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Abstract—Fatigue crack growth under constant amplitude 
loading for a particular material strongly depends on load 
ratio (R). The prediction of fatigue crack growth life under 
such situation through deterministic approach is a tedious 
task. Application of artificial intelligence methods is more 
encouraging in those complex situations. In the present 
work a novel soft-computing approach i.e. adaptive neuro-
fuzzy technique (ANFIS) has been applied to predict fatigue 
life of 6061 (AA 6061) aluminum alloy under the influence 
of load ratio. It has been observed that the ANFIS model 
predict the fatigue life of the alloy reasonably well with 
percentage deviation of –0.024 and prediction ratio of 
1.025. 
Keywords—Adaptive neuro-fuzzy inference system 
(ANFIS); fatigue crack growth rate (FCGR); root mean 
squre error (RMSE); prediction ratio. 
 

I. INTRODUCTION 
Fatigue failure is an important mode of failure which occurs 
in almost all engineering structures/components. There are 
several approaches such as fail-safe, safe-life and damage 
tolerant approaches in fatigue literature to deal with the 
fatigue phenomena. Out of those, the damage tolerant 
approach is one of the modern approaches based on fracture 
mechanics principle which mainly correlate fatigue crack 
growth with life (i.e. No. of cycle to failure) of the 
specimen. In this approach the crack growth rate (da/dN) is 
correlated with different material parameters and above all 
the crack driving forces to determine fatigue life of the 

components. It can be represented by the functional form 
as: 

( )......,,, max ERKKf
dN

da ∆=      (1)  

Based on this, several deterministic models [1-4] have been 
proposed till date to predict fatigue crack growth life to 
schedule inspection intervals for repairing/replacement of 
the components to avoid untimely catastrophic failures. 
However, the fatigue life prediction from those models 
suffers from several drawbacks. One of the major 
drawbacks is that the calculation of fatigue life from any 
prediction model involves complicated numerical 
integration schemes. Further, to formulate a fatigue model, 
several coupon tests are required which are not only costly 
but time consuming. In order to avoid those shortcomings, 
recently the researchers are taking the help of different 
computational techniques to predict fatigue crack growth 
life.  
Fatigue crack growth under constant amplitude loading for 
a particular material strongly depends on load ratio (R) 
which is the ratio of minimum load (Pmin) to maximum load 
(Pmax). It has tremendous effect on fatigue crack growth. 
Some fatigue experts [5-8] have investigated its effect on 
fatigue crack growth and also proposed different empirical 
and semi-empirical models to evaluate fatigue life. 
However, problems associated with fatigue are difficult to 
solve using conventional mathematical models because of 
non-linearity, noise, cost, time constraint and above all the 
associated micro-mechanisms. Hence, soft-

computing is a good alternative for handling those complex 
problems as it is tolerant of imprecision, uncertainty and 
partial truth. As such, different soft-computing methods 
such as, artificial neural network (ANN), genetic algorithm 
(GA), fuzzy logic and adaptive neuro-fuzzy inference 
system (ANFIS) are being used in various fields including 
fatigue [9-12]. However, the prediction of fatigue life 
considering load ratio effect using ANFIS is rare in fatigue 
literature. Therefore, in the present work an attempt has 
been made to evaluate the constant amplitude fatigue life of 
6061 aluminum alloy under load ratio effect by using 

ANFIS technique. It has been observed that the proposed 
soft-computing technique predicts the fatigue life 
reasonable well with percentage deviation of –0.024 and 
prediction ratio of 1.025.  
 

II. EXPERIMENTATION AND DATA 
PREPARATION 

Fatigue crack growth experiment 
The material under investigation was 6061 aluminum alloy 
received in T6 heat treated condition from rolled palte of 15 
mm thickness. It was supplied by HINDALCO Industries 
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Ltd., Hirakud, Distt. Sambalpur (Odisha), India. 
chemical composition of the alloy as certified by the 
supplier is given in Tables 1.  

Table.1: Chemical Composition of 6061 T6 Al
Elem-
ents 

Cu M
g 

Mn Fe Si

Wt. % 0.15 
– 0.4 

0.8–
1.1 

 

0.14 
max 

<0.0
2 

0.3
0.7

 
The compact tension (CT) specimens for fatigue crack 
growth rate (FCGR) determination were machined in the 
longitudinal direction with notch perpendicular to rolling 
direction as per ASTM E-647-99 standard [13] as shown in 
Fig. 1. Both the sides of the specimen were mirror polished 
in order to facilitate the observation of crack growth. The 
FCGR (da/dN) tests were conducted on as
condition of AA 6061 T6 alloy as per ASTM E647 standard 
on a servo-hydraulic test machine (Instron
load capacity of 250 kN in air at room temperature. 
Initially, the specimens were fatigue pre
mode-I loading with a sinusoidal waveform up to a crack 
length to width (a/w) ratio of 0.3 under given loading 
conditions (frequency: 6Hz; load ratio: 0.1). Then the 
specimens were subjected to FCGR tests under constant 
amplitude technique (i.e. ΔK increasing) maintaining 
different load ratios (R) of 0, 0.2, 0.4, 0.5, 0.6, 0.8 
respectively separately and the test data were recorded. The 
crack growth was monitored with the help of a COD gauge 
mounted on the face of the machined notch. 

Fig. 1: Compact tension (CT) specimen geometry 
 

Crack growth rate determination  
After the fatigue crack growth rate tests, raw 
laboratory data were obtained under each load ratio which 
usually contained much scatter. In order to smoothen the 
test data and to determine the fatigue crack growth rate, the 
following procedures were adopted by applying the concept 
of authors’ previously proposed exponential [14]. 
experimental a – N data were fitted with th
exponential equation as per the previous model.

International Journal of Advanced Engineering Research and Science (IJAERS)                     
30                                                                              ISSN: 2349

                                                                                                                                                          

Ltd., Hirakud, Distt. Sambalpur (Odisha), India. The 
as certified by the 

6061 T6 Al-alloy 
Si Cr Al 

0.3-
0.7 

0.04
-

0.35 

Ba
l 

The compact tension (CT) specimens for fatigue crack 
growth rate (FCGR) determination were machined in the 
longitudinal direction with notch perpendicular to rolling 

99 standard [13] as shown in 
Fig. 1. Both the sides of the specimen were mirror polished 

observation of crack growth. The 
) tests were conducted on as-received 

condition of AA 6061 T6 alloy as per ASTM E647 standard 
Instron-8502) having a 

load capacity of 250 kN in air at room temperature.  
Initially, the specimens were fatigue pre-cracked under 

I loading with a sinusoidal waveform up to a crack 
ratio of 0.3 under given loading 

conditions (frequency: 6Hz; load ratio: 0.1). Then the 
ests under constant 

increasing) maintaining 
) of 0, 0.2, 0.4, 0.5, 0.6, 0.8 

respectively separately and the test data were recorded. The 
crack growth was monitored with the help of a COD gauge 

the face of the machined notch.  

 
Compact tension (CT) specimen geometry  

After the fatigue crack growth rate tests, raw a – N 
laboratory data were obtained under each load ratio which 

much scatter. In order to smoothen the 
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where,  ai and aj = crack length in 
‘mm’ respectively, 
Ni and Nj = No. of cycles in 
mij= specific growth rate in the interval 
i = No. of experimental steps,
The values of specific growth rate ‘
according to the equation (3
curve fitting with calculated 
from initial to final with an increment of 0.005mm)
smoothened values of the number of cycles 
in the excel sheet from the refined ‘
following equation. 
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Then the crack growth rates (d
directly from the above calculated values of ‘

( )
( )ij

ij
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N

a
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−
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d
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The superimposed crack length (
and the corresponding log (d
different load ratios were plotted in Figs. 2 and 3
respectively.  

Fig. 2: Comparison of a–N

Fig. 3: Comparison of log (d
load ratios 
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    (2)    

   (3)                                  

= crack length in i th step and j th step in 

= No. of cycles in i th step and j th step respectively, 
= specific growth rate in the interval i-j , 

= No. of experimental steps, and   j = i+1                                                                              
The values of specific growth rate ‘mij ’ were calculated 
according to the equation (3) and subsequently refined by 
curve fitting with calculated a values (i.e. crack lengths 

initial to final with an increment of 0.005mm). The 
smoothened values of the number of cycles were calculated 
in the excel sheet from the refined ‘mij ’ values as per the 

                                               (4) 

he crack growth rates (da/dN) were determined 
directly from the above calculated values of ‘N’ as follows: 

   (5)  

The superimposed crack length (a) vs. number of cycle (N) 
nd the corresponding log (da/dN) vs. log (∆K) curves at 

different load ratios were plotted in Figs. 2 and 3 

 
N curves for different load ratios 

 
Comparison of log (da/dN) – log (ΔK) for different 

load ratios  
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III. ANFIS: METHODOLOGY 
The fuzzy inference system (FIS) is generally used as a 
suitable tool for approximating ill-defined nonlinear 
functions. It can implement qualitative aspects of human 
knowledge and reasoning by using following four 
functional components as shown in Fig. 4.  

• A rule base containing a number of fuzzy if-then 
rules. 

• A decision-making unit as the inference engine. 
• A fuzzification interface which transforms crisp 

inputs to linguistic variables. 
• A defuzzification interface converting fuzzy 

outputs to crisp outputs. 
 Adaptive neuro-fuzzy inference system (ANFIS) is 
an integrated system of artificial neural network (ANN) and 
fuzzy inference system (FIS) and utilizes the advantages of 
both. ANFIS is a class of adaptive networks, whose 
membership function parameters are tuned (adjusted) using 
either a back-propagation algorithm or hybrid algorithm 
based on a combination of back-propagation and least 

squares estimate (LSE). In the present investigation, type-3 
ANFIS [15] topology based on first-order Takagi-Sugeno 
(TSK) [16] if-then rules has been used.  

 
Fig. 4: Fuzzy Inference System 

The structure of proposed ANFIS model consists of a 
number of interconnected fixed and adjustable nodes 
corresponding to first-order TSK fuzzy model as shown in 
Fig. 5.  It is composed of five layers having three inputs and 
one output. Bell-shaped membership function has been 
chosen for the present investigation because it is the best 
membership function type [17]. A hybrid-learning 
algorithm is applied to adapt the premise and consequent 
parameters to optimize the network. Heuristic rules are used 
to guarantee fast convergence. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5: Structure of the ANFIS model 
 

IV. APPLICATION DESIGN 
It is known that fatigue crack growth life decreases as load 
ratio increases [18]. Accordingly, the maximum stress 
intensity factor (Kmax), and the stress intensity factor range 
(ΔK) are also affected by load ratio. Therefore, during 
model formulation load ratio (R), maximum stress intensity 
factor (Kmax), and stress intensity factor range (ΔK) were 

selected as linguistic input variables whereas, crack growth 
rate (da/dN) was taken as output variable. A set of linguistic 
rules formulated in the “If-Then” form were derived from 
expert observation and experimentation.  
The experimental data base consisted of six sets of fatigue 
crack growth data having load ratios (R) of 0, 0.2, 0.4, 0.5, 
0.6 and 0.8. Each set for a particular load ratio contained 
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approximately 300 data of both Kmax and ΔK along with 
their corresponding da/dN (calculated as per the procedure 
mentioned earlier). The model was applied to simulate the 
crack growth rate of an unknown input/output data set for 
load ratio of 0.5 as validation set (VS) by constructing a 
training set (TS) with five known input/output data sets for 
load ratios (R) of 0, 0.2, 0.4, 0.6 and 0.8.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 6: Flow chart of ANFIS hybrid learning algorithm 
 

Fig. 6 shows the flow chart of ANFIS hybrid learning 
algorithm. Before applying ANFIS model, the pre-
processing of experimental data is essential in order to 
achieve optimum modeling results. The input variables i.e. 
load ratios (R), maximum stress intensity factor (Kmax) and 
stress intensity factor range (ΔK) were normalized in such a 
way that their maximum values were normalized to unity. 
The crack growth rate (da/dN), which constituted the 
system output, was also normalized in similar manner. The 
numbers of membership functions (MF) were chosen to be 
5-5-5 corresponding to the inputs R, Kmax and ΔK 
respectively.  

The 125555 =××  fuzzy ‘if-then’ rules constituted in 
which fuzzy variables were connected by T-norm (fuzzy 
AND) operators. The adjustment of premise and consequent 
parameters was made in batch mode based on the hybrid-
learning algorithm. The model was trained for 4000 epochs 
until the given tolerance was achieved. 
Table 2 summarizes all the characteristics of ANFIS 
network used during training. As per Fig. 5, layer 1 had 15 

( )35×  nodes with 45 parameters. Layers 2, 3 and 4 had 125 

( )35  nodes each with 500 parameters associated in layer 4.  

Table 2: Characteristics of the ANFIS network 
Type of membership 
function 

Generalized 
bell 

Number of input nodes (n) 3 
Number of fuzzy partitions 
of each variable (p) 

5 

Total number of 
membership functions 

15 

Number of rules ( )np  125 

Total number of nodes 394 
Total number of parameters 545 
Number of epochs 4000 
Step size for parameter 
adaptation 

0.01 

 
The model performances during training and testing were 
verified by computing root mean square error (RMSE); 
coefficient of determination (R2) and mean percent error 
(MPE) defined by the following equations: 
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where‘t’ is the target value, ‘o’ is the output value, and ‘
is the number of data items. 
The model was trained and tested by using MATLAB with 
Fuzzy Logic Toolbox. The performance of the model during 
training and testing was verified through three statistical 
indices (Eqs. 6 to 8) and presented in Table 

 
Table: 3 Performance of ANFIS model 

During training 
 RMSE    R2           

MPE   

During testing
RMSE    R2        

MPE             

0.0
012
7 

0.99
85 

0.27
58 

0.01
29 

0.99
86 

0.77
96

 
V. DISCUSSION

As observed from the performance table
RMSE values for the training data were negligible in both 
the cases. MPE values for testing were found to be slightly 
higher than those for training. The coefficient of 
determination was found to be close to 1.0 
However, its value for testing was slightly less than unit
Based on the above statistical performances, the trained 
ANFIS model was tested for load ratio of 0.5
crack growth rates curve (for R=0.5) obtained from ANFIS 
model has been compared with experimental results in Fig
7 and found to be in good agreement.  

Fig. 7: Comparison of da/dN–ΔK  curves for 
 

The numbers of cycles (fatigue life) have been calculated as 
per the following equation. 

i
ii

i N

dN
da

aa
N +

−
= +

+
1

1
   

The predicted (ANFIS) numbers of cycles are presented 
along with experimental results in Table 4 for quantitative 
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  (8) 

’ is the output value, and ‘p’ 

The model was trained and tested by using MATLAB with 
Fuzzy Logic Toolbox. The performance of the model during 
training and testing was verified through three statistical 

) and presented in Table 3.  

3 Performance of ANFIS model  
During testing Comp

-utat-
ional 
Time 
(Min.

) 
0.77
96 

384 

DISCUSSION 
performance table, the MPE and 

RMSE values for the training data were negligible in both 
the cases. MPE values for testing were found to be slightly 
higher than those for training. The coefficient of 
determination was found to be close to 1.0 during training. 
However, its value for testing was slightly less than unity. 

above statistical performances, the trained 
load ratio of 0.5. The predicted 

=0.5) obtained from ANFIS 
experimental results in Fig. 

 
curves for R=0.5  

numbers of cycles (fatigue life) have been calculated as 

  (9)  

The predicted (ANFIS) numbers of cycles are presented 
along with experimental results in Table 4 for quantitative 

comparison. The crack len
curve has been plotted in Fig. 8.

Fig.8: Comparison of predicted (ANFIS) and experimental 
crack length with number of cycle

      The performance of 
comparing the prediction results with the experimental 
findings by the following criteria:

• Percentage deviation of predi
experimental 

0
0 =

Experiment

predicted
Dev

• Prediction ratio which is defined as the ratio of 
actual life (i.e. experimental) to predicted life i.e.

Prediction ratio, P

• Error bands i.e. the scatter of the predicted life in 
either side of the experimental life within certain 
error limits. 

Performance of the model result from first two 
has been presented in Table 

 
Table.4: Prediction results of the model

Fatigue 
life 

(×103 
cycle) 
ANFIS 

Fatigue life
(×103 cycle)
Experimental

76.826 78.783 
 
It is observed that the ANFIS model prediction is 
reasonable in comparison to experimental findings as far as 
prediction of fatigue life is concerned
prediction ratio is approximately 1.0, which is adequate and 
also acceptable [19]. Fig. 
the alloy evaluated graphically under the third criteria. It is 

observed that the scatter of the predicted life is within 
0.025%.  
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comparison. The crack length vs. number of cycle (a~N) 
curve has been plotted in Fig. 8. 

 
Comparison of predicted (ANFIS) and experimental 

crack length with number of cycle 
of the model was evaluated by 

comparing the prediction results with the experimental 
findings by the following criteria: 

Percentage deviation of predicted life from the 
life i.e. 

100×−
alExperiment

alExperimentpredicted  

Prediction ratio which is defined as the ratio of 
life (i.e. experimental) to predicted life i.e. 

predicted

actual
Pr =  

Error bands i.e. the scatter of the predicted life in 
either side of the experimental life within certain 

Performance of the model result from first two criteria 
has been presented in Table 4.  

Prediction results of the model 

Fatigue life 
cycle) 

Experimental 

% 
Deviation 
ANFIS 

Prediction 
ratio 

ANFIS 

 –0.024 1.025 

It is observed that the ANFIS model prediction is 
reasonable in comparison to experimental findings as far as 
prediction of fatigue life is concerned. Further, the 

approximately 1.0, which is adequate and 
 9 illustrates the performance of 

evaluated graphically under the third criteria. It is 

that the scatter of the predicted life is within ±
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Fig. 9: Error band scatter of predicted lives for 
 

VI. CONCLUSION
The focus of this work was to develop an ANFIS model in 
order to predict crack growth rate and in turn the fatigue life 
of 6061 Al alloy under the effect of load ratio. 
observed that the predicted fatigue life from ANFIS model 
is 76.826×103 cycles whereas from experimental result it is 
78.783×103 cycle. As far as performance of the model is 
concerned the percentage deviation of predicted fatigue life 
from the experimental result is –0.024
prediction ratio is 1.025. It can be concluded that the 
adaptive neuro-fuzzy technique (ANFIS) can be reasonably 
applied to predict the fatigue life under constant amplitude 
loading taking into account the load ratio effect.
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