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Abstract—This study is a natural extension of k -proper 

coloring of any simple and connected graph G. By an r-

dynamic coloring of a graph G, we mean a proper k -

coloring of graph G such that the neighbors of any vertex v 

receive at least min{r, d(v)} different colors. The r-dynamic 

chromatic number, written as r(G), is the minimum k such 

that graph G has an r-dynamic k-coloring. In this paper we 

will study the r-dynamic chromatic number of the 

coronation of path and several graph. We denote the 

corona product of G and H by 𝐺⨀𝐻. We will obtain the r-

dynamic chromatic number of 𝜒𝑟(𝑃𝑛⨀𝑃𝑚), 𝜒𝑟(𝑃𝑛⨀𝐶𝑚)and 

𝜒𝑟(𝑃𝑛⨀𝑊𝑚) for m, n 3. 

Keyword— r-dynamic chromatic number, path, corona 

product. 

 

I. INTRODUCTION 

An r-dynamic coloring of a graph G is a proper k-

coloring of graph G such that the neighbors of any vertex v 

receive at least min{r, d(v)} different colors. The r-dynamic 

chromatic number, introducedby Montgomery [4] written as 

r(G), is the minimum k  such that graph G has an r-dynamic 

k-coloring. The 1-dynamic chromatic number of a graph G 

is 1(G) = (G), well-known as the ordinary chromatic 

number of G. The 2-dynamic chromatic number is simply 

said to be a dynamic chromatic number, denoted by2(G)= 

d(G),see Montgomery [4]. The r-dynamic chromatic 

number has been studied by several authors, for instance 

in[1], [5], [6], [7], [8], [10], [11].  

The following observations are useful for our study, 

proposed by Jahanbekam[11]. 

Observation 1.[10] Always 𝜒(𝐺) = 𝜒1(𝐺) ≤ ⋯ ≤

 𝜒∆(𝐺)(𝐺). If 𝑟 ≥ ∆(𝐺), then 𝜒𝑟(𝐺) =  𝜒∆(𝐺)(𝐺) 

Observation 2.Let∆(𝐺) be the largest degree of graph G. It 

holds𝜒𝑟(𝐺)  ≥ min{∆(𝐺), 𝑟} + 1. 

Given two simple graphs G and H, the corona product of G 

and H, denoted by 𝐺⨀𝐻, is a connected graph obtained by 

taking a number of vertices |V(G)| copy of H, and making 

the ith of V(G)adjacent to every vertex of the ith copy of 

V(H), Furmanczyk[3]. The following example is 𝑃3⨀𝐶3. 

 

 

 

 

 

 

Fig.1: Graph 𝑃3⨀ 𝐶3 

 

There have been many results already found, The first one 

was showed by Akbari et.al [10].They found that for every 

two natural number m and n, m, n 2, the cartesian product 

of Pmand Pnis 2(PmPn) = 4 and if 3|mn, then2(CmCn) = 

3 and 2(CmCn) = 4. In [2], they then conjectured χ
2
(G) ≤ 

χ(G)+2 when G is regular, which remains open. Akbari 

et.al. [9] alsoproved Montgomery’s conjecture for bipartite 

regular graphs, as well as Lai, et.al. [5] provedthat χ
2
(G) ≤ 

∆(G) + 1 for ∆(G) 4 when no component is the 5-cycle. By 

a greedy coloring algorithm, Jahanbekama [11] proved that 

χr(G) ≤ r∆(G)+ 1, and equality holds for ∆(G) > 2 if and 

only if G is r-regular with diameter 2 and girth 5. They 

improved the bound to χr(G) ≤ ∆(G) + 2r − 2 when δ(G) 

>2r ln n and χr(G)≤ ∆(G) + r when δ(G) >r
2 

ln n. 

 

II. THE RESULTS 

We are ready to show our main theorems. There are 

three theorems found in this study. Those deal with corona 

product of graph Pn with Pm, Cm, and Wm. 

Theorem 1. Let 𝐺 = 𝑃𝑛 ⨀𝑃𝑚  be a corona graph of Pn and 

Pm. For n, m ≥ 2, the r-dynamic chromatic number is: 
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𝜒𝑟(𝐺) = {
3            , 𝑟 = 1, 2

𝑟 + 1     , 3 ≤ 𝑟 ≤ ∆ − 1
𝑚 + 3   , 𝑟 ≥ ∆

 

 

Proof. The graph 𝑃𝑛 ⨀𝑃𝑚  is a connected graph with vertex 

set 𝑉(𝑃𝑛 ⨀𝑃𝑚) = {𝑦𝑖 , 1 ≤ 𝑖 ≤ 𝑛} ∪ { 𝑥𝑖𝑗; 1 ≤ 𝑖 ≤ 𝑛, 1 ≤

𝑗 ≤ 𝑚} and edge set𝐸(𝑃𝑛 ⨀𝑃𝑚) = {𝑦𝑖𝑦(𝑖+1) ;1 ≤ 𝑖 ≤ 𝑛 −

1} ∪ {𝑦𝑖𝑥 𝑖𝑗; 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚} ∪ {𝑥 𝑖𝑗,𝑥 𝑖(𝑗+1);1 ≤ 𝑖 ≤

𝑛, 1 ≤ 𝑗 ≤ 𝑚 − 1}. The order of graph 𝑃𝑛 ⨀𝑃𝑚  is 

|𝑉(𝑃𝑛⨀𝑃𝑚)| = 𝑛(𝑚 + 1) and the size of graph 𝑃𝑛⨀𝑃𝑚  is 

|𝐸(𝑃𝑛⨀𝑃𝑚)| = 2𝑚𝑛 − 1. Thus, ∆(𝑃𝑛 ⨀𝑃𝑚) = 𝑚 + 2.  

By observation 2, 𝜒𝑟(𝑃𝑛⨀𝑃𝑚) ≥

min{𝑟, ∆(𝑃𝑛 ⨀𝑃𝑚 )} + 1 = min{𝑟, 𝑚 + 2} + 1. To find the 

exact value of r-dynamic chromatic number of 𝑃𝑛 ⨀𝑃𝑚 , we 

define two cases, namely for 𝜒𝑟=1,2(𝑃𝑛⨀𝑃𝑚)and 

𝜒𝑟(𝑃𝑛⨀𝑃𝑚). 

Case 1. For  𝜒𝑟=1,2(𝑃𝑛⨀𝑃𝑚 ), define c1 :𝑉(𝑃𝑛⨀𝑃𝑚){1, 2, 

…, k} where n 3, 𝑚 ≥ 3,  by the following: 

𝑐1(𝑦𝑖 ) = {
1 , 𝑖 odd, 1 ≤ 𝑖 ≤ 𝑛
2 , 𝑖 even, 1 ≤ 𝑖 ≤ 𝑛

 

𝑐1(𝑥 𝑖𝑗) = {
1 , 𝑖 even, 𝑗 odd, 1≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚
2 , 𝑖 odd, 𝑗 odd, 1≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚 
3 , 𝑗 even, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚

 

It easy to see that c1 is mapc1: 𝑉(𝑃𝑛 ⨀𝑃𝑚){1, 2, 3}, thus 

it gives 𝜒𝑟=1,2(𝑃𝑛⨀𝑃𝑚 )  = 3. 

Case 2.  

Subcase 2.1 For 𝜒𝑟(𝑃𝑛 ⨀𝑃𝑚 ), 3 ≤ 𝑟 ≤ ∆ − 1, define c2: 

𝑉(𝑃𝑛 ⨀𝑃𝑚){1, 2,…, k} where n  3, m 3, by the 

following: 

𝑐2(𝑦𝑖 ) = {
1 , 𝑖 odd, 1 ≤ 𝑖 ≤ 𝑛
2 , 𝑖 even, 1 ≤ 𝑖 ≤ 𝑛

 

𝑐2(𝑥11 , 𝑥12 , 𝑥13) = 2, 3, 4,  

for 𝑚 = 3, 𝑟 = 3 

𝑐2(𝑥21 ,𝑥22 , 𝑥23) = 1, 3, 4,  

for 𝑚 = 3, 𝑟 = 3 

𝑐2(𝑥11 ,𝑥12 ,𝑥13) = 3, 4, 5, 

for 𝑚 = 3, 𝑟 = 4 

𝑐2(𝑥11,𝑥12,𝑥13 ,𝑥14) = 2, 3,4, 5,  

for 𝑚 = 4, 𝑟 = 4 

𝑐2(𝑥11,𝑥12 ,𝑥13 ,𝑥14) = 3, 4, 5, 6,   

for 𝑚 = 4, 𝑟 = 5 

It easy to see that c2 is a map c2: 𝑉(𝑃𝑛⨀𝑃𝑚){1, 2, …, 

r+1}, thus it gives𝜒𝑟(𝑃𝑛⨀𝑃𝑚) = 𝑟 + 1, 3 ≤ 𝑟 ≤ ∆ − 1 

Subcase 2.2 The last for 𝜒𝑟(𝑃𝑛 ⨀𝑃𝑚), 𝑟 ≥ ∆, define c3: 

𝑉(𝑃𝑛 ⨀𝑃𝑚){1, 2,…, k} where n  3, m 3, by the 

following: 

𝑐3(𝑦𝑖 ) = {
1 , 𝑖 = 3𝑡 + 1, 𝑡 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛
2 , 𝑖 = 3𝑡 + 2, 𝑡 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛
3 , 𝑖 = 3𝑡, 𝑡 ≥ 1, 1 ≤ 𝑖 ≤ 𝑛

 

 

 

 

 

 

 

 

Fig.2: 𝜒6(𝑃3 ⨀𝑃4 ) = 7 with n= 3, m= 4, r= 6 

 

𝑐3(𝑥11 ,𝑥12 ,𝑥13) = 4, 5,6, for 𝑚 = 3, 𝑟 = 5 

𝑐3(𝑥11 ,𝑥12,𝑥13 ,𝑥14) = 3, 4, 5, 6, 

for 𝑚 = 4, 𝑟 = 6 

𝑐3(𝑥21 ,𝑥22, 𝑥23,𝑥24) = 4, 5, 6, 7 

 for 𝑚 = 4, 𝑟 = 6 

𝑐3(𝑥21, 𝑥22 ,𝑥23 ,𝑥24 , 𝑥25) = 4, 5,6, 7,8 

 for 𝑚 = 5, 𝑟 = 7 

It easy to see that c3 is a map c3: 𝑉(𝑃𝑛⨀𝑃𝑚 ){1, 2, …, 

m+3}, so it gives𝜒𝑟(𝑃𝑛⨀𝑃𝑚) = 𝑚 + 3, 𝑟 ≥ ∆.It concludes 

the proof 

 

Theorem 2. Let 𝐺 =  𝑃𝑛 ⨀𝐶𝑚 be a corona graph of Pn and 

Cm. For n 3, m ≥ 3, the r-dynamic chromatic number is: 

𝜒𝑟=1,2(𝐺) = {
  3 , 𝑚 even or 𝑚 = 3𝑘, 𝑘 ≥ 1

4 , 𝑚 odd or 𝑚 = 5                
 

 

𝜒𝑟=3(𝐺) = {
   4 , 𝑚 = 3𝑘, 𝑘 ≥ 1

 6 , 𝑚 = 5
5 , 𝑚 otherwise

 

 

𝜒𝑟(𝐺) = {
  𝑟 + 1 , 4 ≤ 𝑟 ≤ ∆ −1

𝑚 + 3 , 𝑟 ≥ ∆
 

Proof. The graph 𝑃𝑛 ⨀𝐶𝑚 is connected graph with vertex 

set 𝑉(𝑃𝑛 ⨀𝐶𝑚) = { 𝑦𝑖 ; 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑥 𝑖𝑗;1 ≤ 𝑖 ≤ 𝑛, 1 ≤

𝑗 ≤ 𝑚} and edge set 𝐸(𝑃𝑛 ⨀𝐶𝑚) = {𝑦𝑖 𝑦𝑖+1; 1 ≤ 𝑖 ≤ 𝑛 −

1} ∪ {𝑥 𝑖𝑗𝑥𝑖(𝑗+1) ;1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚 − 1} ∪

{𝑥 𝑖1𝑥𝑖𝑚; 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑦𝑖𝑥 𝑖𝑗;1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚}. The 

order of graph 𝑃𝑛⨀𝐶𝑚 is |𝑉(𝑃𝑛⨀𝐶𝑚)| = 𝑛(𝑚 + 1) and 

the size of graph  

 

𝑃𝑛 ⨀𝐶𝑚 is |𝐸(𝑃𝑛 ⨀𝐶𝑚)| = 2𝑚𝑛 + 𝑛 − 1, 

thus∆(𝑃𝑛⨀𝐶𝑚) = 𝑚 + 2. By Observation  2, we have  

𝜒𝑟(𝑃𝑛⨀𝐶𝑚) ≥ min{𝑟, ∆(𝑃𝑛 ⨀𝐶𝑚)} + 1 = min{𝑟, 𝑚 +

2} + 1. To find the exact value of r-dynamic chromatic 

3 4 5 6 

1 

4 5 6 7 

2 

1 4 5 6 

3 
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number of 𝑃𝑛⨀𝐶𝑚, we define three case, namely for 

𝜒𝑟=1,2(𝑃𝑛 ⨀𝐶𝑚), 𝜒𝑟=3(𝑃𝑛⨀𝐶𝑚) and 𝜒𝑟(𝑃𝑛 ⨀𝐶𝑚). 

 

Case 1.  

Subcase 1.1 For  𝜒𝑟=1,2(𝑃𝑛⨀𝐶𝑚), define c4 : 

𝑉(𝑃𝑛 ⨀𝐶𝑚){1, 2, …, k} where n 3, 𝑚 even or 𝑚 =

3𝑘, 𝑘 ≥ 1,  by the following: 

𝑐4(𝑦𝑖 ) = {
1 , 𝑖 odd, 1 ≤ 𝑖 ≤ 𝑛
2 , 𝑖 even, 1 ≤ 𝑖 ≤ 𝑛

 

𝑐4(𝑥 𝑖𝑗) = {

1 , 𝑖 even, 𝑗 odd, 1≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚 − 1
2 , 𝑖 odd, 𝑗 odd, 1≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚           

3 , 𝑗 even, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚
4 , 𝑖 even, 1 ≤ 𝑖 ≤ 𝑛, 𝑗 = 𝑚

 

It easy to see that c4 is a map c4: 𝑉(𝑃𝑛⨀𝐶𝑚){1, 2, 3}, so 

it gives𝜒𝑟=1,2(𝑃𝑛 ⨀𝐶𝑚)  = 3,𝑚 even or 𝑚 = 3𝑘, 𝑘 ≥ 1 

Subcase 1.2 For 𝜒𝑟=1,2(𝑃𝑛 ⨀𝐶𝑚)define c5: 

𝑉(𝑃𝑛 ⨀𝐶𝑚){1, 2, …, k} where n 3, , 𝑚 odd or 𝑚 = 5,, 

by the following: 

𝑐5(𝑦𝑖 ) = {
1 , 𝑖 odd, 1 ≤ 𝑖 ≤ 𝑛
2 , 𝑖 even, 1 ≤ 𝑖 ≤ 𝑛

 

𝑐5(𝑥 𝑖𝑗) = {

1 , 𝑖 even, 𝑗 odd, 1≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚 − 1
2 , 𝑖 odd, 𝑗 odd, 1≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚 − 1   
3 , 𝑗 even, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚 − 1             

4 , 1 ≤ 𝑖 ≤ 𝑛, 𝑗 = 𝑚

 

It easy to see that c5 is a map c5: 𝑉(𝑃𝑛⨀𝐶𝑚){1, 2, 3, 4}, 

so it gives𝜒𝑟=1,2(𝑃𝑛 ⨀𝐶𝑚)  = 4, 𝑚 odd or 𝑚 = 5 

 

 

 

 

 

 

 

 

 

Fig.3:  𝜒2(𝑃3 ⨀𝐶5) = 4 with n = 3, m = 5, r = 2 

 

Case 2.  

Subcase 2.1 For 𝜒𝑟=3(𝑃𝑛⨀𝐶𝑚), define c6: 

𝑉(𝑃𝑛 ⨀𝐶𝑚){1, 2, …, k} where n  3, 𝑚 = 3𝑘 ,𝑘 ≥ 1, by 

the following: 

𝑐6(𝑦𝑖 ) = {
1 , 𝑖 odd, 1 ≤ 𝑖 ≤ 𝑛
2 , 𝑖 even, 1 ≤ 𝑖 ≤ 𝑛

 

𝑐6(𝑥 𝑖𝑗)

= {

1 , 𝑖 even, 𝑗 = 3𝑡 + 1, 𝑡 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛,1 ≤ 𝑗 ≤ 𝑚
2 , 𝑖 odd, 𝑗 = 3𝑡 + 1, 𝑡 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚
3 ,  𝑗 = 3𝑡 + 2, 𝑡 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚

4 ,  𝑗 = 3𝑡, 𝑡 ≥ 1, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚

 

It easy to see that c6 is map c6: 𝑉(𝑃𝑛⨀𝐶𝑚){1, 2, 3, 4}, so 

it gives𝜒𝑟=3(𝑃𝑛 ⨀𝐶𝑚) = 4,𝑚 = 3𝑘, 𝑘 ≥ 1. 

Subcase 2.2 For 𝜒𝑟=3(𝑃𝑛 ⨀𝐶𝑚), define c7: 

𝑉(𝑃𝑛 ⨀𝐶𝑚){1, 2, …, k} where n  3, m = 5, by the 

following: 

𝑐7(𝑦𝑖 ) = {
1 , 𝑖 odd, 1 ≤ 𝑖 ≤ 𝑛  
2 , 𝑖 even, 1 ≤ 𝑖 ≤ 𝑛

 

𝑐7(𝑥11,𝑥12 ,𝑥13 ,𝑥14,𝑥15) = 2, 3, 4, 5, 6 

𝑐7(𝑥21, 𝑥22 ,𝑥23 ,𝑥24 , 𝑥25) = 1, 3,4, 5,6 

It easy to see that c7 is a map c7: 𝑉(𝑃𝑛⨀𝐶𝑚){1, 2, 3, 4, 5, 

6}.Thus it given 𝜒𝑟=3(𝑃𝑛 ⨀𝐶5) = 6 

Subcase 2.3 For 𝜒𝑟=3(𝑃𝑛 ⨀𝐶𝑚), define c8: 

𝑉(𝑃𝑛 ⨀𝐶𝑚){1, 2,…, k} where n  3, m otherwise, by the 

following: 

𝑐8(𝑦𝑖 ) = {
1 , 𝑖 odd, 1 ≤ 𝑖 ≤ 𝑛  
2 , 𝑖 even, 1 ≤ 𝑖 ≤ 𝑛

 

𝑐8(𝑥 𝑖𝑗)

=

{
 
 

 
 
1 , 𝑖 even, 𝑗 = 4𝑡 + 1, 𝑡 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚
2 , 𝑖 odd, 𝑗 = 4𝑡 + 1, 𝑡 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚
3 ,  𝑗 = 4𝑡 + 2, 𝑡 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚
4 ,  𝑗 = 4𝑡 + 3, 𝑡 ≥ 1, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚

5 ,  𝑗 = 4𝑡, 𝑡 ≥ 1, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚

 

It easy to see that c8 is map c8: 𝑉(𝑃𝑛⨀𝐶𝑚){1, 2, 3, 4, 5}, 

so it gives𝜒𝑟=3(𝑃𝑛 ⨀𝐶𝑚) = 5 

Case 3.  

Subcase 3.1  For 𝜒𝑟(𝑃𝑛 ⨀𝐶𝑚),4 ≤ 𝑟 ≤ ∆ − 1, define c9: 

𝑉(𝑃𝑛 ⨀𝐶𝑚){1, 2,…, k} where n  3, m 3, by the 

following: 

𝑐9(𝑦𝑖 ) = {
1 , 𝑖 odd, 1 ≤ 𝑖 ≤ 𝑛  
2 , 𝑖 even, 1 ≤ 𝑖 ≤ 𝑛

 

𝑐9(𝑥11,𝑥12,𝑥13 ,𝑥14 ,𝑥15 ,𝑥16) = 3, 4, 5, 3, 4, 5,  

for 𝑚 = 6, 𝑟 = 4 

𝑐9(𝑥31,𝑥32,𝑥33, 𝑥34 ,𝑥35 ,𝑥36) = 3, 4, 5, 3,4, 5,  

for 𝑚 = 6, 𝑟 = 4 

𝑐9(𝑥11,𝑥12,𝑥13 ,𝑥14 ,𝑥15 ,𝑥16) = 3, 4, 5, 6, 3, 5,  

for 𝑚 = 6, 𝑟 = 5 

𝑐9(𝑥11 ,𝑥12,𝑥14,𝑥15,𝑥16) = 3, 4, 5, 6, 7, 3,  

for 𝑚 = 6, 𝑟 = 6 

𝑐9(𝑥11,𝑥12,𝑥13 ,𝑥14 ,𝑥15 ,𝑥16) = 3, 4, 5, 6, 7, 8,  

for 𝑚 = 6, 𝑟 = 7 

It easy to see that c9 is a map c9: 𝑉(𝑃𝑛⨀𝐶𝑚){1, 2, …, 

r+1}, so it gives𝜒𝑟(𝑃𝑛⨀𝐶𝑚) = 𝑟 + 1, 4 ≤ 𝑟 ≤ ∆ − 1 

Subcase 3.2The last for 𝜒𝑟(𝑃𝑛⨀𝐶𝑚), 𝑟 ≥ ∆, define c10: 

𝑉(𝑃𝑛 ⨀𝐶𝑚){1, 2,…, k} where n  3, m 3, by the 

following: 

𝑐10(𝑦𝑖 ) = {
1 , 𝑖 odd, 1 ≤ 𝑖 ≤ 𝑛  
2 , 𝑖 even, 1 ≤ 𝑖 ≤ 𝑛

 

𝑐10(𝑥11, 𝑥12, 𝑥13,𝑥14 ,𝑥15 ,𝑥16) = 4, 5, 6, 7, 8, 9  

1 

2 4 

3 

2 

3 

2 

1 4 

3 

1 

3 

1 

2 4 

3 

2 

3 
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for 𝑚 = 6, 𝑟 = 8 

𝑐10(𝑥11,𝑥12,𝑥13 ,𝑥14 ,𝑥15 ,𝑥16,𝑥17) = 4, 5, 6, 7, 8, 9, 10  

for 𝑚 = 7, 𝑟 = 9 

𝑐10(𝑥11 ,𝑥12,𝑥13,𝑥14,𝑥15 ,𝑥16 ,𝑥17,𝑥18)

= 4, 5, 6, 7, 8, 9, 10, 11  

for 𝑚 = 8, 𝑟 = 10 

It easy to see that c10 is map c10: 𝑉(𝑃𝑛 ⨀𝐶𝑚){1, 2, …, 

m+3}, so it given 𝜒𝑟(𝑃𝑛⨀𝐶5) = 𝑚 + 3, 𝑟 ≥ ∆.It concludes 

the proof. 

 

Theorem 3. Let 𝐺 =  𝑃𝑛 ⨀𝑊𝑚  be a corona graph of Pn and 

Wm. For n 3, m ≥ 3, the r-dynamic chromatic number is: 

𝜒𝑟=1,2,3(𝐺) = {
4 , 𝑚 even

5 , 𝑚 odd
 

𝜒𝑟=4(𝐺) = {
   5 , 𝑚 = 3𝑘, 𝑘 ≥ 1

 7 , 𝑚 = 5
6 , 𝑚 otherwise

 

𝜒𝑟(𝐺) = {
𝑟 + 1 , 5 ≤ 𝑟 ≤ ∆ − 1

       𝑚 + 4 , 𝑟 ≥ ∆
 

 

Proof. The graph 𝑃𝑛 ⨀𝑊𝑚  is a connected graph with vertex 

set 𝑉(𝑃𝑛 ⨀𝑊𝑚 ) = {𝑦𝑖 ;1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑥 𝑖𝑗; 1 ≤ 𝑖 ≤ 𝑛, 1 ≤

𝑗 ≤ 𝑚} ∪ {𝐴𝑖 ;  1 ≤ 𝑖 ≤ 𝑛} and edge set 𝐸(𝑃𝑛 ⨀𝑊𝑚) =

{𝑦𝑖 𝑦𝑖+1; 1 ≤ 𝑖 ≤ 𝑛− 1} ∪ {𝑥 𝑖𝑗𝑥𝑖(𝑗+1) ;1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤

𝑚 − 1} ∪ {𝑥 𝑖1𝑥𝑖𝑚; 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑦𝑖𝑥 𝑖𝑗;1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤

𝑚} ∪ {𝐴𝑖𝑥 𝑖𝑗; 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚} ∪ {𝐴𝑖𝑦𝑖 ; 1 ≤ 𝑖 ≤ 𝑛} . 

The order of graph 𝑃𝑛⨀𝑊𝑚  is |𝑉(𝑃𝑛 ⨀𝑊𝑚 )| = 𝑚𝑛 + 2𝑛) 

and the size of graph 𝑃𝑛 ⨀𝑊𝑚  is |𝐸(𝑃𝑛 ⨀𝑊𝑚)| = 3𝑚𝑛 +

2𝑛 − 1, thus∆(𝑃𝑛 ⨀𝑊𝑚 ) = 𝑚 + 3.   

By observation 2, we have the following 

𝜒𝑟(𝑃𝑛⨀𝑊𝑚 ) ≥ min{𝑟, ∆(𝑃𝑛 ⨀𝑊𝑚 )} + 1 = min{𝑟, 𝑚 +

3} +1. To find the exact value of r-dynamic chromatic 

number of 𝑃𝑛⨀𝑊𝑚 , we define three case, namely for 

𝜒𝑟=1,2,3(𝑃𝑛⨀𝑊𝑚 ), 𝜒𝑟=4(𝑃𝑛 ⨀𝑊𝑚) and 𝜒𝑟(𝑃𝑛 ⨀𝑊𝑚 ). 

Case 1 

Subcase 1.1 For  𝜒𝑟=1,2,3(𝑃𝑛 ⨀𝑊𝑚), define c11 : 

𝑉(𝑃𝑛 ⨀𝑊𝑚){1, 2, …, k} where n 3, 𝑚 even by the 

following: 

𝑐11(𝑦𝑖 ) = {
1 , 𝑖 odd, 1 ≤ 𝑖 ≤ 𝑛
2 , 𝑖 even, 1 ≤ 𝑖 ≤ 𝑛

 

𝑐11(𝐴𝑖) = {
1 , 𝑖 even, 1 ≤ 𝑖 ≤ 𝑛
2 , 𝑖 odd, 1 ≤ 𝑖 ≤ 𝑛  

 

𝑐11(𝑥 𝑖𝑗) = {
3 , 𝑗 odd, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚  
4 , 𝑗 even, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚

 

It easy to see that c11 is map c11: 𝑉(𝑃𝑛 ⨀𝑊𝑚){1, 2, 3, 4}, 

so it gives𝜒𝑟=1,2,3(𝑃𝑛⨀𝑊𝑚)  = 4,𝑚 even . 

Subcase 1.2 For  𝜒𝑟=1,2,3(𝑃𝑛 ⨀𝑊𝑚), define c12 : 

𝑉(𝑃𝑛 ⨀𝑊𝑚 ){1, 2, …, k} where n 3, 𝑚 odd by the 

following: 

𝑐12(𝑦𝑖 ) = {
1 , 𝑖 odd, 1 ≤ 𝑖 ≤ 𝑛
2 , 𝑖 even, 1 ≤ 𝑖 ≤ 𝑛

 

𝑐12(𝐴𝑖) = {
1 , 𝑖 even, 1 ≤ 𝑖 ≤ 𝑛
2 , 𝑖 odd, 1 ≤ 𝑖 ≤ 𝑛  

 

𝑐12(𝑥 𝑖𝑗) = {
3 , 𝑗 odd, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚 − 1  

4 , 𝑗 even, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚 − 1
5 , 𝑗 = 𝑚 , 1 ≤ 𝑖 ≤ 𝑛

 

It easy to see that c12 is a map c12: 𝑉(𝑃𝑛 ⨀𝑊𝑚 ){1, 2, 3, 4, 

5}, so it gives𝜒𝑟=1,2,3(𝑃𝑛 ⨀𝑊𝑚 )  = 5,𝑚 even. 

Case 2 

Subcase 2.1 For 𝜒𝑟=4(𝑃𝑛 ⨀𝑊𝑚), define c13: 

𝑉(𝑃𝑛 ⨀𝑊𝑚 ){1, 2, …, k} where n  3, 𝑚 = 3𝑘, 𝑘 ≥ 1 by 

the following: 

𝑐13(𝑦𝑖 ) = {
1 , 𝑖 odd, 1 ≤ 𝑖 ≤ 𝑛
2 , 𝑖 even, 1 ≤ 𝑖 ≤ 𝑛

 

𝑐13(𝐴𝑖) = {
1 , 𝑖 even, 1 ≤ 𝑖 ≤ 𝑛
2 , 𝑖 odd, 1 ≤ 𝑖 ≤ 𝑛  

 

𝑐13(𝑥 𝑖𝑗)

= {
3 , 𝑗 = 3𝑡 + 1, 𝑡 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚
4 , 𝑗 = 3𝑡 + 2, 𝑡 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚
5 , 𝑗 = 3𝑡, 𝑡 ≥ 1, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚        

 

 

It easy to see that c13 is a map c13: 𝑉(𝑃𝑛 ⨀𝑊𝑚 ){1, 2, 3, 4, 

5}, so it given 𝜒𝑟=4(𝑃𝑛⨀𝑊𝑚)  = 5,𝑚 = 3𝑘, 𝑘 ≥ 1.  

Subcase 2.2 For 𝜒𝑟=4(𝑃𝑛 ⨀𝑊𝑚), define c14: 

𝑉(𝑃𝑛 ⨀𝑊𝑚 ){1, 2, …, k} where n  3, 𝑚 = 5 by the 

following: 

𝑐14(𝑦𝑖 ) = {
1 , 𝑖 odd, 1 ≤ 𝑖 ≤ 𝑛
2 , 𝑖 even, 1 ≤ 𝑖 ≤ 𝑛

 

𝑐14(𝐴𝑖) = {
1 , 𝑖 even, 1 ≤ 𝑖 ≤ 𝑛
2 , 𝑖 odd, 1 ≤ 𝑖 ≤ 𝑛  

 

𝑐14(𝑥11, 𝑥12 , 𝑥13 , 𝑥14 , 𝑥15) = 3, 4, 5, 6, 7 

It easy to see that c14 is a map c14: 𝑉(𝑃𝑛 ⨀𝑊𝑚 ){1, 2, 3, 4, 

5, 6, 7}, so it gives 𝜒𝑟=4(𝑃𝑛⨀𝑊𝑚 )  = 7,𝑚 = 5.  

Subcase 2.3 For 𝜒𝑟=4(𝑃𝑛 ⨀𝑊𝑚), define c15: 

𝑉(𝑃𝑛 ⨀𝑊𝑚 ){1, 2, …, k} where n  3, 𝑚 otherwise by the 

following: 

𝑐15(𝑦𝑖 ) = {
1 , 𝑖 odd, 1 ≤ 𝑖 ≤ 𝑛
2 , 𝑖 even, 1 ≤ 𝑖 ≤ 𝑛

 

𝑐15(𝐴𝑖) = {
1 , 𝑖 even, 1 ≤ 𝑖 ≤ 𝑛
2 , 𝑖 odd, 1 ≤ 𝑖 ≤ 𝑛  

 

𝑐15(𝑥 𝑖𝑗)

= {

3 , 𝑗 = 3𝑡 + 1, 𝑡 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚 −1
4 , 𝑗 = 3𝑡 + 2, 𝑡 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚 −1
5 , 𝑗 = 3𝑡, 𝑡 ≥ 1, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚 −1         

6 , 𝑗 = 𝑚, 1 ≤ 𝑖 ≤ 𝑛
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Fig.4:.𝜒4(𝑃3 ⨀𝑊4 ) = 6withn= 3,         m= 4, r= 6 

It easy to see that c15 is map c15: 𝑉(𝑃𝑛 ⨀𝑊𝑚){1, 2, 3, 4, 

5, 6}, so it gives𝜒𝑟=4(𝑃𝑛 ⨀𝑊𝑚)  = 6, 𝑚 otherwise.  

Case 3.  

Subcase 3.1 For 𝜒𝑟(𝑃𝑛 ⨀𝑊𝑚 ) 5 ≤ 𝑟 ≤ ∆ − 1, define c16 

:𝑉(𝑃𝑛 ⨀𝑊𝑚 ){1, 2, …, k} where n  3, 𝑚 ≥ 3 by the 

following: 

𝑐16(𝑦𝑖 ) = {
1 , 𝑖 odd, 1 ≤ 𝑖 ≤ 𝑛
2 , 𝑖 even, 1 ≤ 𝑖 ≤ 𝑛

 

𝑐16(𝐴𝑖) = {
1 , 𝑖 even, 1 ≤ 𝑖 ≤ 𝑛
2 , 𝑖 odd, 1 ≤ 𝑖 ≤ 𝑛  

 

𝑐16(𝑥11,𝑥12,𝑥13,𝑥14 ,𝑥15 ,𝑥16 ,𝑥17) = 3, 4,5, 3, 4,5, 6, 

for 𝑚 = 7, 𝑟 = 5 

𝑐16(𝑥11,𝑥12,𝑥13𝑥14 ,𝑥15 ,𝑥16,𝑥17) = 3, 4, 5, 6, 7, 4, 5, 

for 𝑚 = 7, 𝑟 = 6 

𝑐16(𝑥11,𝑥12,𝑥13,𝑥14 ,𝑥15 ,𝑥16 ,𝑥17) = 3, 4,5, 6, 7,8, 5, 

for 𝑚 = 7, 𝑟 = 7 

𝑐16(𝑥11,𝑥12,𝑥13,𝑥14 ,𝑥15 ,𝑥16,𝑥17) = 3, 4, 5, 6, 7, 8, 9,  

for 𝑚 = 7, 𝑟 = 8 

It easy to see that c16 is a map c16: 𝑉(𝑃𝑛 ⨀𝑊𝑚){1, 2, …, 

r+1}, so it gives𝜒𝑟(𝑃𝑛⨀𝑊𝑚 )  = 𝑟 + 1, 5 ≤ 𝑟 ≤ ∆− 1 . 

Subcase 3.2 For 𝜒𝑟(𝑃𝑛 ⨀𝑊𝑚 ), 𝑟 ≥ ∆, define c17 

:𝑉(𝑃𝑛 ⨀𝑊𝑚 ){1, 2,…, k} where n  3, 𝑚 ≥ 3 by the 

following: 

𝑐17(𝑦𝑖 ) = {
1 , 𝑖 = 3𝑡 + 1, 𝑡 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛
2 , 𝑖 = 3𝑡 + 2, 𝑡 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛
3 , 𝑖 = 3𝑡, 𝑡 ≥ 1, 1 ≤ 𝑖 ≤ 𝑛

 

𝑐17(𝐴𝑖 ) = {

1 , 𝑖 = 4𝑡 + 3, 𝑡 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛 
2 , 𝑖 = 4𝑡, 𝑡 ≥ 1, 1 ≤ 𝑖 ≤ 𝑛

3 , 𝑖 = 4𝑡 + 1, 𝑡 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛
4 , 𝑖 = 4𝑡 + 2, 𝑡 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛 

 

𝑐17(𝑥11,𝑥12 ,𝑥13 ,𝑥14 ,𝑥15,𝑥16) = 4, 5, 6, 7, 8, 9,  

for 𝑚 = 6, 𝑟 = 9 

𝑐17(𝑥21 ,𝑥22 , 𝑥23 ,𝑥24,𝑥25,𝑥26) = 5, 6, 7, 8, 9, 10, 

for 𝑚 = 6, 𝑟 = 9 

𝑐17(𝑥11 ,𝑥12,𝑥13,𝑥14,𝑥15) = 4, 5, 6, 7, 8,   

for 𝑚 = 5, 𝑟 = 8 

𝑐17(𝑥21 ,𝑥22, 𝑥23,𝑥24,𝑥25) = 5, 6, 7, 8, 9,  

for 𝑚 = 5, 𝑟 = 8 

𝑐17(𝑥11,𝑥12,𝑥13 ,𝑥14) = 4, 5, 6, 7,   

for 𝑚 = 4, 𝑟 = 7 

𝑐17(𝑥21,𝑥22,𝑥23 , 𝑥24) = 5, 6, 7, 8,  

for 𝑚 = 4, 𝑟 = 7 

It easy to see that c17 is map c17: 𝑉(𝑃𝑛 ⨀𝑊𝑚 ){1, 2, …, 

m+4}, so it gives𝜒𝑟(𝑃𝑛⨀𝑊𝑚)  = 𝑚 + 4, 𝑟 ≥ ∆ . 

It concludes the proof. 

 

III. CONCLUSION 

We have found some r-dynamic chromatic number of 

corona product of graphs, namely𝜒𝑟(𝑃𝑛⨀𝑃𝑚) =

𝜒𝑟(𝑃𝑛⨀𝐶𝑚) = 𝜒𝑟(𝑃𝑛⨀𝑊𝑚) = 𝑟 + 1, for 4 ≤ 𝑟 ≤ ∆ − 1. 

and𝜒𝑟(𝑃𝑛 ⨀𝑃𝑚 ) = 𝜒𝑟(𝑃𝑛⨀𝐶𝑚) = 𝑚 + 3,  for 𝑟 ≥ ∆. All 

numbers attaina best lower bound. For the characterization 

of  the lower bound of 𝜒𝑟(𝐺 ⨀𝐻) for any connected graphs 

G and H,  we have not found any result yet, thus we propose 

the following open problem. 

 

Open Problem 1. Given that any connected graphs G and 

H. Determine the sharp lower bound of  𝜒𝑟(𝐺 ⨀𝐻). 
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