On r-Dynamic Chromatic Number of the Corronation of Path and Several Graphs

Arika Indah Kristiana ${ }^{1,2}$, Dafik ${ }^{1,2}$, M. Imam Utoyo ${ }^{4}$, Ika Hesti Agustin ${ }^{1,3}$
${ }^{1}$ CGANT University of Jember Indonesia
${ }^{2}$ Mathematics Edu. Depart. University of Jember, Indonesia
${ }^{3}$ Mathematics Depart. University of Jember, Indonesia
${ }^{4}$ Mathematics Depart. University of Airlangga, Surabaya, Indonesia

Abstract

This study is a natural extension of k-proper coloring of any simple and connected graph G. By an r dynamic coloring of a graph G, we mean a proper k coloring of graph G such that the neighbors of any vertex v receive at least $\min \{r, d(v)\}$ different colors. The r-dynamic chromatic number, written as $\chi_{r}(G)$, is the minimum k such that graph G has an r-dynamic k-coloring. In this paper we will study the r-dynamic chromatic number of the coronation of path and several graph. We denote the corona product of G and H by $G \odot H$. We will obtain the r dynamic chromatic number of $\chi_{r}\left(P_{n} \odot P_{m}\right), \chi_{r}\left(P_{n} \odot C_{m}\right)$ and $\chi_{r}\left(P_{n} \odot W_{m}\right)$ for $m, n \geq 3$.

Keyword- r-dynamic chromatic number, path, corona product.

I. INTRODUCTION

An r-dynamic coloring of a graph G is a proper k coloring of graph G such that the neighbors of any vertex v receive at least $\min \{r, d(v)\}$ different colors. The r-dynamic chromatic number, introducedby Montgomery [4] written as $\chi_{r}(G)$, is the minimum k such that graph G has an r-dynamic k-coloring. The 1 -dynamic chromatic number of a graph G is $\chi_{1}(G)=\chi(G)$, well-known as the ordinary chromatic number of G. The 2-dynamic chromatic number is simply said to be a dynamic chromatic number, denoted by $\chi_{2}(G)=$ $\chi_{d}(G)$,see Montgomery [4]. The r-dynamic chromatic number has been studied by several authors, for instance in[1], [5], [6], [7], [8], [10], [11].
The following observations are useful for our study, proposed by Jahanbekam[11].
Observation 1.[10] Always $\chi(G)=\chi_{1}(G) \leq \cdots \leq$ $\chi_{\Delta(G)}(G)$. If $r \geq \Delta(G)$, then $\chi_{r}(G)=\chi_{\Delta(G)}(G)$
Observation 2.Let $\Delta(G)$ be the largest degree of graph G. It holds $\chi_{r}(G) \geq \min \{\Delta(G), r\}+1$.

Given two simple graphs G and H, the corona product of G and H, denoted by $G \odot H$, is a connected graph obtained by taking a number of vertices $|V(G)|$ copy of H, and making the $i^{\text {th }}$ of $V(G)$ adjacent to every vertex of the $i^{\text {th }}$ copy of $V(H)$, Furmanczyk[3]. The following example is $P_{3} \odot C_{3}$.

Fig.1: Graph $P_{3} \odot C_{3}$

There have been many results already found, The first one was showed by Akbari et.al [10].They found that for every two natural number m and $n, m, n \geq 2$, the cartesian product of P_{m} and P_{n} is $\chi_{2}\left(P_{m} \square P_{n}\right)=4$ and if $3 \mid m n$, then $\chi_{2}\left(C_{m} \square C_{n}\right)=$ 3 and $\chi_{2}\left(C_{m} \square C_{n}\right)=4$. In [2], they then conjectured $\chi_{2}(\mathrm{G}) \leq$ $\chi(G)+2$ when G is regular, which remains open. Akbari et.al. [9] alsoproved Montgomery's conjecture for bipartite regular graphs, as well as Lai, et.al. [5] provedthat $\chi_{2}(\mathrm{G}) \leq$ $\Delta(G)+1$ for $\Delta(G) \geq 4$ when no component is the 5 -cycle. By a greedy coloring algorithm, Jahanbekama [11] proved that $\chi_{r}(\mathrm{G}) \leq r \Delta(\mathrm{G})+1$, and equality holds for $\Delta(G)>2$ if and only if G is r-regular with diameter 2 and girth 5 . They improved the bound to $\chi_{r}(\mathrm{G}) \leq \Delta(\mathrm{G})+2 r-2$ when $\delta(G)$ $>2 r \ln n$ and $\chi_{r}(G) \leq \Delta(G)+r$ when $\delta(\mathrm{G})>r^{2} \ln n$.

II. THE RESULTS

We are ready to show our main theorems. There are three theorems found in this study. Those deal with corona product of graph P_{n} with P_{m}, C_{m}, and W_{m}.
Theorem 1. Let $G=P_{n} \odot P_{m}$ be a corona graph of P_{n} and P_{m}. For $n, m \geq 2$, the r-dynamic chromatic number is:

$$
\chi_{r}(G)=\left\{\begin{array}{cc}
3 & , \quad r=1,2 \\
r+1, & 3 \leq r \leq \Delta-1 \\
m+3 & , r \geq \Delta
\end{array}\right.
$$

Proof. The graph $P_{n} \odot P_{m}$ is a connected graph with vertex $\operatorname{set} V\left(P_{n} \odot P_{m}\right)=\left\{y_{i}, 1 \leq i \leq n\right\} \cup\left\{x_{i j} ; 1 \leq i \leq n, 1 \leq\right.$ $j \leq m\}$ and edge $\operatorname{set} E\left(P_{n} \odot P_{m}\right)=\left\{y_{i} y_{(i+1)} ; 1 \leq i \leq n-\right.$ 1\} $\cup\left\{y_{i} x_{i j} ; 1 \leq i \leq n, 1 \leq j \leq m\right\} \cup\left\{x_{i j}, x_{i(j+1)} ; 1 \leq i \leq\right.$ $n, 1 \leq j \leq m-1\}$. The order of graph $P_{n} \odot P_{m}$ is $\left|V\left(P_{n} \odot P_{m}\right)\right|=n(m+1)$ and the size of graph $P_{n} \odot P_{m}$ is $\left|E\left(P_{n} \odot P_{m}\right)\right|=2 m n-1$. Thus, $\Delta\left(P_{n} \odot P_{m}\right)=m+2$.

$$
\text { By observation } \quad 2, \quad \chi_{r}\left(P_{n} \odot P_{m}\right) \geq
$$

$\min \left\{r, \Delta\left(P_{n} \odot P_{m}\right)\right\}+1=\min \{r, m+2\}+1$. To find the exact value of r-dynamic chromatic number of $P_{n} \odot P_{m}$, we define two cases, namely for $\chi_{r=1,2}\left(P_{n} \odot P_{m}\right)$ and $\chi_{r}\left(P_{n} \odot P_{m}\right)$.
Case 1. For $\chi_{r=1,2}\left(P_{n} \odot P_{m}\right)$, define $c_{1}: V\left(P_{n} \odot P_{m}\right) \rightarrow\{1,2$, $\ldots, k\}$ where $n \geq 3, m \geq 3$, by the following:

$$
\begin{gathered}
c_{1}\left(y_{i}\right)= \begin{cases}1 \quad, \quad i \text { odd, } 1 \leq i \leq n \\
2 \quad, \quad i \text { even, } 1 \leq i \leq n\end{cases} \\
c_{1}\left(x_{i j}\right)=\left\{\begin{aligned}
1 \quad, & i \text { even, } j \text { odd, } 1 \leq i \leq n, 1 \leq j \leq m \\
2 \quad, & i \text { odd, } j \text { odd, } 1 \leq i \leq n, 1 \leq j \leq m \\
3 & , j \text { even, } 1 \leq i \leq n, 1 \leq j \leq m
\end{aligned}\right.
\end{gathered}
$$

It easy to see that c_{1} is map $c_{1}: V\left(P_{n} \odot P_{m}\right) \rightarrow\{1,2,3\}$, thus it gives $\chi_{r=1,2}\left(P_{n} \odot P_{m}\right)=3$.
Case 2.
Subcase 2.1 For $\chi_{r}\left(P_{n} \odot P_{m}\right), 3 \leq r \leq \Delta-1$, define c_{2} : $V\left(P_{n} \odot P_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m \geq 3$, by the following:

$$
\left.\begin{array}{c}
c_{2}\left(y_{i}\right)=\left\{\begin{array}{cc}
1, & i \text { odd, } 1 \leq i \leq n \\
2, & i \text { even, } 1 \leq i \leq n
\end{array}\right. \\
c_{2}\left(x_{11}, x_{12}, x_{13}\right)=2,3,4, \\
\text { for } m=3, r=3
\end{array}\right\} \begin{gathered}
c_{2}\left(x_{21}, x_{22}, x_{23}\right)=1,3,4, \\
\text { for } m=3, r=3 \\
c_{2}\left(x_{11}, x_{12}, x_{13}\right)=3,4,5, \\
\text { for } m=3, r=4 \\
c_{2}\left(x_{11}, x_{12}, x_{13}, x_{14}\right)=2,3,4,5, \\
\text { for } m=4, r=4 \\
c_{2}\left(x_{11}, x_{12}, x_{13}, x_{14}\right)=3,4,5,6, \\
\text { for } m=4, r=5
\end{gathered}
$$

It easy to see that c_{2} is a map $c_{2}: V\left(P_{n} \odot P_{m}\right) \rightarrow\{1,2, \ldots$, $r+1\}$, thus it gives $\chi_{r}\left(P_{n} \odot P_{m}\right)=r+1,3 \leq r \leq \Delta-1$
Subcase 2.2 The last for $\chi_{r}\left(P_{n} \odot P_{m}\right), r \geq \Delta$, define c_{3} : $V\left(P_{n} \odot P_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m \geq 3$, by the following:

$$
c_{3}\left(y_{i}\right)=\left\{\begin{array}{cc}
1, & i=3 t+1, t \geq 0,1 \leq i \leq n \\
2, & i=3 t+2, t \geq 0,1 \leq i \leq n \\
3, & i=3 t, t \geq 1,1 \leq i \leq n
\end{array}\right.
$$

Fig.2: $\chi_{6}\left(P_{3} \odot P_{4}\right)=7$ with $n=3, m=4, r=6$

$$
\begin{gathered}
c_{3}\left(x_{11}, x_{12}, x_{13}\right)=4,5,6, \text { for } m=3, r=5 \\
c_{3}\left(x_{11}, x_{12}, x_{13}, x_{14}\right)=3,4,5,6 \\
\text { for } m=4, r=6 \\
c_{3}\left(x_{21}, x_{22}, x_{23}, x_{24}\right)=4,5,6,7 \\
\text { for } m=4, r=6 \\
c_{3}\left(x_{21}, x_{22}, x_{23}, x_{24}, x_{25}\right)=4,5,6,7,8 \\
\text { for } m=5, r=7
\end{gathered}
$$

It easy to see that c_{3} is a map $c_{3}: V\left(P_{n} \odot P_{m}\right) \rightarrow\{1,2, \ldots$, $m+3\}$, so it gives $\chi_{r}\left(P_{n} \odot P_{m}\right)=m+3, r \geq \Delta$.It concludes the proof

Theorem 2. Let $G=P_{n} \odot C_{m}$ be a corona graph of P_{n} and C_{m}. For $n \geq 3, m \geq 3$, the r-dynamic chromatic number is:

$$
\begin{gathered}
\chi_{r=1,2}(G)= \begin{cases}3, & m \text { even or } m=3 k, k \geq 1 \\
4, & m \text { odd or } m=5\end{cases} \\
\chi_{r=3}(G)=\left\{\begin{array}{cc}
4, & m=3 k, k \geq 1 \\
5, & m \text { otherwise }
\end{array}\right. \\
\chi_{r}(G)=\left\{\begin{array}{cc}
r+1, & 4 \leq r \leq \Delta-1 \\
m+3, & r \geq \Delta
\end{array}\right.
\end{gathered}
$$

Proof. The graph $P_{n} \odot C_{m}$ is connected graph with vertex set $V\left(P_{n} \odot C_{m}\right)=\left\{y_{i} ; 1 \leq i \leq n\right\} \cup\left\{x_{i j} ; 1 \leq i \leq n, 1 \leq\right.$ $j \leq m\}$ and edge set $E\left(P_{n} \odot C_{m}\right)=\left\{y_{i} y_{i+1} ; 1 \leq i \leq n-\right.$ 1\} $\cup\left\{x_{i j} x_{i(j+1)} ; 1 \leq i \leq n, 1 \leq j \leq m-1\right\} \cup$ $\left\{x_{i 1} x_{i m} ; 1 \leq i \leq n\right\} \cup\left\{y_{i} x_{i j} ; 1 \leq i \leq n, 1 \leq j \leq m\right\}$. The order of graph $P_{n} \odot C_{m}$ is $\left|V\left(P_{n} \odot C_{m}\right)\right|=n(m+1)$ and the size of graph

$$
P_{n} \odot C_{m} \quad \text { is } \quad\left|E\left(P_{n} \odot C_{m}\right)\right|=2 m n+n-1,
$$ thus $\Delta\left(P_{n} \odot C_{m}\right)=m+2$. By Observation 2, we have $\chi_{r}\left(P_{n} \odot C_{m}\right) \geq \min \left\{r, \Delta\left(P_{n} \odot C_{m}\right)\right\}+1=\min \{r, m+$ $2\}+1$. To find the exact value of r-dynamic chromatic

number of $P_{n} \odot C_{m}$, we define three case, namely for $\chi_{r=1,2}\left(P_{n} \odot C_{m}\right), \chi_{r=3}\left(P_{n} \odot C_{m}\right)$ and $\chi_{r}\left(P_{n} \odot C_{m}\right)$.

Case 1.
Subcase 1.1 For $\chi_{r=1,2}\left(P_{n} \odot C_{m}\right)$, define $c_{4} \quad$: $V\left(P_{n} \odot C_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m$ even or $m=$ $3 k, k \geq 1$, by the following:

$$
\begin{gathered}
c_{4}\left(y_{i}\right)= \begin{cases}1, & i \text { odd, } 1 \leq i \leq n \\
2, & i \text { even, } 1 \leq i \leq n\end{cases} \\
c_{4}\left(x_{i j}\right)=\left\{\begin{array}{c}
1, \quad i \text { even, } j \text { odd, } 1 \leq i \leq n, 1 \leq j \leq m-1 \\
2 \quad, \quad i \text { odd, } j \text { odd, } 1 \leq i \leq n, 1 \leq j \leq m \\
3, \quad j \text { even, } 1 \leq i \leq n, 1 \leq j \leq m
\end{array}\right. \\
4, \quad i \text { even, } 1 \leq i \leq n, j=m
\end{gathered}
$$

It easy to see that c_{4} is a map $c_{4}: V\left(P_{n} \odot C_{m}\right) \rightarrow\{1,2,3\}$, so it gives $\chi_{r=1,2}\left(P_{n} \odot C_{m}\right)=3, m$ even or $m=3 k, k \geq 1$
Subcase 1.2 For $\quad \chi_{r=1,2}\left(P_{n} \odot C_{m}\right)$ define c_{5} : $V\left(P_{n} \odot C_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, \quad m$ odd or $m=5$, by the following:

$$
\begin{gathered}
c_{5}\left(y_{i}\right)= \begin{cases}1, & i \text { odd, } 1 \leq i \leq n \\
2, & i \text { even, } 1 \leq i \leq n\end{cases} \\
c_{5}\left(x_{i j}\right)= \begin{cases}1, & i \text { even, } j \text { odd, } 1 \leq i \leq n, 1 \leq j \leq m-1 \\
2, & i \text { odd, } j \text { odd, } 1 \leq i \leq n, 1 \leq j \leq m-1 \\
3, & j \text { even, } 1 \leq i \leq n, 1 \leq j \leq m-1 \\
4, & 1 \leq i \leq n, j=m\end{cases}
\end{gathered}
$$

It easy to see that c_{5} is a map $c_{5}: V\left(P_{n} \odot C_{m}\right) \rightarrow\{1,2,3,4\}$, so it gives $\chi_{r=1,2}\left(P_{n} \odot C_{m}\right)=4, m$ odd or $m=5$

Fig.3: $\chi_{2}\left(P_{3} \odot C_{5}\right)=4$ with $n=3, m=5, r=2$

Case 2.
Subcase 2.1 For $\chi_{r=3}\left(P_{n} \odot C_{m}\right)$, define c_{6} : $V\left(P_{n} \odot C_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m=3 k, k \geq 1$, by the following:

$$
c_{6}\left(y_{i}\right)= \begin{cases}1, & i \text { odd, } 1 \leq i \leq n \\ 2, & i \text { even, } 1 \leq i \leq n\end{cases}
$$

$c_{6}\left(x_{i j}\right)$
$=\left\{\begin{array}{cc}1 & , \quad i \text { even, } j=3 t+1, t \geq 0,1 \leq i \leq n, 1 \leq j \leq m \\ 2 & , \quad i \text { odd, } j=3 t+1, t \geq 0,1 \leq i \leq n, 1 \leq j \leq m \\ 3 & , j=3 t+2, t \geq 0,1 \leq i \leq n, 1 \leq j \leq m \\ 4 & , j=3 t, t \geq 1,1 \leq i \leq n, 1 \leq j \leq m\end{array}\right.$

It easy to see that c_{6} is map $c_{6}: V\left(P_{n} \odot C_{m}\right) \rightarrow\{1,2,3,4\}$, so it gives $\chi_{r=3}\left(P_{n} \odot C_{m}\right)=4, m=3 k, k \geq 1$.
Subcase $\quad 2.2 \quad$ For $\quad \chi_{r=3}\left(P_{n} \odot C_{m}\right)$, define $\quad c_{7}$: $V\left(P_{n} \odot C_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m=5$, by the following:

$$
\left.\begin{array}{c}
c_{7}\left(y_{i}\right)=\left\{\begin{array}{l}
1, \quad i \text { odd, } 1 \leq i \leq n \\
2,
\end{array} \quad i \text { even, } 1 \leq i \leq n\right.
\end{array}\right\} \begin{gathered}
c_{7}\left(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}\right)=2,3,4,5,6 \\
c_{7}\left(x_{21}, x_{22}, x_{23}, x_{24}, x_{25}\right)=1,3,4,5,6
\end{gathered}
$$

It easy to see that c_{7} is a map $c_{7}: V\left(P_{n} \odot C_{m}\right) \rightarrow\{1,2,3,4,5$, 6\}.Thus it given $\chi_{r=3}\left(P_{n} \odot C_{5}\right)=6$
Subcase $\quad 2.3 \quad$ For $\quad \chi_{r=3}\left(P_{n} \odot C_{m}\right)$, define $\quad c_{8}$: $V\left(P_{n} \odot C_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m$ otherwise, by the following:

$$
\begin{gathered}
c_{8}\left(y_{i}\right)= \begin{cases}1 & , \quad i \text { odd, } 1 \leq i \leq n \\
2 & , \\
i \text { even, } 1 \leq i \leq n\end{cases} \\
c_{8}\left(x_{i j}\right) \\
=\left\{\begin{array}{c}
1 \quad, \quad i \text { even, } j=4 t+1, t \geq 0,1 \leq i \leq n, 1 \leq j \leq m \\
2 \\
3 \quad, \quad j \text { odd, } j=4 t+1, t \geq 0,1 \leq i \leq n, 1 \leq j \leq m \\
4 \quad, \quad j=4 t+3, t \geq 0,1 \leq i \leq n, 1 \leq j \leq m
\end{array}\right. \\
5 \quad, \quad j=4 t, t \geq 1,1 \leq i \leq n, 1 \leq j \leq m
\end{gathered}
$$

It easy to see that c_{8} is map $c_{8}: V\left(P_{n} \odot C_{m}\right) \rightarrow\{1,2,3,4,5\}$, so it gives $\chi_{r=3}\left(P_{n} \odot C_{m}\right)=5$

Case 3.

Subcase 3.1 For $\chi_{r}\left(P_{n} \odot C_{m}\right), 4 \leq r \leq \Delta-1$, define c_{9} : $V\left(P_{n} \odot C_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m \geq 3$, by the following:

$$
\begin{aligned}
& c_{9}\left(y_{i}\right)= \begin{cases}1 & , \quad i \text { odd, } 1 \leq i \leq n \\
2 & , \quad i \text { even, } 1 \leq i \leq n\end{cases} \\
& c_{9}\left(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}\right)=3,4,5,3,4,5 \text {, } \\
& \text { for } m=6, r=4 \\
& c_{9}\left(x_{31}, x_{32}, x_{33}, x_{34}, x_{35}, x_{36}\right)=3,4,5,3,4,5 \text {, } \\
& \text { for } m=6, r=4 \\
& c_{9}\left(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}\right)=3,4,5,6,3,5 \text {, } \\
& \text { for } m=6, r=5 \\
& c_{9}\left(x_{11}, x_{12}, x_{14}, x_{15}, x_{16}\right)=3,4,5,6,7,3 \text {, } \\
& \text { for } m=6, r=6 \\
& c_{9}\left(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}\right)=3,4,5,6,7,8 \text {, } \\
& \text { for } m=6, r=7
\end{aligned}
$$

It easy to see that c_{9} is a map $c_{9}: V\left(P_{n} \odot C_{m}\right) \rightarrow\{1,2, \ldots$, $r+1\}$, so it gives $\chi_{r}\left(P_{n} \odot C_{m}\right)=r+1,4 \leq r \leq \Delta-1$
Subcase 3.2The last for $\chi_{r}\left(P_{n} \odot C_{m}\right), r \geq \Delta$, define c_{10} : $V\left(P_{n} \odot C_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m \geq 3$, by the following:

$$
\begin{gathered}
c_{10}\left(y_{i}\right)= \begin{cases}1, & i \text { odd, } 1 \leq i \leq n \\
2, & i \text { even, } 1 \leq i \leq n\end{cases} \\
c_{10}\left(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}\right)=4,5,6,7,8,9
\end{gathered}
$$

$$
\begin{gathered}
\text { for } m=6, r=8 \\
c_{10}\left(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}\right)=4,5,6,7,8,9,10 \\
\text { for } m=7, r=9 \\
c_{10}\left(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{18}\right) \\
=4,5,6,7,8,9,10,11 \\
\text { for } m=8, r=10
\end{gathered}
$$

It easy to see that c_{10} is map $c_{10}: V\left(P_{n} \odot C_{m}\right) \rightarrow\{1,2, \ldots$, $m+3\}$, so it given $\chi_{r}\left(P_{n} \odot C_{5}\right)=m+3, r \geq \Delta$.It concludes the proof.

Theorem 3. Let $G=P_{n} \odot W_{m}$ be a corona graph of P_{n} and W_{m}. For $n \geq 3, m \geq 3$, the r-dynamic chromatic number is:

$$
\left.\begin{array}{c}
\chi_{r=1,2,3}(G)= \begin{cases}4, & m \text { even } \\
5, & m \text { odd }\end{cases} \\
\chi_{r=4}(G)= \begin{cases}5, & m=3 k, k \geq 1 \\
7 & , \quad m=5\end{cases} \\
6, \quad m \text { otherwise }
\end{array}\right\} \begin{aligned}
& r+1,5 \leq r \leq \Delta-1 \\
& \chi_{r}(G)=\left\{\begin{array}{cc}
\\
m+4, & r \geq \Delta
\end{array}\right.
\end{aligned}
$$

Proof. The graph $P_{n} \odot W_{m}$ is a connected graph with vertex set $V\left(P_{n} \odot W_{m}\right)=\left\{y_{i} ; 1 \leq i \leq n\right\} \cup\left\{x_{i j} ; 1 \leq i \leq n, 1 \leq\right.$ $j \leq m\} \cup\left\{A_{i} ; 1 \leq i \leq n\right\}$ and edge set $E\left(P_{n} \odot W_{m}\right)=$ $\left\{y_{i} y_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{x_{i j} x_{i(j+1)} ; 1 \leq i \leq n, 1 \leq j \leq\right.$ $m-1\} \cup\left\{x_{i 1} x_{i m} ; 1 \leq i \leq n\right\} \cup\left\{y_{i} x_{i j} ; 1 \leq i \leq n, 1 \leq j \leq\right.$ $m\} \cup\left\{A_{i} x_{i j} ; 1 \leq i \leq n, 1 \leq j \leq m\right\} \cup\left\{A_{i} y_{i} ; 1 \leq i \leq n\right\}$.
The order of graph $P_{n} \odot W_{m}$ is $\left.\left|V\left(P_{n} \odot W_{m}\right)\right|=m n+2 n\right)$ and the size of graph $P_{n} \odot W_{m}$ is $\left|E\left(P_{n} \odot W_{m}\right)\right|=3 m n+$ $2 n-1$, thus $\Delta\left(P_{n} \odot W_{m}\right)=m+3$.
By observation 2, we have the following
$\chi_{r}\left(P_{n} \odot W_{m}\right) \geq \min \left\{r, \Delta\left(P_{n} \odot W_{m}\right)\right\}+1=\min \{r, m+$
$3\}+1$. To find the exact value of r-dynamic chromatic number of $P_{n} \odot W_{m}$, we define three case, namely for $\chi_{r=1,2,3}\left(P_{n} \odot W_{m}\right), \chi_{r=4}\left(P_{n} \odot W_{m}\right)$ and $\chi_{r}\left(P_{n} \odot W_{m}\right)$.

Case 1

Subcase 1.1 For $\chi_{r=1,2,3}\left(P_{n} \odot W_{m}\right)$, define c_{11} : $V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m$ even by the following:

$$
\begin{gathered}
c_{11}\left(y_{i}\right)= \begin{cases}1, & i \text { odd, } 1 \leq i \leq n \\
2, & i \text { even, } 1 \leq i \leq n\end{cases} \\
c_{11}\left(A_{i}\right)= \begin{cases}1, & i \text { even, } 1 \leq i \leq n \\
2, & i \text { odd, } 1 \leq i \leq n\end{cases} \\
c_{11}\left(x_{i j}\right)= \begin{cases}3, & j \text { odd, } 1 \leq i \leq n, 1 \leq j \leq m \\
4 & , \\
j \text { even, } 1 \leq i \leq n, 1 \leq j \leq m\end{cases}
\end{gathered}
$$

It easy to see that c_{11} is map $c_{11}: V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2,3,4\}$, so it gives $\chi_{r=1,2,3}\left(P_{n} \odot W_{m}\right)=4, m$ even .

Subcase 1.2 For $\quad \chi_{r=1,2,3}\left(P_{n} \odot W_{m}\right)$, define c_{12} : $V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m$ odd by the following:

$$
\begin{gathered}
c_{12}\left(y_{i}\right)= \begin{cases}1, & i \text { odd, } 1 \leq i \leq n \\
2, & i \text { even, } 1 \leq i \leq n\end{cases} \\
c_{12}\left(A_{i}\right)= \begin{cases}1, & i \text { even, } 1 \leq i \leq n \\
2, & i \text { odd, } 1 \leq i \leq n\end{cases} \\
c_{12}\left(x_{i j}\right)= \begin{cases}3, & j \text { odd, } 1 \leq i \leq n, 1 \leq j \leq m-1 \\
4, & j \text { even, } 1 \leq i \leq n, 1 \leq j \leq m-1 \\
5, & j=m, 1 \leq i \leq n\end{cases}
\end{gathered}
$$

It easy to see that c_{12} is a map $c_{12}: V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2,3,4$, 5\}, so it gives $\chi_{r=1,2,3}\left(P_{n} \odot W_{m}\right)=5, m$ even.
Case 2
Subcase 2.1 For $\chi_{r=4}\left(P_{n} \odot W_{m}\right)$, define $\quad c_{13}$: $V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m=3 k, k \geq 1$ by the following:

$$
\begin{gathered}
c_{13}\left(y_{i}\right)= \begin{cases}1, & i \text { odd, } 1 \leq i \leq n \\
2, & i \text { even, } 1 \leq i \leq n\end{cases} \\
c_{13}\left(A_{i}\right)= \begin{cases}1, & i \text { even, } 1 \leq i \leq n \\
2, & i \text { odd, } 1 \leq i \leq n\end{cases} \\
= \begin{cases}3 & , j=3 t+1, t \geq 0,1 \leq i \leq n, 1 \leq j \leq m \\
4 & , j=3 t+2, t \geq 0,1 \leq i \leq n, 1 \leq j \leq m \\
5 & , j=3 t, t \geq 1,1 \leq i \leq n, 1 \leq j \leq m\end{cases}
\end{gathered}
$$

It easy to see that c_{13} is a map $c_{13}: V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2,3,4$, 5\}, so it given $\chi_{r=4}\left(P_{n} \odot W_{m}\right)=5, m=3 k, k \geq 1$.
Subcase $\quad \mathbf{2 . 2}$ For $\quad \chi_{r=4}\left(P_{n} \odot W_{m}\right)$, define $\quad c_{14}$: $V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m=5$ by the following:

$$
\begin{gathered}
c_{14}\left(y_{i}\right)= \begin{cases}1, & i \text { odd, } 1 \leq i \leq n \\
2, & i \text { even, } 1 \leq i \leq n\end{cases} \\
c_{14}\left(A_{i}\right)= \begin{cases}1, & i \text { even, } 1 \leq i \leq n \\
2, & i \text { odd, } 1 \leq i \leq n\end{cases} \\
c_{14}\left(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}\right)=3,4,5,6,7
\end{gathered}
$$

It easy to see that c_{14} is a map $c_{14}: V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2,3,4$, $5,6,7\}$, so it gives $\chi_{r=4}\left(P_{n} \odot W_{m}\right)=7, m=5$.
Subcase $\quad 2.3 \quad$ For $\quad \chi_{r=4}\left(P_{n} \odot W_{m}\right)$, define $\quad c_{15}$: $V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m$ otherwise by the following:

$$
\begin{gathered}
c_{15}\left(y_{i}\right)= \begin{cases}1, & i \text { odd, } 1 \leq i \leq n \\
2, & i \text { even, } 1 \leq i \leq n\end{cases} \\
c_{15}\left(A_{i}\right)= \begin{cases}1, & i \text { even, } 1 \leq i \leq n \\
2, & i \text { odd, } 1 \leq i \leq n\end{cases} \\
= \begin{cases}3 & , \\
4 & j=3 t+1, t \geq 0,1 \leq i \leq n, 1 \leq j \leq m-1 \\
5 & j=3 t+2, t \geq 0,1 \leq i \leq n, 1 \leq j \leq m-1 \\
c_{15}\left(x_{i j}\right) \\
6 & j=3 t, t \geq 1,1 \leq i \leq n, 1 \leq j \leq m-1 \\
6 & j=m, 1 \leq i \leq n\end{cases}
\end{gathered}
$$

Fig.4: $\chi_{4}\left(P_{3} \odot W_{4}\right)=6$ withn $=3, \quad m=4, r=6$
It easy to see that c_{15} is map $c_{15}: V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2,3,4$, $5,6\}$, so it gives $\chi_{r=4}\left(P_{n} \odot W_{m}\right)=6, m$ otherwise.
Case 3.
Subcase 3.1 For $\chi_{r}\left(P_{n} \odot W_{m}\right) 5 \leq r \leq \Delta-1$, define c_{16} $: V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m \geq 3$ by the following:

$$
\left.\left.\begin{array}{c}
c_{16}\left(y_{i}\right)= \begin{cases}1, & i \text { odd, } 1 \leq i \leq n \\
2, & i \text { even, } 1 \leq i \leq n\end{cases} \\
c_{16}\left(A_{i}\right)= \begin{cases}1, & i \text { even, } 1 \leq i \leq n \\
2, & i \text { odd, } 1 \leq i \leq n\end{cases} \\
c_{16}\left(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}\right)=3,4,5,3,4,5,6, \\
\text { for } m=7, r=5
\end{array}\right\} \begin{array}{c}
c_{16}\left(x_{11}, x_{12}, x_{13} x_{14}, x_{15}, x_{16}, x_{17}\right)=3,4,5,6,7,4,5, \\
\text { for } m=7, r=6
\end{array}\right\} \begin{gathered}
c_{16}\left(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}\right)=3,4,5,6,7,8,5, \\
\text { for } m=7, r=7
\end{gathered}
$$

It easy to see that c_{16} is a map $c_{16}: V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2, \ldots$, $r+1\}$, so it gives $\chi_{r}\left(P_{n} \odot W_{m}\right)=r+1,5 \leq r \leq \Delta-1$.
Subcase 3.2 For $\chi_{r}\left(P_{n} \odot W_{m}\right), r \geq \Delta$, define c_{17} $: V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m \geq 3$ by the following:

$$
\begin{aligned}
& c_{17}\left(y_{i}\right)=\left\{\begin{array}{cc}
1 & , \quad i=3 t+1, t \geq 0,1 \leq i \leq n \\
2, & i=3 t+2, t \geq 0,1 \leq i \leq n \\
3, & i=3 t, t \geq 1,1 \leq i \leq n
\end{array}\right. \\
& c_{17}\left(A_{i}\right)=\left\{\begin{array}{cc}
1, \quad i=4 t+3, t \geq 0,1 \leq i \leq n \\
2, & i=4 t, t \geq 1,1 \leq i \leq n \\
3, & i=4 t+1, t \geq 0,1 \leq i \leq n \\
4, & i=4 t+2, t \geq 0,1 \leq i \leq n
\end{array}\right. \\
& c_{17}\left(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}\right)=4,5,6,7,8,9 \text {, } \\
& \text { for } m=6, r=9 \\
& c_{17}\left(x_{21}, x_{22}, x_{23}, x_{24}, x_{25}, x_{26}\right)=5,6,7,8,9,10, \\
& \text { for } m=6, r=9 \\
& c_{17}\left(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}\right)=4,5,6,7,8 \text {, } \\
& \text { for } m=5, r=8 \\
& c_{17}\left(x_{21}, x_{22}, x_{23}, x_{24}, x_{25}\right)=5,6,7,8,9 \text {, } \\
& \text { for } m=5, r=8 \\
& c_{17}\left(x_{11}, x_{12}, x_{13}, x_{14}\right)=4,5,6,7 \text {, } \\
& \text { for } m=4, r=7 \\
& c_{17}\left(x_{21}, x_{22}, x_{23}, x_{24}\right)=5,6,7,8 \text {, } \\
& \text { for } m=4, r=7
\end{aligned}
$$

It easy to see that c_{17} is map $c_{17}: V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2, \ldots$, $m+4\}$, so it gives $\chi_{r}\left(P_{n} \odot W_{m}\right)=m+4, r \geq \Delta$.
It concludes the proof.

III. CONCLUSION

We have found some r-dynamic chromatic number of corona product of graphs, namely $\chi_{r}\left(P_{n} \odot P_{m}\right)=$ $\chi_{r}\left(P_{n} \odot C_{m}\right)=\chi_{r}\left(P_{n} \odot W_{m}\right)=r+1$, for $4 \leq r \leq \Delta-1$. and $\chi_{r}\left(P_{n} \odot P_{m}\right)=\chi_{r}\left(P_{n} \odot C_{m}\right)=m+3$, for $r \geq \Delta$. All numbers attaina best lower bound. For the characterization of the lower bound of $\chi_{r}(G \odot H)$ for any connected graphs G and H, we have not found any result yet, thus we propose the following open problem.

Open Problem 1. Given that any connected graphs G and H. Determine the sharp lower bound of $\chi_{r}(G \odot H)$.

ACKNOWLEDGEMENT

We gratefully acknowledge to the support from CGANT University of Jember of year 2017.

REFERENCES

[1] Ali Taherkhani. On r-Dynamic Chromatic Number of Graphs. Discrete Applied Mathematics 201 (2016) 222 - 227
[2] B. Montgomery, Dynamic Coloring of Graphs (Ph.D Dissertation), West Virginia University, 2001
[3] Hanna Furmanczyk, Marek Kubale. Equitable Coloring of Corona Products of Cubic Graphs is Harder Than Ordinary Coloring. Ars Mathematica Contemporanea 10 (2016) 333 - 347
[4] H.J. Lai, B. Montgomery. Dynamic Coloring of Graph. Department of Mathematics, West Virginia University, Mongantown WV 26506-6310. 2002
[5] H.J. Lai, B. Montgomery, H. Poon. Upper Bounds of Dynamic Chromatic Number. ArsCombinatoria. 68 (2003) 193-201
[6] M. Alishahi, On the dynamic coloring of graphs, Discrete Appl. Math. 159 (2011) 152-156.
[7] M. Alishahi, Dynamic chromatic number of regular graphs, Discrete Appl. Math. 160 (2012) 2098-2103.
[8] Ross Kang, Tobias Muller, Douglas B. West. On rDynamic Coloring of Grids. Discrete Applied Mathematics 186 (2015) 286 - 290
[9] S. Akbari, M. Ghanbari, S. Jahanbekam. On The Dynamic Chromatic Number of Graphs, Combinatorics and Graph, in: Contemporary

Mathematics - American Mathematical Society513
(2010) $11-18$
[10] S. Akbari, M. Ghanbari, S. Jahanbekam. On The Dynamic Coloring of Cartesian Product Graphs, ArsCombinatoria 114 (2014) $161-167$
[11] SogolJahanbekam, Jaehoon Kim, Suil O, Douglas B. West. On r-Dynamic Coloring of Graph. Discrete Applied Mathematics 206 (2016) 65-72

