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Abstract—This paper presents a finite element algorithm 

for nonlinear dynamic analysis of cracked beams on an 

elastic foundation subjected to moving mass. Quantity 

surveying with parameters of varied cracks, foundation 

and loads shows their influence levels on the nonlinear 

dynamic response of the beams. The findings of the paper 

are the basis for the analysis, evaluation, and diagnosis 

of damages of beam structures on the elastic foundation 

subjected to moving loads, in which the common defects 

of the beams such as cracks are considered in order to 

improve the system’s operational efficiency in a wide 

range of engineering applications. 
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I. INTRODUCTION 

Beams on the foundations are usually modeled to 

calculate the structures of railway works and civil 

engineering. During the use, there are many different 

causes that can cause weakened defects for beams, one of 

which is cracks. The appearance of cracks will reduce 

bearing capacity of the beams, which leads to the risk of 

damage to the building. Salih N Akour [1] analyzed the 

nonlinear dynamics of beams on the elastic foundation 

subjected to evenly distributed moving force by analytical 

methods. Also using analytical methods, Oni and 

Awodola [2], Tiwari and Kuppa [3] analyzed the 

dynamics of Bernoulli - Euler beams on the elastic 

foundation subjected to moving masses. Haitao Yu and 

Yong Yuan [4] have focused on the analytical solution of 

an infinite Euler-Bernoulli beam on a viscoelastic 

foundation subjected to arbitrary dynamic loads. Şeref 

Doğuşcan AKBAŞ [5] investigated the free Vibration and 

Bending of Functionally Graded Beams on Winkler's 

elastic foundation using Navier method. Nguyen Dinh 

Kien, Tran Thi Thom [6] studied the influences of 

dynamic moving forces on the Functionally Graded 

Porous-Nonuniform beams. D. Froio1, R. Moioli1, E. 

Rizzi [7] and D. T. Pham, P. H. Hoang and T. P. Nguyen 

[8] used the nonlinear elastic foundation and New Non-

Uniform Dynamic Foundation applied to analyzed 

response of beam subjected to moving load and the 

results show that the influence of velocity has effects 

significantly on dynamic response of structures. N. T. 

Khiem, P. T. Hang [9] used a spectral method applied to 

analyzed response of a multiple Cracked Beam subjected 

to moving load.   

Using analytical and finite element methods, Murat. R 

and Yasar. P [10], Mihir Kumar Sutar [11], Animesh C. 

and Tanuja S. V [12], Shakti P Jena, Dayal R Parhi, P C 

Jena [13], A.C.Neves, F.M.F. Simoes, A.Pinto da Costa 

[14], Hui Ma et al. [15] analyzed the dynamics of cracked 

beams subjected to moving mass. 

Arash Khassetarash, Reza Hassannejad [16] investigated 

the Energy dissipation caused by fatigue crack in beam-

like cracked structures. Erasmo Viola, Alessandro 

Marzani, Nicholas Fantuzzi [17] used finite element 

method applied to studied effect of cracks on flutter and 

divergence instabilities of cracked beams under 

subtangential forces. 

M Attar et al. [18] analyzed the dynamics of cracked 

beams on the elastic foundation subjected to moving 

harmonic loads by analytic method, on the basis of using 

Timoshenko beam model. 

So far, there are various researches of beams on elastic 

foundation under transfer (mass, force, oscillation 

system). However, for cracked beam on the elastic 

foundation under moving loads(or masses), most methods 

reply on analytical approaches which are really applied to 

simple loading conditions. In this paper, we develop a 

numerical approach based on finite element method for 

analyzing the dynamics of beams on elastic foundation 

under moving masses. We investigate the influence of the 

elastic foundation, load speeds and location cracks in the 

dynamic response of the beams. Note that finding 

analytical solutions of such beam problems under 

arbitrary loading conditions are really challenging and no 

research is sufficiently carried out yet. Such a problem 

will be addressed in this paper. 

 

II. FINITE ELEMENT FORMULATION AND 

THE GOVERNING EQUATIONS 

A damaged beam has an open crack located at the mid-

section of the beam at position x = x0. The beam on an 

elastic foundation described by an elastic spring system to 

one direction perpendicular to the axis of the beam, which 

has the stiffness kt subjected to traversing mass ‘m’ at 

speed ‘v’ as in Fig. 1. The dimensions of the damaged 
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beam are as follows, width = b, thickness = h, length = L, 

crack depth = d. 

v
y

x

m

 
Fig. 1. Cracked beam on the foundation subjected to 

moving mass 

 

For finite element model formulation the following 

assumptions are made: Elastic isotropic materials, cracks 

do not develop, and mass ‘m’ is always in contact the 

surface of the beam. 

The Timoshenko theory describes the displacement field 

components (u,v,w) of an arbitrary point (x,y,z) on the 

beam cross-section can be expressed as 
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where u0, v0 are respectively the x and y components of 

the total displacement vector of the point (x,0,0) on the 

beam neutral axis at time t, and z is the cross-section 

rotation about the z-axis. The subscript “0” represents 

axis x (y = 0, z = 0; x contains the cross section centroids 

of the undeformed beam, that will be often designed as 

middle line or reference line, in bending it coincides with 

neutral line). The x-coordinate is defined along the beam 

length, y-coordinate is along the height and the z-

coordinate is along the width. The strain-displacement 

relations are as 
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where  L is the linear part of the strain and  L is the 

nonlinear part given by: 
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The stresses are related to the strain by Hooke’s law: 
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where E is the Young’s modulus of the material, G is the 

shear modulus and [D] is the material matrix. 

2.1. Equation of motion of beam element with out 

crack 

The equation of motion is derived by the principle of 

virtual work [19], [21]: 

0,V in EδW +δW +δW         (6) 

where VδW is the virtual work of internal forces, inδW is 

the virtual work of inertia forces and EδW is the vertual 

work of external forces due to a virtual displacement. 

They are defined as: 
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In this equation [K1] is a matrix of constant terms, 

[K2({q})] and [K3({q})] are matrices that depend linearly 

on the generalized displacements and [K4({q})] is a 

matrix that depends quadratically on the generalized 

displacements, {qe} is the displacements vector. The 

linear stiffness matrix [K1], nonlinear stiffness matrices 

[K2], [K3] and [K4] have the following form: 
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where [Nu], [Nv] and [Nz] are the row vectors of 

longitudinal, transverse along y and rotational about z 

shape functions, respectively,  eq is the acceleration 

vector,  is the density of the beam, [Me] is the mass 

matrix, the vector of virtual displacement components 

will be represented by {d} and can be written as 

   
T

d u v 0    and {d0} is the vertual displacements 

on the middle line, {F0} is the external forces on the 

middle line, {Fe} is the generalized external forces.  

The mass matrix [M] and vector of generalized external 

forces {F} have following form: 
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Substituting equations (7), (12) and (13) into (6), the 

following nonlinear equation of motion of the beam 

without crack is obtained 
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equation (18) becomes 

          ,e e e e e e e eM q C q K q q F      
      

    (19) 

where 

             1 2 3 4 ,e e e e eK q K K q K q K q          
              

eC 
 

 is the damping matrix of element,  eq is 

velocity vector. 

2.2. Beam element with crack 

Considering the beam element with crack, stiffness matrix 

of the element e
cK 

  
 is identified as [11], [20] 
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where  cK is the stiffness matrix of weak beam element 

due to cracks, and the above matrices can be formulated 

as: 
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with components in equation (21) 
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where J0, Jc , respectively, are the moments of inertia of 

the beam cross section for Oz axis at non-cracked 

positions and at the positions of cracks; lc = 1,5d (d is the 

depth of the crack), le is the length of the element, E is the 

modulus of elasticity,  is the distance from the left end 

of beam element to the crack. 

Considering that the lost mass due to cracks is little 

compared to the overall mass of the element. 
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2.3. Beam element on elastic foundation 

Stiffness matrix of the beam element on elastic 

foundation e
bfK 

 
 is identified by [3]: 

      ,e e e e e
bf fK q K q K      

        
                (22) 

where      e e e e
cK q K q   

      
correlates with the 

cracked beam element, e
fK 

 
 is the stiffness matrix 

related to an elastic foundation. 

2.4. Nodal load vector element beam on elastic 

foundation under moving mass 

According to FEM method, when a moving load is 

involved in the working of the system, due to the position 

change property of the load over time, so at each point of 

time, the moving load acts on one beam element. 

Considering the beam element on elastic foundation 

subjected to the moving mass m, the force P(t) acts on m 

(Fig. 3). 

y
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y(ξ )

Iy Jy

Iθ
Jθ J

I

v
m
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fP

 
Fig. 3. Beam element on elastic foundation under moving 

mass. 

 

The force of the moving mass acting on the beam at the 

coordinate x =  = vt is: 
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where y(x,t) is element deflection, 
2

2

d y

dt
 is the absolute 

acceleration in the y direction. 

After taking the derivative of the deflection function, the 

expression (23) is rewritten as 
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The acting force (24) is described by the distributed force 

p(x,t) as:  

     , , .p x t R x t x vt                    (25) 

In case, beam on elastic foundation: 

       0, , ,p x t R x t x vt k y x      (26) 

where () ×  is denotes the Dirac-Delta function, k0 – 

foundation modulus. 

Therefore, the force vector is: 

     

        

0

00 0

,

, ,

e

e e

l Te

l lT T

F N p x t dx

x N R x t dx k N y x dx 

 

 



 

 (27) 

where,  

   

   

   

0 0

0 0

0 0 z

u

v

N

N N

N


  
   
      
 

     

 
is the matrix of shape 

functions of flexural beam element. 

Substituting     ey x N q into Eq. (24) we get 

             2, 2 ,e e e

x
R x t P t m N q v N q N q v


    

      (28) 

where 
2

2
[N ]= , [N ]= .

N N

x x

 
 

 
 

Substituting equations (28) into (26) and paying attention 

to the nature of the Delta-Dirac function, equation (27) 

may be rewritten as 

         

   ,

e e e e e e
p p

e e e e
p f

F t P t M q C q

K q K q

     
      

    
      

              (29) 

where  

            
0

,el TTeP t N x P t dx N P t                (30) 

        
0

el TTe
PM m x N N dx m N N                    (31) 

        
0

2 2 ,el TTe
PC vm x N N dx vm N N                  

          (32) 

        2 2

0

,
TTe

pK v m x N N dx mv N N                  
el

                            (33) 

   00
.el Te

f
K k N x N x dx                                        (34) 

Substituting equation (29) into equation (19), we get the 

equations of motion governing the nonlinear dynamic 

response of the beam element on elastic foundation 

subjected to moving mass 

     

       ,

e e e e e e
p p

e e e e e
pbf

M M q C C q

K q K q P t

         
       

            

              (35) 

2.5. Governing differential equations for total system 

Assembling all elements matrices and nodal force vectors, 

the governing equations of motions of the cracked beam 

on elastic foundation subjected to moving mass can be 

derived as 

        

      

0 0

,

p p

bf p

M M q C q C q

K q K q P

          

     
   

               (36) 
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where  0

m

e e
p p

e e

M M M M      
          , 

       0 0

m

e
p R R bf p

e

C q C M K q C                    , 

e
bf bf

e

K K   
     , e is the number of normal elements, em 

is the number of elements directly subjected to moving 

mass and R, βR are the Rayleigh damping coefficients. 

This is a nonlinear differential equation system with time 

dependence coefficient that can be solved by using 

Newmark’s direct integration and Newton-Raphson 

iteration method. A ANSYS program called 

CBF_Moving_Mass_2017 was conducted to solve 

equation (36). The code of the calculation program is 

written in the ANSYS 13.0 environment. 

 

III. NUMERICAL ANALYSIS 

Beam’s length L = 8m, rectangular cross section with 

width b = 0.1m, height h = 0.2m; one end is in pinned 

connection, and the other end is in roller connection. 

Beam material with elastic modulus E = 2.1×1011 N/m2, 

Poisson's ratio  = 0.3; density  = 7800 kg/m3 is used. 

There is a V-shaped open crack in the center of the beam, 

and the crack’s depth d = 0.1 m. Foundation stiffness k0 = 

2×104 N/m3. The used load is the material point with the 

mass m = 1000kg, moving along the beam with the 

velocity v = 36 km/h. 

With the established program established, we calculate 

for 02 cases: Beam with crack (basic problem - BP) and 

without crack (comparison problem - CP) to see more 

clearly the impact on the dynamic response of the system 

when the cracks appear. The response results of 

deflection y, acceleration y , cutting force Qy and normal 

stress x at the midpoint of the beam (point A (4,0,0)) are 

shown in Table 2 and Figures 4, 5, 6, 7. Through this 

results, we realize that with cracked beam the whole 

displacement, acceleration of vertical displacements and 

normal stresses are greater than the beam without crack. 

This problem showed the dangers of crack to stiffness, 

stability of cracked beam on elastic foundation under 

moving loads. 

Table 1. Summary of maximum values of calculated 

quantities 

Quantities 
maxy

 
[cm] 

maxy
 

[m/s2] 

max
yQ

 
[N] 

max
x  

[N/m2] 

BP (with 

crack) 
0.373 20.994 109.889 3.316×107 

CP (without 

crack) 
0.191 0.125 119.421 1.079×107 

Differents 
1.95 

times 

167.95 

times 

0.92 

times 
3.07 times 

 
   Fig. 4. Response of deflection y over time at the center 

cross section of the beam 

 

 
Fig. 5. Response of acceleration y  over time at the center 

cross section of the beam 

 

 
Fig. 6. Response of cutting force Qy at the center cross 

section of the beam 

 

 
Fig. 7. Response of normal stress σx at the center cross 

section of the beam 

 

The results show that the effect of cracks on the dynamic 

response of the beam is significant. For cracked beams, 
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vibration of the beams increases after the mass moves 

through the crack. 

3.1. Effect of elastic foundation stiffness 

Studying the changes in maximum values of the 

displacement, internal force and direct stress of the beam 

under the elastic foundation stiffness, through the 

stiffness k0 of the spring ranging from 1×104N/m3 to 

6×104N/m3. The results of changes in maximum values 

of the displacement, internal force and direct stress at the 

center cross section of the beam are shown in Table 3 and 

graphs in Figures 8 and 9. 

Table 3. Summary of maximum values of quantities 

calculated based on k0 

k0 [N/m] 1×104 2×104 4×104 6×104 

maxy  [cm] 0.459 0.373 0.279 0.228 

maxy [m/s2] 
17.96

3 
20.994 21.762 21.480 

max
yQ  [N] 

113.2

20 

109.88

9 

104.52

5 
99.085 

max
x [N/m2] 

(×107) 
3.704 3.316 2.859 2.590 

 
Fig. 8. ymax - k0 relation 

 

Fig. 9. 
max
x - k0 relation 

It is observed that when the foundation stiffness 

increases, the maximum values of displacement and 

flexural moment decrease due to the increase in the 

system’s overall stiffness. The maximum values of 

displacement and flexural moment decrease sharply when 

k0 varies from 1×104N/m3 to 3×104N/m3, then the 

decreasing rate shall be slower. 

3.2. Effect of load speed 

Surveying the problem with a load speed v changes from 

10m/s (36km/h) to 35m/s (126km/h). The results of the 

variations of the maximum values of deflection, 

acceleration, cutting force and stress at the midpoint of 

the beam based on v are shown in Table 4 and graphs in 

Figures 10 and 11. 

Table 4. Summary of maximum values of quantities 

calculated based on v 

v [km/h] 36 90 126 

maxy  [cm] 0.373 0.290 0.282 

maxy [m/s2] 20.994 23.102 27.655 

max
yQ [N] 109.889 90.804 82.960 

max
x [N/m2] 

(×107) 
3.316 2.890 2.797 

 
Fig. 10. ymax - v relation 

 

 

Fig. 11. 
max
x - v relation 

It is clear that when the moving speed of the load 

increases, the maximum values of displacement, internal 

force and stress in the beam decrease, when the moving 

speed of the load varies from 90 m/s to 110 m/s, the direct 

stress does not change much, then decreases sharply. 

3.3. Effect of crack location 

This example studies the changes in maximum values of 

displacement and internal force of the beam according to 

the crack location, giving the cracks located far from the 
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beam’s ends the distances L/4, L/2, 3L/4. Results of 

extreme values of the responses at the calculated points 

are shown in Tab. 5 and graphs in Figures 12, 13, 14, 15. 

When mass moving through the crack, the beam vibrates 

amplitude and frequency, which shows that the 

stabilization of the beam oscillations during this period 

decreased. 

Table 5. Summary of maximum values of quantities 

calculated according to the crack location 

Crack location 

(from left end) 
L/4 L/2 3L/4 

ymax [m] 0.257 0.373 0.279 

maxy [m/s2] 16.347 20.994 19.855 

max
yQ  [N] 75.374 109.889 63.418 

max
x  [N/m2] 

(×107) 
1.453 3.316 1.133 

 

 
Fig. 12. Response of y according to the crack location 

 

 
Fig. 13. Response of y according  to the crack location 

 

 
Fig. 14. Response of Qy according to the crack location 

 
Fig. 15. Response of σx according to the crack location 

 

Crack location changes making the maximum responses 

of displacement, stress and internal force in the beams 

change significantly; when the crack is in the center of the 

beam, the above quantities reach the maximum values, so, 

the beam is most dangerous when there is a crack 

appearing in this position. 

 

IV. CONCLUSION 

A conclusion section must be included and should 

indicate clearly the advantages, limitations, and possible 

applications of the paper.  Although a conclusion may 

review the main points of the paper, do not replicate the 

abstract as the conclusion. A conclusion might elaborate 

on the importance of the work or suggest applications and 

extensions. 

The nonlinear dynamics analysis of cracked beams 

resting on a Winkler foundation subjected to a moving 

mass using the finite element method has been presented. 

A two-node beam element based on Euler-Bernoulli beam 

theory, taking the effect of crack and foundation support, 

was derived and employed in the analysis. The dynamics 

response of the beams, including the time histories for 

deflection, acceleration and normal stress,  was computed 

with the aid of Newmark method. The effect of loading 

parameters, foundation stiffness and crack location on the 

dynamic response of the beams has been examined and 

highlighted. The main conclusions can be summarized as 

follows: 

The beam element and computer code developed in the 

present work are accurate in evaluating the dynamic 

characteristics of cracked beams subjected to moving 

masses. 

The elastic foundation plays an important role in the 

dynamic response of the cracked beams under a moving 

mass. Both the dynamic deflection and normal stress are 

significaly decreased by the increase of the foundation 

stiffness. 

The dynamic response of the cracked beams, as in case of 

the uncracked beams, is governed by the moving mass 

speed. With the moving speeds in the range considered in 

this paper, both the dynamic deflection and normal stress 
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decreased when increasing the moving speed. 

The maximum dynamic deflection and normal stress are 

significantly influenced by the crack location. The 

deflection and normal tress attain the largest values when 

the crack is located at the midpoint of the beam. Thus, 

from an engineering point of view, the midpoint crack is 

the most dangerous one.  

 The results obtained in this paper help to select 

appropriate parameters, the solution for structural 

reinforcement cracked beam on elastic foundation under 

moving load and applications in transportation techniques 

such as the train rails. 
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