

(f) This study performed ex-ante forecasting using 

ARIMA (2,1,2) model for November and December 

2017. Forecast value in November 2017 is 5700, and 

December 2017 is 6659 

 

As a conclusion, forecasting approach using 

autoregressive integrated moving average (ARIMA) 

method produce a reliable forecasting model. However, 

high volatility environment creates larger error. 

Therefore, Forecasting in high volatility environment 

need special consideration of error diagnostics.  

The findings of this study are important to predict the 

Bitcoin exchange rate in high volatility environment. This 

information will help investors to predict the future 

exchange rate of Bitcoin and in the same time volatility 

need to be monitor closely. This action will help investors 

to gain better profit and reduce loss in investment 

decision.  

 

VI. FURTHER RESEARCH 

This research can be extending to discover the factors that 

contribute to the volatility of Bitcoin exchange rate. In the 

same time, the correlation of Bitcoin with other currency 

also is another area that can be analyze 
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