On *r***-Dynamic Chromatic Number of the Corronation of Path and Several Graphs**

Arika Indah Kristiana^{1,2}, Dafik^{1,2}, M. Imam Utoyo⁴, Ika Hesti Agustin^{1,3}

¹CGANT University of Jember Indonesia
 ²Mathematics Edu. Depart. University of Jember, Indonesia
 ³Mathematics Depart. University of Jember, Indonesia
 ⁴Mathematics Depart. University of Airlangga, Surabaya, Indonesia

Abstract—This study is a natural extension of k-proper coloring of any simple and connected graph G. By an rdynamic coloring of a graph G, we mean a proper kcoloring of graph G such that the neighbors of any vertex v receive at least min{r, d(v)} different colors. The r-dynamic chromatic number, written as $\chi_r(G)$, is the minimum k such that graph G has an r-dynamic k-coloring. In this paper we will study the r-dynamic chromatic number of the coronation of path and several graph. We denote the corona product of G and H by $G \odot H$. We will obtain the rdynamic chromatic number of $\chi_r(P_n \odot P_m), \chi_r(P_n \odot C_m)$ and $\chi_r(P_n \odot W_m)$ for m, $n \ge 3$.

Keyword— r-dynamic chromatic number, path, corona product.

I. INTRODUCTION

An *r*-dynamic coloring of a graph *G* is a proper *k*coloring of graph *G* such that the neighbors of any vertex *v* receive at least min{*r*, *d*(*v*)} different colors. The *r*-dynamic chromatic number, introducedby Montgomery [4] written as $\chi_r(G)$, is the minimum *k* such that graph *G* has an *r*-dynamic *k*-coloring. The *1*-dynamic chromatic number of a graph *G* is $\chi_1(G) = \chi(G)$, well-known as the ordinary chromatic number of *G*. The 2-dynamic chromatic number is simply said to be a dynamic chromatic number, denoted by $\chi_2(G)$ = $\chi_d(G)$,see Montgomery [4]. The *r*-dynamic chromatic number has been studied by several authors, for instance in[1], [5], [6], [7], [8], [10], [11].

The following observations are useful for our study, proposed by Jahanbekam[11].

Observation 1.[10] Always $\chi(G) = \chi_1(G) \le \dots \le \chi_{\Delta(G)}(G)$. If $r \ge \Delta(G)$, then $\chi_r(G) = \chi_{\Delta(G)}(G)$

Observation 2.Let $\Delta(G)$ be the largest degree of graph G. It holds $\chi_r(G) \ge \min{\{\Delta(G), r\}} + 1$.

Given two simple graphs G and H, the corona product of G and H, denoted by $G \odot H$, is a connected graph obtained by taking a number of vertices |V(G)| copy of H, and making the *i*th of V(G)adjacent to every vertex of the *i*th copy of V(H), Furmanczyk[3]. The following example is $P_3 \odot C_3$.

There have been many results already found, The first one was showed by Akbari et.al [10]. They found that for every two natural number *m* and *n*, *m*, $n \ge 2$, the cartesian product of P_m and P_n is $\chi_2(P_m \Box P_n) = 4$ and if 3|mn, then $\chi_2(C_m \Box C_n) = 3$ and $\chi_2(C_m \Box C_n) = 4$. In [2], they then conjectured $\chi_2(G) \le \chi(G)+2$ when *G* is regular, which remains open. Akbari et.al. [9] alsoproved Montgomery's conjecture for bipartite regular graphs, as well as Lai, et.al. [5] proved that $\chi_2(G) \le \Delta(G) + 1$ for $\Delta(G) \ge 4$ when no component is the 5-cycle. By a greedy coloring algorithm, Jahanbekama [11] proved that $\chi_r(G) \le r\Delta(G)+1$, and equality holds for $\Delta(G) > 2$ if and only if *G* is *r*-regular with diameter 2 and girth 5. They improved the bound to $\chi_r(G) \le \Delta(G) + 2r - 2$ when $\delta(G)$

 $>2r \ln n \text{ and } \chi_r(G) \le \Delta(G) + r \text{ when } \delta(G) > r^2 \ln n.$

II. THE RESULTS

We are ready to show our main theorems. There are three theorems found in this study. Those deal with corona product of graph P_n with P_m , C_m , and W_m .

Theorem 1. Let $G = P_n \odot P_m$ be a corona graph of P_n and P_m . For $n, m \ge 2$, the r-dynamic chromatic number is:

International Journal of Advanced Engineering Research and Science (IJAERS) https://dx.doi.org/10.22161/ijaers.4.4.13

$$\chi_r(G) = \begin{cases} 3 & , r = 1, 2 \\ r+1 & , 3 \le r \le \Delta - 1 \\ m+3 & , r \ge \Delta \end{cases}$$

Proof. The graph $P_n \odot P_m$ is a connected graph with vertex set $V(P_n \odot P_m) = \{y_i, 1 \le i \le n\} \cup \{x_{ij}; 1 \le i \le n, 1 \le j \le m\}$ and edge set $E(P_n \odot P_m) = \{y_i y_{(i+1)}; 1 \le i \le n - 1\} \cup \{y_i x_{ij}; 1 \le i \le n, 1 \le j \le m\} \cup \{x_{ij}, x_{i(j+1)}; 1 \le i \le n, 1 \le j \le m - 1\}$. The order of graph $P_n \odot P_m$ is $|V(P_n \odot P_m)| = n(m+1)$ and the size of graph $P_n \odot P_m$ is $|E(P_n \odot P_m)| = 2mn - 1$. Thus, $\Delta(P_n \odot P_m) = m + 2$.

By observation 2, $\chi_r(P_n \odot P_m) \ge \min\{r, \Delta(P_n \odot P_m)\} + 1 = \min\{r, m + 2\} + 1$. To find the exact value of *r*-dynamic chromatic number of $P_n \odot P_m$, we define two cases, namely for $\chi_{r=1,2}(P_n \odot P_m)$ and $\chi_r(P_n \odot P_m)$.

Case 1. For $\chi_{r=1,2}(P_n \odot P_m)$, define $c_1 : V(P_n \odot P_m) \rightarrow \{1, 2, ..., k\}$ where $n \ge 3$, $m \ge 3$, by the following:

$$c_{1}(y_{i}) = \begin{cases} 1 & , i \text{ odd}, 1 \le i \le n \\ 2 & , i \text{ even}, 1 \le i \le n \end{cases}$$

$$c_{1}(x_{ij}) = \begin{cases} 1 & , i \text{ even}, j \text{ odd}, 1 \le i \le n, 1 \le j \le m \\ 2 & , i \text{ odd}, j \text{ odd}, 1 \le i \le n, 1 \le j \le m \\ 3 & , i \text{ even}, 1 \le i \le n, 1 \le i \le m \end{cases}$$

It easy to see that c_1 is map $c_1: V(P_n \odot P_m) \rightarrow \{1, 2, 3\}$, thus it gives $\chi_{r=1,2}(P_n \odot P_m) = 3$.

Case 2.

Subcase 2.1 For $\chi_r(P_n \odot P_m)$, $3 \le r \le \Delta - 1$, define c_2 : $V(P_n \odot P_m) \rightarrow \{1, 2, ..., k\}$ where $n \ge 3$, $m \ge 3$, by the following:

$$c_{2}(y_{i}) = \begin{cases} 1 & , i \text{ odd, } 1 \leq i \leq n \\ 2 & , i \text{ even, } 1 \leq i \leq n \end{cases}$$

$$c_{2}(x_{11}, x_{12}, x_{13}) = 2, 3, 4,$$
for $m = 3, r = 3$

$$c_{2}(x_{21}, x_{22}, x_{23}) = 1, 3, 4,$$
for $m = 3, r = 3$

$$c_{2}(x_{11}, x_{12}, x_{13}) = 3, 4, 5,$$
for $m = 3, r = 4$

$$c_{2}(x_{11}, x_{12}, x_{13}, x_{14}) = 2, 3, 4, 5,$$
for $m = 4, r = 4$

$$c_{2}(x_{11}, x_{12}, x_{13}, x_{14}) = 3, 4, 5, 6,$$
for $m = 4, r = 5$

It easy to see that c_2 is a map $c_2: V(P_n \odot P_m) \rightarrow \{1, 2, ..., r+1\}$, thus it gives $\chi_r(P_n \odot P_m) = r + 1, 3 \le r \le \Delta - 1$ **Subcase 2.2** The last for $\chi_r(P_n \odot P_m), r \ge \Delta$, define c_3 :

 $V(P_n \odot P_m) \rightarrow \{1, 2, ..., k\}$ where $n \ge 3$, $m \ge 3$, by the following:

$$c_{3}(y_{i}) = \begin{cases} 1 & , \quad i = 3t + 1, t \ge 0, 1 \le i \le n \\ 2 & , \quad i = 3t + 2, t \ge 0, 1 \le i \le n \\ 3 & , \quad i = 3t, t \ge 1, 1 \le i \le n \end{cases}$$

Fig.2: $\chi_6(P_3 \odot P_4) = 7$ with n = 3, m = 4, r = 6

$$c_{3}(x_{11}, x_{12}, x_{13}) = 4, 5, 6, \text{ for } m = 3, r = 5$$

$$c_{3}(x_{11}, x_{12}, x_{13}, x_{14}) = 3, 4, 5, 6,$$

for $m = 4, r = 6$

$$c_{3}(x_{21}, x_{22}, x_{23}, x_{24}) = 4, 5, 6, 7$$

for $m = 4, r = 6$

$$c_{3}(x_{21}, x_{22}, x_{23}, x_{24}, x_{25}) = 4, 5, 6, 7, 8$$

for $m = 5, r = 7$

It easy to see that c_3 is a map $c_3: V(P_n \odot P_m) \rightarrow \{1, 2, ..., m+3\}$, so it gives $\chi_r(P_n \odot P_m) = m + 3, r \ge \Delta$. It concludes the proof

Theorem 2. Let $G = P_n \odot C_m$ be a corona graph of P_n and C_m . For $n \ge 3$, $m \ge 3$, the *r*-dynamic chromatic number is:

$$\chi_{r=1,2}(G) = \begin{cases} 3 & , m \text{ even or } m = 3k, k \ge 1 \\ 4 & , m \text{ odd or } m = 5 \end{cases}$$
$$\chi_{r=3}(G) = \begin{cases} 4 & , m = 3k, k \ge 1 \\ 6 & , m = 5 \\ 5 & , m \text{ otherwise} \end{cases}$$
$$\chi_r(G) = \begin{cases} r+1 & , 4 \le r \le \Delta - 1 \\ m+3 & r \ge \Delta \end{cases}$$

Proof. The graph $P_n \odot C_m$ is connected graph with vertex set $V(P_n \odot C_m) = \{y_i; 1 \le i \le n\} \cup \{x_{ij}; 1 \le i \le n, 1 \le j \le m\}$ and edge set $E(P_n \odot C_m) = \{y_i y_{i+1}; 1 \le i \le n - 1\} \cup \{x_{ij}x_{i(j+1)}; 1 \le i \le n, 1 \le j \le m - 1\} \cup \{x_{i1}x_{im}; 1 \le i \le n\} \cup \{y_i x_{ij}; 1 \le i \le n, 1 \le j \le m\}$. The order of graph $P_n \odot C_m$ is $|V(P_n \odot C_m)| = n(m + 1)$ and the size of graph

$$\begin{split} P_n \odot C_m & \text{is} \quad |E(P_n \odot C_m)| = 2mn + n - 1, \\ \text{thus} \Delta(P_n \odot C_m) &= m + 2. \text{ By Observation 2, we have} \\ \chi_r(P_n \odot C_m) &\geq \min\{r, \Delta(P_n \odot C_m)\} + 1 = \min\{r, m + 2\} + 1. \text{ To find the exact value of r-dynamic chromatic} \end{split}$$

number of $P_n \odot C_m$, we define three case, namely for $\chi_{r=1,2}(P_n \odot C_m), \chi_{r=3}(P_n \odot C_m)$ and $\chi_r(P_n \odot C_m)$.

Case 1.

Subcase 1.1 For $\chi_{r=1,2}(P_n \odot C_m)$, define c_4 : $V(P_n \odot C_m) \rightarrow \{1, 2, ..., k\}$ where $n \ge 3$, *m* even or $m = 3k, k \ge 1$, by the following:

$$c_4(y_i) = \begin{cases} 1 &, i \text{ odd, } 1 \le i \le n \\ 2 &, i \text{ even, } 1 \le i \le n \end{cases}$$

$$c_4(x_{ij}) = \begin{cases} 1 &, i \text{ even, } j \text{ odd, } 1 \le i \le n, 1 \le j \le m - 1 \\ 2 &, i \text{ odd, } j \text{ odd, } 1 \le i \le n, 1 \le j \le m \\ 3 &, j \text{ even, } 1 \le i \le n, 1 \le j \le m \\ 4 &, i \text{ even, } 1 \le i \le n, j = m \end{cases}$$

It easy to see that c_4 is a map $c_4: V(P_n \odot C_m) \rightarrow \{1, 2, 3\}$, so it gives $\chi_{r=1,2}(P_n \odot C_m) = 3, m$ even or $m = 3k, k \ge 1$ **Subcase** 1.2 For $\chi_{r=1,2}(P_n \odot C_m)$ define c_5 :

Success 1.2 For $\chi_{r=1,2}$ of $\alpha_n \otimes c_m$ define 2.5. $V(P_n \odot C_m) \rightarrow \{1, 2, ..., k\}$ where $n \ge 3$, m odd or m = 5, by the following:

$$c_{5}(y_{i}) = \begin{cases} 1 &, i \text{ odd, } 1 \leq i \leq n \\ 2 &, i \text{ even, } 1 \leq i \leq n \end{cases}$$

$$c_{5}(x_{ij}) = \begin{cases} 1 &, i \text{ even, } j \text{ odd, } 1 \leq i \leq n, 1 \leq j \leq m - 1 \\ 2 &, i \text{ odd, } j \text{ odd, } 1 \leq i \leq n, 1 \leq j \leq m - 1 \\ 3 &, j \text{ even, } 1 \leq i \leq n, 1 \leq j \leq m - 1 \\ 4 &, 1 \leq i \leq n, j = m \end{cases}$$

It easy to see that c_5 is a map $c_5: V(P_n \odot C_m) \rightarrow \{1, 2, 3, 4\}$, so it gives $\chi_{r=1,2}(P_n \odot C_m) = 4, m \text{ odd or } m = 5$

Fig.3: $\chi_2(P_3 \odot C_5) = 4$ with n = 3, m = 5, r = 2

Case 2.

Subcase 2.1 For $\chi_{r=3}(P_n \odot C_m)$, define c_6 : $V(P_n \odot C_m) \rightarrow \{1, 2, ..., k\}$ where $n \ge 3$, $m = 3k, k \ge 1$, by the following:

$$\begin{split} c_6(y_i) &= \begin{cases} 1 &, & i \text{ odd}, 1 \leq i \leq n \\ 2 &, & i \text{ even}, 1 \leq i \leq n \end{cases} \\ c_6(x_{ij}) \\ &= \begin{cases} 1 &, & i \text{ even}, j = 3t + 1, t \geq 0, 1 \leq i \leq n, 1 \leq j \leq m \\ 2 &, & i \text{ odd}, j = 3t + 1, t \geq 0, 1 \leq i \leq n, 1 \leq j \leq m \\ 3 &, & j = 3t + 2, t \geq 0, 1 \leq i \leq n, 1 \leq j \leq m \\ 4 &, & j = 3t, t \geq 1, 1 \leq i \leq n, 1 \leq j \leq m \end{cases} \end{split}$$

It easy to see that c_6 is map $c_6: V(P_n \odot C_m) \rightarrow \{1, 2, 3, 4\}$, so it gives $\chi_{r=3}(P_n \odot C_m) = 4, m = 3k, k \ge 1$.

Subcase 2.2 For $\chi_{r=3}(P_n \odot C_m)$, define c_7 : $V(P_n \odot C_m) \rightarrow \{1, 2, ..., k\}$ where $n \ge 3$, m = 5, by the following:

$$c_{7}(y_{i}) = \begin{cases} 1 & , i \text{ odd, } 1 \leq i \leq n \\ 2 & , i \text{ even, } 1 \leq i \leq n \end{cases}$$
$$c_{7}(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}) = 2, 3, 4, 5, 6$$
$$c_{7}(x_{21}, x_{22}, x_{23}, x_{24}, x_{25}) = 1, 3, 4, 5, 6$$

It easy to see that c_7 is a map $c_7: V(P_n \odot C_m) \rightarrow \{1, 2, 3, 4, 5, 6\}$. Thus it given $\chi_{r=3}(P_n \odot C_5) = 6$

Subcase 2.3 For $\chi_{r=3}(P_n \odot C_m)$, define c_8 : $V(P_n \odot C_m) \rightarrow \{1, 2, ..., k\}$ where $n \ge 3$, *m* otherwise, by the following:

$$c_8(y_i) = \begin{cases} 1 & , & i \text{ odd}, 1 \le i \le n \\ 2 & , & i \text{ even}, 1 \le i \le n \end{cases}$$

 $c_8(x_{ij})$

$$= \begin{cases} 1 & , i \text{ even}, j = 4t + 1, t \ge 0, 1 \le i \le n, 1 \le j \le m \\ 2 & , i \text{ odd}, j = 4t + 1, t \ge 0, 1 \le i \le n, 1 \le j \le m \\ 3 & , j = 4t + 2, t \ge 0, 1 \le i \le n, 1 \le j \le m \\ 4 & , j = 4t + 3, t \ge 1, 1 \le i \le n, 1 \le j \le m \\ 5 & , j = 4t, t \ge 1, 1 \le i \le n, 1 \le j \le m \end{cases}$$

It easy to see that c_8 is map $c_8: V(P_n \odot C_m) \rightarrow \{1, 2, 3, 4, 5\}$, so it gives $\chi_{r=3}(P_n \odot C_m) = 5$

Case 3.

Subcase 3.1 For $\chi_r(P_n \odot C_m)$, $4 \le r \le \Delta - 1$, define c_9 : $V(P_n \odot C_m) \rightarrow \{1, 2, ..., k\}$ where $n \ge 3$, $m \ge 3$, by the following:

$$c_{9}(y_{i}) = \begin{cases} 1 &, i \text{ odd, } 1 \leq i \leq n \\ 2 &, i \text{ even, } 1 \leq i \leq n \end{cases}$$

$$c_{9}(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}) = 3, 4, 5, 3, 4, 5, \text{ for } m = 6, r = 4$$

$$c_{9}(x_{31}, x_{32}, x_{33}, x_{34}, x_{35}, x_{36}) = 3, 4, 5, 3, 4, 5, \text{ for } m = 6, r = 4$$

$$c_{9}(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}) = 3, 4, 5, 6, 3, 5, \text{ for } m = 6, r = 5$$

$$c_{9}(x_{11}, x_{12}, x_{14}, x_{15}, x_{16}) = 3, 4, 5, 6, 7, 3, \text{ for } m = 6, r = 6$$

$$c_{9}(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}) = 3, 4, 5, 6, 7, 8, \text{ for } m = 6, r = 7$$

It easy to see that c_9 is a map c_9 : $V(P_n \odot C_m) \rightarrow \{1, 2, ..., r+1\}$, so it gives $\chi_r(P_n \odot C_m) = r + 1, 4 \le r \le \Delta - 1$

Subcase 3.2The last for $\chi_r(P_n \odot C_m), r \ge \Delta$, define c_{10} : $V(P_n \odot C_m) \rightarrow \{1, 2, ..., k\}$ where $n \ge 3$, $m \ge 3$, by the following:

$$c_{10}(y_i) = \begin{cases} 1 & , i \text{ odd}, 1 \le i \le n \\ 2 & , i \text{ even}, 1 \le i \le n \end{cases}$$
$$c_{10}(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}) = 4, 5, 6, 7, 8, 9$$

International Journal of Advanced Engineering Research and Science (IJAERS) https://dx.doi.org/10.22161/ijaers.4.4.13

 $\chi_{r=1,2,3}(P_n \odot W_m)$, define c_{12} :

for
$$m = 6, r = 8$$

 $c_{10}(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}) = 4, 5, 6, 7, 8, 9, 10$
for $m = 7, r = 9$
 $c_{10}(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{18})$
 $= 4, 5, 6, 7, 8, 9, 10, 11$
for $m = 8, r = 10$

It easy to see that c_{10} is map $c_{10}: V(P_n \odot C_m) \rightarrow \{1, 2, \dots, n\}$ *m*+3}, so it given $\chi_r(P_n \odot C_5) = m + 3, r \ge \Delta$. It concludes the proof.

Theorem 3. Let $G = P_n \odot W_m$ be a corona graph of P_n and W_m . For $n \ge 3$, $m \ge 3$, the r-dynamic chromatic number is:

$$\chi_{r=1,2,3}(G) = \begin{cases} 4 & , m \text{ even} \\ 5 & , m \text{ odd} \end{cases}$$
$$\chi_{r=4}(G) = \begin{cases} 5 & , m = 3k, k \ge 1 \\ 7 & , m = 5 \\ 6 & , m \text{ otherwise} \end{cases}$$
$$\chi_r(G) = \begin{cases} r+1 & , 5 \le r \le \Delta - 1 \\ m+4 & , r \ge \Delta \end{cases}$$

Proof. The graph $P_n \odot W_m$ is a connected graph with vertex set $V(P_n \odot W_m) = \{y_i; 1 \le i \le n\} \cup \{x_{ij}; 1 \le i \le n, 1 \le n\}$ $j \leq m$ \cup { A_i ; $1 \leq i \leq n$ } and edge set $E(P_n \odot W_m) =$ $\{y_i, y_{i+1}; 1 \le i \le n-1\} \cup \{x_{ii}, x_{i(i+1)}; 1 \le i \le n, 1 \le j \le n\}$ m-1 \cup { $x_{i1}x_{im}$; $1 \le i \le n$ } \cup { y_ix_{ii} ; $1 \le i \le n, 1 \le j \le$ $m \} \cup \{A_i x_{ii}; 1 \le i \le n, 1 \le j \le m\} \cup \{A_i y_i; 1 \le i \le n\}.$ The order of graph $P_n \odot W_m$ is $|V(P_n \odot W_m)| = mn + 2n$) and the size of graph $P_n \odot W_m$ is $|E(P_n \odot W_m)| = 3mn +$ 2n-1, thus $\Delta(P_n \odot W_m) = m+3$. By observation 2, we have the following

 $\chi_r(P_n \odot W_m) \ge \min\{r, \Delta(P_n \odot W_m)\} + 1 = \min\{r, m + 1\}$ 3 + 1. To find the exact value of r-dynamic chromatic number of $P_n \odot W_m$, we define three case, namely for $\chi_{r=1,2,3}(P_n \odot W_m)$, $\chi_{r=4}(P_n \odot W_m)$ and $\chi_r(P_n \odot W_m)$. Case 1

Subcase 1.1 For $\chi_{r=1,2,3}(P_n \odot W_m)$, define c_{11} : $V(P_n \odot W_m) \rightarrow \{1, 2, ..., k\}$ where $n \ge 3$, m even by the following:

$$c_{11}(y_i) = \begin{cases} 1 & , i \text{ odd, } 1 \le i \le n \\ 2 & , i \text{ even, } 1 \le i \le n \end{cases}$$

$$c_{11}(A_i) = \begin{cases} 1 & , i \text{ even, } 1 \le i \le n \\ 2 & , i \text{ odd, } 1 \le i \le n \end{cases}$$

$$c_{11}(x_{ij}) = \begin{cases} 3 & , j \text{ odd, } 1 \le i \le n, 1 \le j \le m \\ 4 & , i \text{ even, } 1 \le i \le n, 1 \le j \le m \end{cases}$$

, j even, i It easy to see that c_{11} is map $c_{11}: V(P_n \odot W_m) \rightarrow \{1, 2, 3, 4\}$, so it gives $\chi_{r=1,2,3}(P_n \odot W_m) = 4, m \text{ even}$.

 $V(P_n \odot W_m) \rightarrow \{1, 2, ..., k\}$ where $n \ge 3$, m odd by the following: $c_{-}(v_{i}) = \begin{cases} 1 & , i \text{ odd}, 1 \le i \le n \end{cases}$

Subcase 1.2 For

$$c_{12}(y_i) = \begin{cases} 2 &, i \text{ even, } 1 \le i \le n \\ c_{12}(A_i) = \begin{cases} 1 &, i \text{ even, } 1 \le i \le n \\ 2 &, i \text{ odd, } 1 \le i \le n \end{cases}$$
$$c_{12}(x_{ij}) = \begin{cases} 3 &, j \text{ odd, } 1 \le i \le n, 1 \le j \le m - 1 \\ 4 &, j \text{ even, } 1 \le i \le n, 1 \le j \le m - 1 \\ 5 &, j = m, 1 \le i \le n \end{cases}$$

It easy to see that c_{12} is a map $c_{12}: V(P_n \odot W_m) \rightarrow \{1, 2, 3, 4, \dots\}$ 5}, so it gives $\chi_{r=1,2,3}(P_n \odot W_m) = 5, m \text{ even.}$

Case 2

=

2.1 For $\chi_{r=4}(P_n \odot W_m)$, define Subcase C13: $V(P_n \odot W_m) \rightarrow \{1, 2, ..., k\}$ where $n \ge 3, m = 3k, k \ge 1$ by the following:

$$\begin{aligned} c_{13}(y_i) &= \begin{cases} 1 &, & i \text{ odd, } 1 \leq i \leq n \\ 2 &, & i \text{ even, } 1 \leq i \leq n \\ c_{13}(A_i) &= \begin{cases} 1 &, & i \text{ even, } 1 \leq i \leq n \\ 2 &, & i \text{ odd, } 1 \leq i \leq n \end{cases} \\ c_{13}(x_{ij}) \\ &= \begin{cases} 3 &, & j = 3t + 1, t \geq 0, 1 \leq i \leq n, 1 \leq j \leq m \\ 4 &, & j = 3t + 2, t \geq 0, 1 \leq i \leq n, 1 \leq j \leq m \\ 5 &, & j = 3t, t \geq 1, 1 \leq i \leq n, 1 \leq j \leq m \end{cases} \end{aligned}$$

It easy to see that c_{13} is a map $c_{13}: V(P_n \odot W_m) \rightarrow \{1, 2, 3, 4, \dots\}$ 5}, so it given $\chi_{r=4}(P_n \odot W_m) = 5, m = 3k, k \ge 1$.

2.2 For $\chi_{r=4}(P_n \odot W_m)$, define Subcase C14: $V(P_n \odot W_m) \rightarrow \{1, 2, ..., k\}$ where $n \ge 3$, m = 5 by the following:

$$c_{14}(y_i) = \begin{cases} 1 & , i \text{ odd, } 1 \le i \le n \\ 2 & , i \text{ even, } 1 \le i \le n \end{cases}$$
$$c_{14}(A_i) = \begin{cases} 1 & , i \text{ even, } 1 \le i \le n \\ 2 & , i \text{ odd, } 1 \le i \le n \end{cases}$$
$$c_{14}(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}) = 3, 4, 5, 6, 7 \end{cases}$$

It easy to see that c_{14} is a map $c_{14}: V(P_n \odot W_m) \rightarrow \{1, 2, 3, 4, \dots\}$ 5, 6, 7}, so it gives $\chi_{r=4}(P_n \odot W_m) = 7, m = 5$.

Subcase **2.3** For $\chi_{r=4}(P_n \odot W_m)$, define C15: $V(P_n \odot W_m) \rightarrow \{1, 2, ..., k\}$ where $n \ge 3$, m otherwise by the following:

$$\begin{aligned} c_{15}(y_i) &= \begin{cases} 1 & , & i \text{ odd}, 1 \leq i \leq n \\ 2 & , & i \text{ even}, 1 \leq i \leq n \\ c_{15}(A_i) &= \begin{cases} 1 & , & i \text{ even}, 1 \leq i \leq n \\ 2 & , & i \text{ odd}, 1 \leq i \leq n \end{cases} \\ c_{15}(x_{ij}) \\ &= \begin{cases} 3 & , & j = 3t + 1, t \geq 0, 1 \leq i \leq n, 1 \leq j \leq m - 1 \\ 4 & , & j = 3t + 2, t \geq 0, 1 \leq i \leq n, 1 \leq j \leq m - 1 \\ 5 & , & j = 3t, t \geq 1, 1 \leq i \leq n, 1 \leq j \leq m - 1 \\ 6 & , & j = m, 1 \leq i \leq n \end{cases} \end{aligned}$$

 $Fig.4: \chi_4(P_3 \odot W_4) = 6 with n = 3, \qquad m = 4, r = 6$ It easy to see that c_{15} is map $c_{15}: V(P_n \odot W_m) \rightarrow \{1, 2, 3, 4, 5, 6\}$, so it gives $\chi_{r=4}(P_n \odot W_m) = 6, m$ otherwise.

Case 3.

Subcase 3.1 For $\chi_r(P_n \odot W_m) \le r \le \Delta - 1$, define c_{16} : $V(P_n \odot W_m) \rightarrow \{1, 2, ..., k\}$ where $n \ge 3$, $m \ge 3$ by the following:

$$\begin{aligned} c_{16}(y_i) &= \begin{cases} 1 &, i \text{ odd, } 1 \leq i \leq n \\ 2 &, i \text{ even, } 1 \leq i \leq n \\ c_{16}(A_i) &= \begin{cases} 1 &, i \text{ even, } 1 \leq i \leq n \\ 2 &, i \text{ odd, } 1 \leq i \leq n \end{cases} \\ c_{16}(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}) &= 3, 4, 5, 3, 4, 5, 6, \\ \text{ for } m = 7, r = 5 \\ c_{16}(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}) &= 3, 4, 5, 6, 7, 4, 5, \\ \text{ for } m = 7, r = 6 \\ c_{16}(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}) &= 3, 4, 5, 6, 7, 8, 5, \\ \text{ for } m = 7, r = 7 \\ c_{16}(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}) &= 3, 4, 5, 6, 7, 8, 9, \\ \text{ for } m = 7, r = 8 \end{aligned}$$

It easy to see that c_{16} is a map c_{16} : $V(P_n \odot W_m) \rightarrow \{1, 2, ..., r+1\}$, so it gives $\chi_r(P_n \odot W_m) = r+1, 5 \le r \le \Delta - 1$.

Subcase 3.2 For $\chi_r(P_n \odot W_m), r \ge \Delta$, define c_{17} : $V(P_n \odot W_m) \rightarrow \{1, 2, ..., k\}$ where $n \ge 3$, $m \ge 3$ by the following:

$$c_{17}(y_i) = \begin{cases} 1 &, i = 3t + 1, t \ge 0, 1 \le i \le n \\ 2 &, i = 3t + 2, t \ge 0, 1 \le i \le n \\ 3 &, i = 3t, t \ge 1, 1 \le i \le n \end{cases}$$

$$c_{17}(A_i) = \begin{cases} 1 &, i = 4t + 3, t \ge 0, 1 \le i \le n \\ 2 &, i = 4t, t \ge 1, 1 \le i \le n \\ 3 &, i = 4t + 1, t \ge 0, 1 \le i \le n \\ 4 &, i = 4t + 2, t \ge 0, 1 \le i \le n \end{cases}$$

$$c_{17}(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}) = 4, 5, 6, 7, 8, 9,$$
for $m = 6, r = 9$

$$c_{17}(x_{21}, x_{22}, x_{23}, x_{24}, x_{25}, x_{26}) = 5, 6, 7, 8, 9, 10,$$
for $m = 5, r = 8$

$$c_{17}(x_{21}, x_{22}, x_{23}, x_{24}, x_{25}) = 5, 6, 7, 8, 9,$$
for $m = 5, r = 8$

$$c_{17}(x_{11}, x_{12}, x_{13}, x_{14}) = 4, 5, 6, 7, 8, 9,$$
for $m = 4, r = 7$

$$c_{17}(x_{21}, x_{22}, x_{23}, x_{24}, x_{25}) = 5, 6, 7, 8,$$
for $m = 4, r = 7$

It easy to see that c_{17} is map c_{17} : $V(P_n \odot W_m) \rightarrow \{1, 2, ..., m+4\}$, so it gives $\chi_r(P_n \odot W_m) = m + 4, r \ge \Delta$. It concludes the proof.

III. CONCLUSION

We have found some *r*-dynamic chromatic number of corona product of graphs, namely $\chi_r(P_n \odot P_m) = \chi_r(P_n \odot C_m) = \chi_r(P_n \odot W_m) = r + 1$, for $4 \le r \le \Delta - 1$. and $\chi_r(P_n \odot P_m) = \chi_r(P_n \odot C_m) = m + 3$, for $r \ge \Delta$. All numbers attaina best lower bound. For the characterization of the lower bound of $\chi_r(G \odot H)$ for any connected graphs *G* and *H*, we have not found any result yet, thus we propose the following open problem.

Open Problem 1. Given that any connected graphs G and H. Determine the sharp lower bound of $\chi_r(G \odot H)$.

ACKNOWLEDGEMENT

We gratefully acknowledge to the support from CGANT – University of Jember of year 2017.

REFERENCES

- Ali Taherkhani. On r-Dynamic Chromatic Number of Graphs. Discrete Applied Mathematics 201 (2016) 222 – 227
- [2] B. Montgomery, Dynamic Coloring of Graphs (Ph.D Dissertation), West Virginia University, 2001
- [3] Hanna Furmanczyk, Marek Kubale. Equitable Coloring of Corona Products of Cubic Graphs is Harder Than Ordinary Coloring. Ars Mathematica Contemporanea 10 (2016) 333 – 347
- [4] H.J. Lai, B. Montgomery. Dynamic Coloring of Graph. Department of Mathematics, West Virginia University, Mongantown WV 26506-6310. 2002
- [5] H.J. Lai, B. Montgomery, H. Poon. Upper Bounds of Dynamic Chromatic Number. ArsCombinatoria. 68 (2003) 193 – 201
- [6] M. Alishahi, On the dynamic coloring of graphs, Discrete Appl. Math. 159 (2011) 152–156.
- [7] M. Alishahi, Dynamic chromatic number of regular graphs, Discrete Appl. Math. 160 (2012) 2098–2103.
- [8] Ross Kang, Tobias Muller, Douglas B. West. On r-Dynamic Coloring of Grids. Discrete Applied Mathematics 186 (2015) 286 – 290
- [9] S. Akbari, M. Ghanbari, S. Jahanbekam. On The Dynamic Chromatic Number of Graphs, Combinatorics and Graph, in: Contemporary

Mathematics – American Mathematical Society513 (2010) 11 – 18

- [10] S. Akbari, M. Ghanbari, S. Jahanbekam. On The Dynamic Coloring of Cartesian Product Graphs, ArsCombinatoria 114 (2014) 161 – 167
- [11] SogolJahanbekam, Jaehoon Kim, Suil O, Douglas B.
 West. On *r*-Dynamic Coloring of Graph. Discrete Applied Mathematics 206 (2016) 65 – 72