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Abstract— In the present wok fatigue crack growth tests 
have been performed under interspersed mode-I overload 
on 7475-T7351 Al-alloy. The overloads with an overload 

ratio of 2 were given at 0°C, –30°C, –45°C, –60°C, and –

75°C at a loading rate of 7 KN/min after the crack had 
grown to a/w ratio of 0.4. The crack growth tests have 
been continued in mode-I at a frequency of 5 Hz and load 
ratio (R) of 0.1 till fracture. From the fatigue tests it has 
been observed that the crack growth rate decreases and 
consequently fatigue life increases as the overload 
temperature decreases. The experimental data generated 
have been subsequently used to formulate the ANN model 
to predict the fatigue crack growth rates and the fatigue 
life of 7475-T7351 Al-alloy. It has been observed that the 
proposed model predicts the fatigue life with reasonable 
accuracy having + 0.919% deviation from experimental 
results. 
Keywords— Fatigue crack growth, Low temperature 
overload; Load ratio, Artificial neural network, 
Normalized mean square error. 

 
I.  INTRODUCTION 

Engineering materials don’t reach theoretical strength 
when they are tested in the laboratory. Therefore, the 
performance of the material in service is not same as it is 
expected from the material. Hence, the design of a 
component frequently implores the engineer to minimize 
the possibility of failure. Most of the material 
damages/failures occur mainly due to cyclic/fatigue 
loading. It is a progressive and localized material damage 
that occurs without any obvious warning and leads to 
catastrophic failure. It not only causes loss of human life 
but also pays penalty on economy. Hence, it is essential to 
estimate the life of components/structures subjected to 
fatigue loading in order to schedule timely inspections of 
machine parts to avoid catastrophic failure.  
Fatigue life is influenced by a variety of factors, such as 
loading histories, material properties, operating 
temperatures, environmental conditions etc. Load cycles 
may consist of constant amplitude, variable amplitude, 
band loads etc. The load interactions during fatigue may 

occur in terms of single spike/band over/under loads. The 
single spike overload in constant amplitude loading 
retards a growing crack whereas; its corresponding 
counterpart i.e. under load accelerates the crack growth. 
Earlier, several works [1-4] have been undertaken to 
study the effect of spike overload on fatigue crack growth 
as it has got beneficial effect by increasing the residual 
life of the machine parts. This type of loading situation 
may occur in presence of low temperatures e.g. aircrafts, 
ships, off-shore structures, ships, oil pipe lines etc. 
As far as fatigue crack growth at low temperature is 
concerned, few works have been done till date. Zambrow 
and Fontana [5] have studied the effect of working 
temperature on fatigue life and found that fatigue life of 
magnesium and aluminum alloys and also some stainless 
steels increase with lowering the temperature due to 
increase in fatigue strength. Stephens et.al [6] have 
conducted variable amplitude fatigue crack initiation and 
fatigue crack growth on some carbon and low-alloy steels. 
They have observed that the fatigue crack growth life 
tends to increase as the temperature is lowered. Further, it 
has been observed that [7] fatigue life of most FCC 
materials increase with decrease in temperature. As far as 
spike overload at low temperature is concerned almost no 
work has been done to verify its effect on constant 
amplitude fatigue crack growth. In the present 
investigation, the effect of mode-I fatigue crack growth 
under interspersed low temperature spike overload at 

various temperatures such as 0°C, –30°C, –45°C, –60°C, 

and –75°C on 7475-T7351 aluminium alloy has been 
studied. It has been observed that a growing fatigue crack 
retards as the temperature decreases. Back-propagation 
neural network has been applied to predict the fatigue life 
of the alloy and observed that the model predicts the life 
with reasonable accuracy with + 0.919% deviation from 
experimental results. 

 
II.  EXPERIMENTAL PROCEDURE 

The material used in this study is 7475-T7351 aluminium 
alloy. The chemical compositions and mechanical 
properties of 7475-T7351 Al-alloy are listed in Tables 1 
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and 2, respectively. The compact tension (CT) specimen 
has been cut from 15 mm thickness plate and designed as 
per the requirements of ASTM E647
specimens have been made in the longitudinal transverse 
(LT) direction. The detail geometry of the specimens is 
shown in Fig 1. The fatigue crack growth tests have been 
conducted in a servo-hydraulic dynamic testing machine 
(Instron-8502) having a load capacity of 250 KN, 
interfaced to a computer for machine control and data 
acquisition. The tests have been performed in air and at 
room temperature except during overloading. The test 
specimens have been fatigue pre-cracked under mode
loading up to a crack length to width (a/w
and then subjected to constant load test (i.e. progressive 
increase in ΔK with crack extension) maintaining a load 
ratio of R=0.1 up to a/w ratio of 0.4. Sinusoidal loads 
have been applied during the test at a frequency of 7 Hz. 
The crack growth has been monitored with the help of a 
COD gauge mounted on the face of the machined notch. 

 
Table.1: Chemical composition of Al 7475
Zn Mg Cu Cr Fe Si Mn Ti

5.79 2.13 1.37 0.2 0.07 0.04 0.01 0.04

 
Table.2: Mechanical properties of Al 7475

Young’s  
modulus 
(GPa) 

Yield  
strength 
(MPa) 

Tensile  
strength 
(MPa) 

71.70 429.00 502.00 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.1: Compact tension (CT) specimen geometry
 
After the crack has grown to the specified length (i.e. 
= 0.4), the specimens have been subjected to single spike 

overload with an overload ratio of 2 (Rol

2) at a rate of 7KN/min maintaining different 

temperatures of 0°C, –30°C, –45°C, –60

where, 
BKmax is the maximum stress intensity factor range 
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compact tension (CT) specimen 
has been cut from 15 mm thickness plate and designed as 

f ASTM E647-05 [8]. The 
specimens have been made in the longitudinal transverse 
(LT) direction. The detail geometry of the specimens is 
shown in Fig 1. The fatigue crack growth tests have been 

hydraulic dynamic testing machine 
8502) having a load capacity of 250 KN, 

interfaced to a computer for machine control and data 
acquisition. The tests have been performed in air and at 
room temperature except during overloading. The test 

cracked under mode-I 
a/w) ratio of 0.3 

and then subjected to constant load test (i.e. progressive 
with crack extension) maintaining a load 

ratio of 0.4. Sinusoidal loads 
he test at a frequency of 7 Hz. 

The crack growth has been monitored with the help of a 
COD gauge mounted on the face of the machined notch.  

Chemical composition of Al 7475-T7351 (wt%)  
Ti V Al 

0.04 0.0
1 

Bal 

Mechanical properties of Al 7475-T7351 

Elongation  
(%) 

9.00 

Compact tension (CT) specimen geometry 

After the crack has grown to the specified length (i.e. a/w 
= 0.4), the specimens have been subjected to single spike 

B
ol KK max= = 

2) at a rate of 7KN/min maintaining different 

60°C, and –75°C 

is the maximum stress intensity factor range 

for the base line test. During overloading the specimens 
have been kept in liquid nitrogen chamber to maintain the 
required low temperature. The cooling chamb
of two inlet ports in lower end and two outlet ports in 
upper end connected by blind holes as shown in Fig 2. 

Fig.2: Cooling Chamber
 

A gap of 4 mm has been maintained on either sides of the 
specimen in order to avoid direct physical co
cooling chamber walls. The temperature has been 
measured with a sixteen channel RTD indicator with a 

temperature range of –120 °C to 400 
crack growth test has been continued in mode
 

III.  EXPERIMENTAL RESULTS
The machine generated data of crack length (
number of cycles (N) obtained from the fatigue crack 
growth tests at different low temperature overload cases 
as well as base line contain much scatter. The 
determination of crack growth rates from those data is 
very difficult due to scattering of data points. Therefore, 
to smoothen the a ~ N raw data, exponential equation 
method has been followed as proposed in the author’s 
earlier work [9]. After data smoothening, the modified 
superimposed a ~ N curve for different l
overload cases along with base line data has been plotted 
in Fig. 3. From the smoothened 
growth rates (da/dN) have been calculated directly by 
using the following equation.

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3: Superimposed a ~ 
temperature overloads
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for the base line test. During overloading the specimens 
have been kept in liquid nitrogen chamber to maintain the 
required low temperature. The cooling chamber consists 
of two inlet ports in lower end and two outlet ports in 
upper end connected by blind holes as shown in Fig 2.  

 
Cooling Chamber 

A gap of 4 mm has been maintained on either sides of the 
specimen in order to avoid direct physical contact with 
cooling chamber walls. The temperature has been 
measured with a sixteen channel RTD indicator with a 

C to 400 °C. Then, the fatigue 
crack growth test has been continued in mode-I.  

EXPERIMENTAL RESULTS  
generated data of crack length (a) and 

) obtained from the fatigue crack 
growth tests at different low temperature overload cases 
as well as base line contain much scatter. The 
determination of crack growth rates from those data is 

difficult due to scattering of data points. Therefore, 
raw data, exponential equation 

method has been followed as proposed in the author’s 
earlier work [9]. After data smoothening, the modified 

curve for different low temperature 
overload cases along with base line data has been plotted 
in Fig. 3. From the smoothened a ~ N data, the crack 

) have been calculated directly by 
using the following equation. 

(1) 

~ N curves at different low 
temperature overloads 
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Fig .4: Superimposed da/dN ~ ΔK curves at different low 
temperature overloads 

 
IV.  NEURAL NETWORK APPLICATION AND 

DESIGN 
In the present work, the back-propagation neural network 
(BPNN) has been adopted. It is a supervised, multi
feed-forward network with an error-back propagation 
algorithm (error minimization technique). Its architecture 
consists of a collection of nodes distributed over a layer 
of input neurons, one or more layers of hidden neurons 
and a layer of output neurons. Neurons in each layer are 
interconnected to subsequent layer neurons with links, 
each of which carries a weight that describes the strength 
of that connection. Various non-linear activation 
functions, such as sigmoidal, tanh or radial (Gaussian) are 
used to model the neuron activity. Training involves 
moving the patterns forward through the network layers, 
then propagating the errors backward, and the
the weights. This is done in order to decrease the errors.
In the present investigation, a nine-layer perceptron ANN 
with back-propagation neural controller has been 
developed. It has got one input layer, one output layer and 
seven hidden layers. The input layer has got three 
neurons, whereas one neuron has been associated with 
output layer. The neurons associated in the seven hidden 
layers are twelve, twenty four, hundred, thirty five and 
eight respectively. The input parameters to the neural 
network controller are as follows: Stress intensity factor 
range = “∆K”; Maximum stress intensity factor = “
Low temperature overload = “Tol”. The output from the 
controller is: Crack growth rate = “da/dN
ANN has been written in the C++ programming language 
and all the training tests have been performed on a 
Pentium 4 (2.0 GHz). The activation function chosen in 
this work is the hyperbolic tangent function:
 
                                                                              
 
During training, the network output θactual

from the desired output θdesired as specified
pattern presented to the network. A measure of the 
performance of the network is the instantaneous sum
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NEURAL NETWORK APPLICATION AND 

propagation neural network 
(BPNN) has been adopted. It is a supervised, multi-layer, 

back propagation 
algorithm (error minimization technique). Its architecture 

tributed over a layer 
of input neurons, one or more layers of hidden neurons 
and a layer of output neurons. Neurons in each layer are 
interconnected to subsequent layer neurons with links, 
each of which carries a weight that describes the strength 

linear activation 
or radial (Gaussian) are 

Training involves 
moving the patterns forward through the network layers, 
then propagating the errors backward, and then updating 
the weights. This is done in order to decrease the errors. 

layer perceptron ANN 
propagation neural controller has been 

developed. It has got one input layer, one output layer and 
rs. The input layer has got three 

neurons, whereas one neuron has been associated with 
output layer. The neurons associated in the seven hidden 
layers are twelve, twenty four, hundred, thirty five and 
eight respectively. The input parameters to the neural 
network controller are as follows: Stress intensity factor 

”; Maximum stress intensity factor = “Kmax”; 
”. The output from the 

N” The proposed 
programming language 

and all the training tests have been performed on a 
. The activation function chosen in 

this work is the hyperbolic tangent function: 

                                                                          (2)                                                                         

actual, may differ 
as specified in the training 

pattern presented to the network. A measure of the 
performance of the network is the instantaneous sum-

squared difference between θ
presented training patterns:  
                                                                                     
                                                                              
 
 

where, θactual represents crack growth rate (“cgr”)
While developing an ANN model, proper selection of 
input and output parameters and also the structure of the 
network are very much essential in achieving better 
results. It is considered that the most suitable 
combinations of input and output sets are those whic
would give the least normalized mean square error 
(MSE). The stress intensity factor range (
stress intensity factor (K
overload (Tol) have been considered as the input 
parameters whereas crack growth rate 

chosen as the output parameter for the present 
investigation. To make the input amenable for successful 
learning to minimize the overall mean square error, the 
two input parameters (i.e. Δ
normalized between 1 and 
temperature overload (Tol) has been normalized between 0 
and 1. Similarly the output 

between 0 and 3 for network training and testing. The 
inputs and outputs of the training sets (TS) 

constituted from 3503×  

Kmax and ( )dN
da

 
data for each of the low temperature 

overloading cases (0°C, –30

other experimental set i.e. at 
been kept for testing. 
The multi-layer perceptron (MLP) neural network 
architecture has been applied to simulate the crack growth 
rate of an unknown set of low temperature overload case 

of, –45°C as validation set (VS). The network has been 
trained by error back-propagation learning method and 
error during training and testing has been shown in Fig. 5. 
Table 3 and 4 show various Learning algorithms’ 
parameters and statistical performances respect
during training.  

Fig. 5: Training set error and test set error during 
training
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developing an ANN model, proper selection of 

input and output parameters and also the structure of the 
network are very much essential in achieving better 
results. It is considered that the most suitable 
combinations of input and output sets are those which 
would give the least normalized mean square error 
(MSE). The stress intensity factor range (ΔK), maximum 

Kmax), and low temperature 
) have been considered as the input 

parameters whereas crack growth rate ( )dN
da  has been 

chosen as the output parameter for the present 
investigation. To make the input amenable for successful 
learning to minimize the overall mean square error, the 
two input parameters (i.e. ΔK and Kmax,) have been 

 4, while the other one, low 
) has been normalized between 0 

and 1. Similarly the output ( )dN
da  has been normalized 

between 0 and 3 for network training and testing. The 
inputs and outputs of the training sets (TS) have been 

 experimental values of ΔK, 

data for each of the low temperature 

30°C, –60°C and –75°C). The 

other experimental set i.e. at –45°C overload data have 

layer perceptron (MLP) neural network 
architecture has been applied to simulate the crack growth 
rate of an unknown set of low temperature overload case 

C as validation set (VS). The network has been 
propagation learning method and 

error during training and testing has been shown in Fig. 5. 
Table 3 and 4 show various Learning algorithms’ 
parameters and statistical performances respectively 

 
Fig. 5: Training set error and test set error during 

training 
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Table.3:  Learning algorithms’ parameters of the network
Momentu
m 
Coefficien
t 

Lea-
rnin
g 
rate 

Hidden 
neuron
s 

Training
epochs 

0.2 0.32 179 10532.6 ×
 

 
Table.4: Statistical performance of ANN during training

R2 

valu
e 

Correl-
ation 

coeffic
-ient 
(r) 

MSE Maximu
m 

absolute 
error 

0.99
7 

0.8976 610237.1 −×
 

510432.1 −×

 
V. MODEL VALIDATION

After training, the three input parameters i.e. stress 
intensity factor range (ΔK), maximum stress intensity 
factor (Kmax) and low temperature overload (

suppressed overload temperature –45°C have been fed to 
the trained ANN model in order to predict the 
corresponding crack growth rate ( )dN

da . Table 5 gives 

the statistical performances of the network during testing.
 
Table.5: Statistical performance of ANN during testing

R2  

value 
Correl
- 
ation  
coeffi- 
cient  
(r) 

MSE Maximu
m 
absolute 
error 

0.99
8 

0.965 610365.1 −×
 

10983.1 −×
 

 
The predicted crack growth rate results of the tested 
specimen have been presented in Fig. 6 along with 
experimental data for comparison. It is observed that the 
simulated da/dN–ΔK points follow the experimental ones 
quite well.  

 
     
                        

 
 
 
 
 
 
 
 

Fig.6: Predicted and experimental da/dN~
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Learning algorithms’ parameters of the network 
Training Comput

-ational 
Time  
(Min.) 

510 850 

Statistical performance of ANN during training 

 

Minimu
m 

absolute 
error 

5 510003.0 ×  

MODEL VALIDATION  
After training, the three input parameters i.e. stress 

), maximum stress intensity 
) and low temperature overload (Tol) for the 

C have been fed to 
the trained ANN model in order to predict the 

. Table 5 gives 

the statistical performances of the network during testing.  

Statistical performance of ANN during testing 

absolute  

Minimu
m 
absolute  
error 

5− 510012.0 ×
 

The predicted crack growth rate results of the tested 
presented in Fig. 6 along with 

experimental data for comparison. It is observed that the 
points follow the experimental ones 

~∆K plot, –45°C 

The number of cycles has been calculated from the 
simulated ( )dN

da  values by taking the post

experimental ‘a’  and ‘N’  value as the initial value and 
assuming an incremental crack length of 0.005mm
steps in excel sheet as per fol
    

 
 
The predicted a–N values of the ANN model have been 
compared with the experimental data in Fig. 7. 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 7: Predicted and experimental 

The predicted and experimental post overload fatigue 
lives (i.e. No. of cycles) along with its percentage 
deviation are presented in Table 6. As observed from the 
table, the percentage deviation of predicted results from 
the experimental findings is + 

 
Table.6 - Predicted and experimental 

Predicted  
Post overload  
fatigue life  

Experimental 
post overload 
fatigue life 

31077.120 ×  119

 
VI.  CONCLUSION

The current research work presents a novel approach for 
the formulation of fatigue crack growth rates and 
subsequently the fatigue life of 
temperature overload condition using ANN. The proposed 
ANN model is an empirical formulation 
experimental result collected from fatigue crack growth 
tests. The model shows very good agreement with the 
experimental findings having 
work proves that the back-
technique can successfully be ap
overload fatigue loadings by substantially reducing the 
time consuming and costly fatigue tests.
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The number of cycles has been calculated from the 
values by taking the post-overload 

value as the initial value and 
assuming an incremental crack length of 0.005mm in 
steps in excel sheet as per following equation:  

    
(4) 

values of the ANN model have been 
compared with the experimental data in Fig. 7.  

redicted and experimental a~N results (–45°C) 
 

The predicted and experimental post overload fatigue 
lives (i.e. No. of cycles) along with its percentage 
deviation are presented in Table 6. As observed from the 
table, the percentage deviation of predicted results from 
the experimental findings is + 0.025.  

and experimental results  

Experimental  
post overload  
fatigue life  

% Dev 

31067. ×  +0.919 

CONCLUSION 
The current research work presents a novel approach for 
the formulation of fatigue crack growth rates and 
subsequently the fatigue life of Al 7475-T7351 under low 
temperature overload condition using ANN. The proposed 
ANN model is an empirical formulation based on 
experimental result collected from fatigue crack growth 
tests. The model shows very good agreement with the 
experimental findings having + 0.919% deviation. This 

-propagation neural network 
technique can successfully be applied to low temperature 
overload fatigue loadings by substantially reducing the 
time consuming and costly fatigue tests. 
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