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Abstract— We discuss the use of elliptic curves in 

cryptography on high-dimensional surfaces. In particular, 

instead of a key exchange protocol written in the form of a 

bi-dimensional row, where the elements are made up with 

256 bits, we propose a Diffie-Hellman key exchange 

protocol given in a matrix form, with four independent 

entries each of them constructed with 64 bits. Apart from 

the great advantage of significantly reducing the number 

of used bits, this methodology appears to be immune to 

attacks of the style of Western, Miller, and Adleman, and 

at the same time it is also able to reach the same level of 

security as the cryptographic system presently obtained by 

the Microsoft Digital Rights Management. A nonlinear 

differential equation (NDE) admitting the elliptic curves as 

a special case is also proposed. The study of the class of 

solutions of this NDE is in progress. 

Keywords— Elliptic-curve cryptography, Elliptic-curve 

discrete log problem, Public key cryptography, Nonlinear 

differential equations. 

 

 

I.   INTRODUCTION 

As known, encryption is the conversion of electronic data 

into another form, called ciphertext, which cannot be easily 

understood by anyone except authorized parties. The 

primary purpose of encryption is to protect the 

confidentiality of digital data stored on computer systems 

or transmitted via the Internet or other computer networks. 

Encryption algorithms can provide not only 

confidentiality, but also authentication (i.e., the origin 

message is verified), integrity (i.e., the contents of the 

message have not been changed), and non-repudiation (i.e., 

the sender cannot deny to be the author of the message) 

[1,2]. Elliptic curves are more and more used in 

cryptography [3,4]. The main advantages to use the elliptic 

curves in cryptography is that shorter encryption keys use 

fewer memory and CPU resources [5]. The main concept 

behind this is the use of the so-called one-way functions. A 

one-way function is a function for which it is relatively 

easy to compute the image of some elements in the domain 

but it is extremely difficult to reverse this process and 

determine the original element solely based on the given 

image [6]. More precisely, according to the Federal Office 

for Information Security (BSI), the recommended security 

parameters for elliptic curves is 256 bits (standards during 

the years 2017-2021) [7]. However, to manipulate data 

with this degree of security is computationally expensive 

and often impossible on embedded systems. At present 

many industrial systems adopt (much) less secure 

methodologies. This necessitates a re-evaluation of our 

cryptographic strategy. The question is: are we able to 

obtain the same degree of security with small embedded 

microprocessors managing only 64-bit operations? The 

solution of this problem entails several steps: 

A) First step: Research 

The solution of this problem requires new mathematical 

concepts and algorithms.  

B) Second step: Commercialization 

Once found the solution, the process is concluded with the 

start-up of the commercialization of the product. 

This manuscript deals only with the first step. We shall 

introduce a hyper-surface in an arbitrary (𝑛#+1)-­‐

dimensional space with n denoting a positive integer 

number), and we use the idea of the one-way function 

possessing also the property of being a trap function. The 

encrypted shared-key, instead to be written as a (very 

large) scalar number is brought into a matrix form. We 

shall prove that we may obtain the same degree of security 

as the one obtained by the Microsoft Digital Rights 

Management by sending an encrypted shared-matrix with 

four independent entries, each of them made up by 64 bits. 

The encrypted information is successively transmitted 

through elliptic curves obtained by projecting the hyper-

surface imbedded in a (𝑛#+1)-­‐dimensional space onto 

perpendicular planes. This methodology allows reaching 

the same level of security as the cryptographic system 

presently obtained by the Microsoft Digital Rights 

Management [8]. 
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The manuscript is organized as follows. In Section (II) we 

introduce high-dimensional surfaces cryptography 

(HDSC) and the elliptic curves constructed through these 

hyper-surfaces. Without loss of generality, we shall limit 

ourselves to the case of 𝑛 = 2 (i.e., to a 5𝐷-space). The 

generalization to (𝑛# + 1)-dimensional space is 

straightforward. The definition of the groups in elliptic 

curves on high-dimensional surfaces and the elliptic curve 

discrete log problem can be found in the Subsections (II-

A) and (II-B), respectively. Concluding remarks are 

reported in the Section (IV). 

 

II.   ELLIPTIC-CURVES CRYPTOGRAPHY ON 

HIGH DIMENSIONAL SURFACES 

We illustrate the methodology by dealing with a five-

dimensional elliptic curve, even though the procedure is 

straightforwardly generalized to elliptic curves on surfaces 

imbedded in an arbitrary (𝑛#+1)-dimensional space, with 

n denoting a positive integer number (the reason for which 

only spaces of such dimension are allowed will soon be 

clear). For the sake of simplicity, in this work we shall limit 

ourselves to the analysis of elliptic curves on 5-

dimensional surfaces. The generalization to the general 

case (i.e., to the case of elliptic curves on (𝑛#+1)-hyper-

surface) is straightforward
1
. In a 5-dimensional space, the 

surfaces on which the elliptic curves are defined, are the 

solutions of the equation 

with 𝑎, 	
  (𝑖 = 1, … , 4) and  𝑏 denoting elements of the field 

𝐾. Examples of fields 𝐾 are the Real Numbers, 𝑅, the 

Rational Numbers, 𝑄, the Complex Numbers, 𝐶, or the 

Integers modulo 𝑝, 𝑍/𝑝𝑍. By fixing three of the four 

variables 𝑥, (by setting, for example, 𝑥# = 𝑐# = 𝑐𝑜𝑛𝑠𝑡., 

𝑥? = 𝑐? = 𝑐𝑜𝑛𝑠𝑡. and 𝑥? = 𝑐? = 𝑐𝑜𝑛𝑠𝑡.) and by rotating 

the indexes, Eq.(1) defines together with the points at 

infinity 𝑂, four distinguished two-dimensional elliptic 

curves 𝐸,:  
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  In fact, we anticipate that the encrypted code involves 

only square matrices of order 𝑛×𝑛 - see next Section. 

with   𝑖 = 1, … , 4   and  

 

being 𝑐, 	
  (𝑖 = 1, … , 4) elements of 𝐾. In order to avoid 

degeneracy, these parameters are subject to the following 

restrictions 

 

Clearly, in case of 𝐾 = 𝑍/𝑝𝑍 we may associate four 

modules 𝑝 to each elliptic curves. As we shall see in the 

forthcoming section, only elliptic curves on hyper-surfaces 

of dimension 𝑛2+1 (with 𝑛 denoting a positive integer 

number) are acceptable since the shared-key involves only 

square matrices of order 𝑛×𝑛 For illustration purpose 

only, Fig.(1) shows a three dimensional surface where the 

values of the parameters are 𝑎D = −4, 𝑎# = −5	
  and 𝑏 =

3.5	
  . Figs.(2) and (3) refer to the elliptic curves obtained by 

projecting the surface (1) onto the planes 𝑥D = 1	
  and 𝑥# =

−2	
  , respectively. 

A.   Groups in Elliptic Curves on High-Dimensional 

Surfaces 

Each elliptic curve 𝐸,, separately, defines under point 

addition an abelian group. For each  𝑃, ∈ 𝐸,, 𝑄, ∈ 𝐸, and 

𝑅, ∈ 𝐸, the following properties are satisfied: 

•   Commutative: 𝑃, + 𝑄, = 𝑄, + 𝑃,; 

•   Identity: 𝑃, + 𝑂 = 𝑂 + 𝑃, = 𝑃,; 

•   Inverse:	
  𝑃, − 𝑃, = 𝑃, + −𝑃, = 𝑂; 

•   Associative:	
  𝑃, + 𝑄, + 𝑅, = (𝑃, + 𝑄,) + 𝑅, 

•   Closed: If	
  𝑃, ∈ 𝐸, and 𝑄, ∈ 𝐸,, then 𝑃, + 𝑄, ∈ 𝐸, 

E =
n

(y, x1, x2, x3, x4) | y
2 =

4
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Each group identified by 𝐸, is equipped with the standard 

group operations [9,10], i.e. 

•   Addition - If 𝑃, = 𝑃,J , 𝑃,K ∈ 𝐸, 	
  and 𝑄, =

𝑄,J , 𝑄,K ∈ 𝐸,, then 𝑃, + 𝑄, = 𝑅, [with 𝑅, =

𝑅,J , 𝑅,K ] which algebraically is defined as 

 

for 𝑖 = 	
   (1, … , 4). As a particular case, we get 2𝑃: 

 

with 𝑖 = 	
   (1, … , 4). The points at infinity are reached in 

each elliptic curves 𝐸, when 𝑃, + 𝑄, = 𝑂 if 𝑃,JL = 	
  𝑄,JL or 

when 𝑦 = 0 for point doubling (i.e., 𝑃, + 𝑃, = 𝑂). 

•   Scalar Multiplication - If 𝑃, ∈ 𝐸, and 𝑘 ∈ 𝑍 Eq.(5) 

allows defining the operation 𝑄 = 𝑘𝑃 under the 

condition that the operation 𝑄 = 𝑘𝑃 ≡ 𝑃 + ⋯+ 𝑃 

equals 𝑘 times 𝑝 , is performed by using the same 

elliptic curve 𝐸, i.e., 𝑄 ∈ 𝐸, 	
  . The scalar multiplication 

defines the one-way function 𝑄 → 𝑃	
  where is very 

difficult to extract the value of 𝑘 

Rixi
= s2i � (Pixi

+Qixi
) (4)

Riy = si(Pixi
�Rixi

)� Piy

si =
Piy �Qiy

Pixi
�Qixi

· · ·

2Pixi
= s2i � 2Pixi

(5)

2Piy = si(Pixi
�Rixi

)� Piy

si =
3P 2

ixi
+ ai

2Piy

fig.	
  1:	
  	
  Only	
  for	
  illustration	
  purpose,	
  we	
  show	
  the	
  two-­‐dimensional	
  surface	
  given	
  by	
  Eq.(2)	
  with	
  parameters	
  𝑎D = −4, 𝑎# = −5	
  and	
  
𝑏 = 3.5.	
  However,	
  one	
  should	
  bear	
  in	
  mind	
  that	
  only	
  elliptic	
  curves	
  on	
  hyper-­‐surfaces	
  of	
  dimension	
  𝑛2+1	
  have	
  real	
  meaning	
  (hence,	
  

only	
  elliptic	
  curves	
  constructed	
  by	
  hyper-­‐surfaces	
  of	
  dimensions	
  2,	
  5,	
  10,	
  	
  and	
  so	
  on,	
  are	
  acceptable).	
  This	
  because,	
  as	
  we	
  shall	
  see	
  in	
  the	
  

forthcoming	
  section,	
  the	
  encrypted	
  code	
  involves	
  only	
  square	
  matrices	
  of	
  order	
  𝑛×𝑛. 

fig.	
  2:	
  Elliptic	
  curve	
  obtained	
  by	
  projecting	
  the	
  surface	
  (1)	
  onto	
  

the	
  plane	
  𝑥D = 1. 

fig.	
  3:	
  Elliptic	
  curve	
  obtained	
  by	
  projecting	
  the	
  surface	
  (1)	
  onto	
  

the	
  plane	
  𝑥# = −2. 
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•   Reflection - The reflection of a point is its inverse. 

Hence for 𝑃, = 𝑃,J , 𝑃,K  the inverse of 𝑃, is −𝑃, =

𝑃,J , −	
  𝑃,K  satisfying the relation 𝑃, − 𝑃, = 𝑂. 

B.   High-Dimensional Elliptic Curve Discrete Log 

Problem 

For each 𝐸, the scalar multiplication defines a one way 

function [11]. Let us consider elliptic curves 𝐸,(𝑍 𝑝𝑍), 

with 𝑝 = (𝑝D, … , 𝑝S) and let 𝑄D and 𝑃D two points 

belonging to the same elliptic curve, say 𝐸D,  with the 

condition that 𝑄_1 is a multiple of 𝑃D. As known, finding 

the value of the number 𝑘 such that 𝑄D = 𝑘𝑃D is a very 

difficult problem [12]. We introduce now the first base 

point (Generator), 𝐺D ≡ 𝐺J , 𝐺K \𝑖𝑛	
  𝐸D(𝑍 𝑝𝑍). Since the 

group is closed, 𝐺D generates a cyclic group under point 

addition in the curve 𝐸D.	
  	
  The order 𝑛D (with𝑛D ∈ 𝑘) of 𝐺D 

is the number of the points in the group that 𝐺D generates. 

By this operation, we say that 𝐺D generates a subgroup of 

size 𝑛D, and we write 𝑜𝑟𝑑 𝐺D = 	
  𝑛D. The order of the 

subgroup generated by 𝐺D is the smallest integer 𝑘D such 

that 	
  𝑘DYZ = 𝑂 (hence,	
  𝑛D < 𝑘D). 

After 𝑛D iterations on the curve 𝐸D we find a second base 

point (Generator), 𝐺# with coordinates 𝐺# 𝑛D =

[𝐺J# 𝑛D , 𝐺K#(𝑛D)]. We may keep this second generator to 

perform 𝑛# iterations on the curve 𝐸#, with 𝑛# < 𝑘# being 

𝑘# the order of the subgroup generated by 𝐺# on the elliptic 

curve 𝐸#. After 𝑛# iterations we get a third base point ( 

Generator), 𝐺? with coordinates 𝐺? 𝑛# =

[𝐺J? 𝑛# , 𝐺K?(𝑛#)]. With this second generator we 

perform 𝑛? iterations on the curve 𝐸?, with 𝑛? < 𝑘? (with 

𝑘? denoting the order of the subgroup generated by 𝐺? on 

the elliptic curve 𝐸? .After 𝑛? iterations on the curve 𝐸? we 

get the fourth base point (Generator), 𝐺S	
  with coordinates 

𝐺S 𝑛? = [𝐺JS 𝑛? , 𝐺KS(𝑛?)].. The process concludes 

after 𝑛S iterations on the elliptic curves 𝐸S (with 𝑛S less 

than 𝑘S the order of the subgroup generated by 𝐺S	
  on the 

curve 𝐸S). At the end of these operations we get three 

matrices 𝑁, 𝐺 and 𝐾, of order 2×2, where the entries are 

totally independent from each others. Matrices 𝑁 and 𝐺 

reads
2
 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2
	
  Note that, once generated, the elements 𝐺(𝑥D), 𝐺JL 𝑛,  

may be allocated as entries of the matrix 𝐺 in a random 

way.	
  

The parameters that also Eve, the eavesdropper, possesses 

are (𝑝, , 𝑎, , 𝑏, , 𝐺, 𝐾) with 𝑖 = (1, … 4). 𝑝, specifies the 

modulo of the fields 𝐾,, 𝑎, and 𝑏, define the elliptic curves 

𝐸, 	
  (notice that in general these curves are different from 

each others), 𝐺 is the Generator matrix and 𝐾 is the order 

of the subgroups generated by 𝐺,	
  respectively. Now, if  Bob 

and Alice want to communicate with each other, Bob picks 

private key 𝑁 with 1 ≤ 𝑛, ≤ 𝑘, − 1, 𝑖 = (1, … 4). Bob 

computes matrix 𝑇 = 𝐺𝑁, which belongs to the curves 𝐸 

[given by Eq.(1)]. At the same time, Alice picks private key 

𝑀 

 

where the entries 𝑚, satisfy the conditions 1 ≤ 𝑚, ≤ 𝑘, −

1, 𝑖 = (1, … 4). Alice receives from Bob the information 𝑇 

and she generates the point 𝑀𝑇 = 𝑀𝐺𝑁 = 𝑊 (notice that 

matrices do not commute). Bob receives from Alice the 

information 𝑃 = 𝑀𝐺 and he computes 𝑃𝑁 = 𝑀𝐺𝑁 = 𝑊. 

Note that Bob multiplies matrices by placing 𝑁 always on 

the right, while Alice multiplies matrices by placing 𝑀 

always on the left. Both players, Bob and Alice, possess the 

same (encrypted) key 𝑊, which also belongs to the curve 

𝐸 [given by Eq.(1)]. Eve, the eavesdropper, sees both 

information 𝑇 and 𝑃, but she is unable to retrieve the 

sheared-key 𝑊. Fig.(4) depicts the entire process. 

	
  

fig.	
   4:	
   Diffie-­‐Hellman	
   key	
   exchange	
   protocol	
   [13]	
   	
   in	
   high-­‐

dimensional	
  elliptic	
  curves	
  cryptography.	
  Bob	
  and	
  Alice	
  exchange	
  

N =

✓

n1 n2

n3 n4

◆

; G =

✓

Gx1
Gx2

(n1)
Gx3

(n2) Gx4
(n3)

◆

K =

✓

κ1 κ2

κ3 κ4

◆

(6)

The parameters that also Eve, the eavesdropper, possesses are

picks private key

M =

✓

m1 m2

m3 m4

◆

(7)
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the	
   encryption	
   key	
   in	
   a	
   matrix	
   form,	
  𝑊 = 𝑀𝐺𝑁,	
   having	
   four	
  

independent	
  entries	
  each	
  of	
  them	
  constructed	
  with	
  64	
  bits.	
  Eve,	
  

the	
   eavesdropper,	
   may	
   see	
   𝑇 = 𝐺𝑁	
   and	
   𝑃 = 𝑀𝐺,	
   but	
   he	
   is	
  
unable	
   to	
   get	
   the	
   sheared	
   Bob-­‐Alice's	
   key	
  𝑊	
   since	
   it	
   is	
   very	
  

difficult	
   to	
   reverse	
   the	
   process	
   and	
   determine	
   what	
   was	
   the	
  

original	
  information.	
  

We summarize the main advantages of our proposed 

encrypting procedure. 

•   Eve does not know to which entry of the matrix G 

the generators have been assigned; 

•   In case of 5𝐷-elliptic curves, the process runs on 

four, distinguished and independent, 2𝐷-elliptic 

curves and the encrypted key belongs to a 5𝐷-

surface. This hyper-surface is constructed in such a 

way that the curves with variables 𝑥,, obtained by 

setting constant the remaining variables of this 

hyper-surface (i.e., by setting 𝑥d = 𝑐𝑜𝑛𝑠𝑡. with 𝑖 ≠

𝑗), are elliptic curves; 

•   The level of security remains unchanged. Indeed, it 

is easily to convince ourselves that to obtain the 

same level of security as in case of one-dimensional 

elliptic curve cryptography (which requires 256 

bits), we need to encrypt the shared-key with only 

64 bits (since in our case, for a shared-key written in 

the form of a 2×2 matrix, the level of security is of 

the order of 𝛼S, with 𝛼 denoting the number of 

required bits). 

We recall that the present methodology applies to elliptic 

curves cryptography constructed on hyper-surfaces of 

dimension 𝑛# + 1 (with 𝑛 denoting an integer number) 

because the shared-key is brought into the form of 𝑛×𝑛 

square matrices. Hence, a surface like Eq.(1) is the 

immediate generalization of the one-dimensional elliptic 

curves cryptography (which corresponds to 𝑛 = 1). Hence, 

the subsequent surface which generalizes Eq.(1) should be 

imbedded in a ten-dimensional space (𝑛 = 3), and so on. 

III.   EXAMPLES OF PRACTICAL USES OF 

HIGH-DIMENSIONAL ELLIPTIC CURVE 

CRYPTOGRAPHY 

The aim of this section is to illustrate the many possibilities 

and practical usages opened by the introduction of High-

Dimensional Elliptic Curve Cryptography. Generally 

speaking, HDECC can be applied instead of any use of the 

classic ECC; i.e., Bitcoin, secure shell (ssh), transport layer 

security (tls) [14].  Among these applications, one of the 

most important is certainly tls. Indeed, tls is the new 

generation of the Secure Socket Layer (ssl) which is used 

in any modern telecommunication. For instance, the well-

known https is nothing else than the classic http protocol 

running over ssl/tls in order to ensure a secured, 

bidirectional connection for arbitrary binary data between 

two hosts. In order to establish a shared key between these 

two hosts, the current implementations of tls relies on the 

DH or ECDH key exchange protocols discussed in the 

previous sections. 

However, introducing such security layers comes at the 

price of overheads in terms of infrastructure costs, 

communication latency, data usage, and energy 

consumption [15]. Therefore, the first motivation of 

HDECC is to reduce the cost of security in many of the 

today's state-of-the-art communication technologies. 

Moreover, reducing these costs makes the most modern 

security protocols accessible for embedded systems and 

wearable devices. Indeed, by using HDECC, we could 

reduce the cost of these protocols by performing operations 

on data four time shorter than before by maintaining, at the 

same time, the same level of security. In addition, HDECC 

opens new perspectives on elliptic curve cryptography as 

we shall discuss in the next section. 

IV.   CONCLUSION 

We have proposed an encrypted procedure based on the 

high-dimensional elliptic curve cryptography, which 

allows maintaining the same level of security as presently 

obtained by the Microsoft Digital Rights Management. The 

advantages of these methodology are multiplex.    

1)   The quite heavy intermediate exponential operations 

are avoided and the key exchange protocol is 

constructed with 64 bits operations instead of 256 bits. 

2)   We may proceed to the construct of a new generation 

of cryptographic standards working with the 

technology high-dimensional elliptic curves 

3)   This methodology opens new perspectives. In fact, it 

is not difficult to derive a nonlinear differential 

equation (NDE) admitting the elliptic curves by a 

special choice of the parameters and initial conditions. 

We get 

 

𝑦hh + 𝛼D 𝑥 𝑦iD #	
  𝑦hh + 𝛼# 𝑥 𝑦iD #	
  𝑦h + 𝛼? 𝑥 𝑦i? #	
  𝑦h
j

+ 𝛾 𝑥 = 0 

 

𝑦 0 = 𝛽D	
  	
  	
  	
  	
  	
  ; 	
  	
  	
  	
  	
  𝑦′ 0 = 𝛽#                                        (8) 
 

with 𝛼, 𝑥 = 𝑎, + 𝑏,𝑥  (i=1,2,3)   ;   𝛾 𝑥 = 𝛾D + 𝛾#𝑥 

and 𝑎, , 𝑏, , 𝛽D, 𝛽#, 𝛾D, 𝛾# = 𝑐𝑜𝑛𝑠𝑡.	
  	
  	
                                   
 

with ′ denoting the derivative with respect to the variable 

𝑥. Differential equation (8) is well-weighted with variables 

𝑦, 𝑦h, 𝑦′′ and 𝛾 𝑥  having weight 1 and 𝛼,(𝑥) having 

weight 1 2, respectively. Note that the differential 

equation (8) admits as a special solution the Weierstrass 

equation [16] 

 

𝑦# + 𝑐D𝑥𝑦 + 𝑐?𝑦 = 𝑥? + 𝑐#𝑥
# + 𝑐S𝑥 + 𝑐n                      (9) 

 

with 𝑐, ∈ 𝐾. If 𝐶ℎ𝑎𝑟𝐾 ≠ (2,3), we can complete before 
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the square and, successively, the cube, by defining 

 

𝜂 = 𝑦 +
𝑐D𝑥 + 𝑐?

2
	
  	
   ; 	
  	
  𝜉 = 𝑥 +

𝑐D
# + 4𝑐#

12
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (10) 

 

By substituting Eqs (10) into Eq.(9), we get the elliptic 

curve [17]: 

 

𝜂# = 𝜉? −
𝑑S

48
𝜉 −

𝑑n

864
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   11  

 

where 

 

𝑑S = 𝑐D
# + 4𝑐#

# − 24 𝑐D𝑐? + 2𝑐S 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (12)                       

𝑑n = − 𝑐D
# + 4𝑐#

? + 36 𝑐D
# + 4𝑐# 𝑐D𝑐? + 2𝑐S

− 216(𝑐?
# + 4𝑐n) 

 

Clearly, now the question is: how can we determine the 

largest class of parameters 𝑎, , 𝑏, , 𝛽D and 𝛽#, introduced in 

(8), such that the NDE (8) admits (only) a class of one way 

functions, possessing the property of being trap functions? 

In addition, we should also be able to define on these 

curves a group under point addition. Successively, the 

trapped curves could be identified uniquely by indexes. 

Being able to answer to this question would allow 

encrypting not only the key exchange protocol but also the 

trapped-curves on which the generator and the encrypted 

keys belong. However, all of this requires sophisticated 

mathematical tools and it will be subject of future works. 

 

We close this Section by mentioning two other relevant 

perspectives of this work. 

1)   It is quite evident that the formalism illustrated in this 

manuscript allows introducing two operations: matrix 

addition and scalar matrix multiplication (including 

the so-called matrix doubling operation). These 

operations can be used to implement a high-

dimensional version of algorithms such as the ECDSA 

(elliptic curves digital signature algorithm) [18]. 

2)   It is possible to introduce an operator 𝐿 which 

connects two distinct points 𝐺 D , 𝐺(#) on the high-

dimensional surface 𝐸 [see Eq.(1)] as follows 

 

𝐺 D = 𝐿	
  𝐺 # 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   13  

 

𝐺JZ
(D)

𝐺Jj
D
(𝑛D)

𝐺Ju
(D)

𝐺Jv
D
(𝑛?)

= 𝐿
𝐺JZ
(#)

𝐺Jj
#
(𝑛S)

𝐺Ju
(#)

𝐺Jv
#
(𝑛n)

 

 

 

with 𝐿 denoting a non-singular 2×2 matrix, satisfying the 

group law under matrix multiplication. The analytic 

expression and the mathematical study of this matrix (and 

the 𝑛×𝑛 matrices, in general), with its potential application 

in cryptography, will be subject of a future work. 
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