International Journal of Advanced Engineering Resezh and Science (IJAERS)

https://dx.doi.org/10.22161/ijaers/3.11.21

[VoJ43sue-11, Nov- 2016]
ISSN: 2349-6495(P) | 2456-1908(0)

Softwar e Complexity Prediction by Using Basic
Attributes

Rasha Gaffer. M. Helali

Sudan University of Science and Technology, Sudan

Abstract— Software complexity is one of the important
quality attribute that affect the success of software.
Predicting such attribute is a difficult task for software
engineers. Current used measures for computing complexity
are not sufficient. Data mining can be applied to software
data to explore useful interesting patterns. In this paper we
present a simple data mining based prediction model to
predict software complexity based on some basic attributes.
The article starts by considering the correlation between
different features that describes software code structure then
selecting some of these features to be used for complexity
prediction. Results reveal the ability to use branching count
feature as strong predictor of complexity.

Keywords— Software complexity, LOC, McCabe, halstea
branch count.

l. INTRODUCTION

Software complexity is “a natural byproduct of the

functional complexity that the code is attemptingehable”
[1]. In literature, software complexity has beenfimkxd
differently by many researchers [2]. Z use definefiware

complexity as the difficulty to maintain, change dan

understand software. Others view it as difficultydievelop,

test, debug and maintain [2].Therefore, no standard

The cyclomatic complexity v(G) has been
introduced by Thomas McCabe in 1976.The
McCabe complexity is one of the more widely -
accepted software metrics, it is intended to be
independent of language and language format.

The McCabe’s [5] software complexity introduces
the concept of Cyclomatic Complexity. It combines
the number of flow graph edges, nodes and
predicate nodes to represent the complexity. The
Cyclomatic Complexity of a source code is the
linearly independent paths count through the source
code.

The Halstead [6] software complexity measures the
complexity by counting number of operators and
operands in software. It measures the software's
ability to understand and estimates the effort
required to develop a software algorithm. Halstead
metrics are difficult to calculate and it is vergrd

to count the distinct and total operators and
operands in a software program.

Metrics Suite for Object Oriented Design [7]
proposed by Chidambaram Kamerer to measures
complexity of object oriented software based on
coupling and coherence between class.

definition exits for the same in literature. Howeve Recently, many researches focused on predictingpleodity
knowledge about software complexity represents &ecause complexity prediction can help in estingatimny

indicator of development, testing, and maintenagiferts,

other quality attributes like testability and mainiability.

defect rate, fault prone modules and reliability.\\ith The main goal of this paper is to build predictimedel by
multiple system interfaces and complex requiremetits using data mining techniques to find out which ilatite/s
complexity of software systems sometimes grows bdyocan help predicting complexity more than others.e Th
control, rendering applications overly costly toimtain and subsequence sections are organized as followsioselt
risky to enhance [1]. The complexity is affected rhany contains what had been done in the area of contplexi

factors former to software development [3]. Undamding,
predicting and resolving complexity of software aréical
tasks that affect the success of software.

prediction. Section Il describes the proposed ot
model and used data set. Then the following sestion
highlight analysis, results and validation. Finabpnclusion

Software complexity can be measured by Direct Messuis presented.

which is also known as internal attributes and recti
Measures which is also known as external attribuba®ct

1. RELATED WORK

Measures are measured directly such as Cost, eH®€, A number of studies investigate software complexityper
speed, memory. Indirect Measures cannot be measuasdhttribute to be predicted or as predictor tem#itributes.
directly. Example - Functionality, quality, compigx Software complexity commonly used as indicator daltf
efficiency, reliability, maintainability [4]. Theommon used prone class/modules. Moreover, several studiesstmtion

complexity measures are:

the relationship between software complexity anfiware
reliability and maintainability. More complex sofiwe is,

WWW.ijaer s.com Page | 120

International Journal of Advanced Engineering Resezh and Science (IJAERS)
https://dx.doi.org/10.22161/ijaers/3.11.21 ISSN: 2349-6495(P) | 2456-1908(0)

less maintainability and reliability is Usha Chaéill and . COMPLEXITY PREDICTIVE MODEL
Sucheta Bhasin, pointed out that there is a relskip Our analysis is divided into two main steps. Thetfstep is
between complexity and possibility of faults [8]raglin to determine the software attributes (metrics) taat yield
et.al.Constructed a model to find correlation bemve acceptable predictability then find the correlatioetween
McCabe’s Cyclomatic Complexity (CC) and lines ofdeo these attributes to select the most related at&shuo
(LOC). Their model successfully predicts roughly?®®f complexity. The second step is using the selecteibwaes
CC'’s variance by LOC alone. D. Francis Xavier Gtapher to build prediction models. These two steps/ phases
and E. Chandra[9], addressed software Requiremeptesented in the following two subsections.

Stability Index Metric (RSI) that helps to evalu#tte overall - Featureselection

stability of requirements and also keep track @& ginoject The study investigates the ability to use somechatsiibutes
status. Their study proposes Multi-criteria Fuzzgs&d that describe software code to predict its expected
approach for findingOut the complexity weight baseu complexity. The features/ attributes that are satgge
Requirement Complexity Attributes such as Functionaimply including LOC, number of operatorsand numbér
Requirement Complexity, Non — Functional Requiremenperands, branch count, an estimation of compleaitd

[VoJ43sue-11, Nov- 2016]

Complexity, Input Output Complexity, Interface afile

Complexity. The advantage of their model is thas &ble to
estimate the software complexity early which imtpredicts
the Software Requirement Stability during the saftv
development life cycle.

N. J. Pizzi etal. [10]
intelligence based strategy, random feature selects a
classification system to determine the subset dfwsoe

measures that yields the greatest predictive pofeer
module complexity. Sabharwal.et.al.In[11]discusbesv to

use fuzzy logic based approach to predict compleit the

same direction M S. Dattathreya, and H Singh usexty
logic techniques for developing, modeling and analy the

software complexity prediction metric. The authprepose
five non-technical factor metrics based on the entrr

used programming Language. We tried to find dataset
including these features to be used for predicpanpose.
The data used in this study is retrieved from anlgublic
repository PROMISE [14]. The original data is made
available by Software Research Laboratory of Bagazi

Investigated a computation@niversity [15]. The utilized data sets areembedsigftivare

products implemented in C. It contains the measargs of

21 static code attributes (complexity metrics) dndefect

information (false/true) of tens tohundreds of medu

Module attributes were collected using “Prest Mustri
Extraction and Analysis Tool” [15]. The collectetirébutes

contains:

%
%
%

1.loc : numeric % McCabe's line count ofeod
2.v(g) : numeric % McCabe "cycldima

software development process to predict future Arntpmplexity”

Vehicle software complexity [3].

Some studies moved towards computing
complexity differently, Henry and Kafura [3] proedthe
measure of couplings between modules in terms oflyew
of parameters, global variables and function cdi§13]
authors introduce The Entropy software complexiBasure
based on the average information content of eaehabgr in
a software program's source code. An attempt wakerbg
Jinggiu Shao and Yingxu Wang [3] to models thevsaife
complexity based on the cognitive functional sifetlee

software. Although, many studies considered softwa%o

complexity, still much research is required. Abditerature
leads to a conclusion that we need to find a wayge
current available measures of software attribubegite an
indicator to how software complexity is. We deserithe
proposed software complexity prediction model irstap
wise manner as follows:

% 3.ev(Q) : numeric % McCabe "essénti

softwacemplexity”

4.iv(g) : numeric % McCabe "desigmplexity”
5.n: numeric % Halstead total operators eérapds
6.v: numeric % Halstead "volume"

7.1: numeric % Halstead "program length"

8.d: numeric % Halstead "difficulty"

9.i: numeric % Halstead "intelligence"

10.e: numeric % Halstead "effort"

11.b: numeric % Halstead

12.t: numeric % Halstead's time estimator

% 13.I0Code: numeric % Halstead's line count

% 14.10Comment : numeric % Halstead'sit o
lines of comments
% 15.I10Blank
lines
%
%

%

: numeric % Halstead's counblahk

16.I0CodeAndComment: numeric
17.unig_Op: numeric % unique operators

1- Data set and feature selection % 18.uniq_Opnd: numeric % unique operands
2- Find correlation between software attributes. % 19.total_Op: numeric % total operators
3- Applying data mining techniques to predices 20.total_Opnd: numeric % total operands
complexity. % 21: branch Count : numeric % of the fignaph
WWW.ijaer s.com Page | 121

International Journal of Advanced Engineering Resezh and Science (IJAERS) [VoJ43sue-11, Nov- 2016]

https://dx.doi.org/10.22161/ijaers/3.11.21 ISSN: 2349-6495(P) | 2456-1908(0)
% 22.defects:{false,true} % module has/hasams or total_Opnd .860 0.00
more Branch_ count .999 0.00
% % reportigfects Defects 169 0.00

According to suggested features only 18 attributese used

’) i) _ By considering r- value it is obvious that the mosfated
from the above list. We omit 4 attributes (desigmplexity,

attributes to complexity estimation which measureyl

gssenttlalt fom|3tle>i|rt]y,t alettb_ba?d time eshmatoidljtt)_Js McCabe are branch count, LOC and unique operators.
important to note that all attributes were measurgdaising contrast, 2 attributes are not related to compfesgiich as

traditional known metrics (LOC, McCabe and HalsbeadLength whichmeasured by Halstead and (LOCand

Our tg)]oal hzr(te IS todf|?ure Ollﬂ V_\ih'cg of the a'bog;p‘ut(?S commands)measure that appears from negative r value
can be used o predict complexity. spearman's e 1S resulting from correlation process. So, both of ateg

done between these attributes table "1" below ShO\Q{tQ'tributes are omitted from selected features.IFintoe rest

correlation results. of attributes (16 attributes) were fed to predietmodel.lt is
important to note that for prediction purpose wsigs two

Table.1: Correlation resuits classes for complexity the first class is “hightdmplexity

Complexity v(g) value is greater than 20, second class is “Lowebihplexity
r-value p-value is less than 20.
LOC (MCCabe'S line .889 0.00 _ PrOpO%d predictive model
count) The proposed predictive model as mentioned abowsists
Design complexity 826 0.00 of two main phases: feature selection phase antysisia
total operators + .869 0.00 prediction phase. Data mining generally used toraext
operands previously unknown patterns help to improve or epeedict
Volume .872 0.00 new knowledge[16]. Data mining are integrated ialgsis /
Length -0.832 0.00 prediction phasethat classifyingsoftware data gh lor low
Difficulty 861 0.00 complexity based on labeled training data. If camjy
Intelligence 733 0.00 estimation is less than 20 it labeled as low, &ager than 20
Effort 883 0.00 labeledhigh. Decision trge <_:IaSS|f|cat|on algorltf@ﬁ._o is
Loc code (Halstead's 569 0.00 used. to perform clgfssm.catlon p.rocess.The d.ecg@es
line count) algorlthms are clas§|f|cat|on algo.rlt.hms for usepredlctn/.e
modeling. They build a data mining model by creatm
Locomments 635 0.00 series of splits in the tree [16].The C5.0 algantiwas
Loblank 676 0.00 chosen for the following reasons. Firstly, it's piinity.
LOC and comments -0.062 170 Secondly, it has boosting feature that mean usingipte
unig_Op .887 0.00 classifiers instead of one to provide better cfasgion
Uniqu_oernd .843 0.00 accuracy. The output of this phase is three sesoftfvare
total_Op 869 0.00 data in addition to set of classification rulegyufe 1 bellow
shows the proposed prediction model.
/ Predicted
Software Feature \> Feature LS Classification complexity
data Analysis selection process Lo

Rules

Fig.1: Prediction model

Total number of records fed to classifier is498rdso

Records are randomly split into two sets, a trajrgat and a V. ANALYSISANDRESULTS

testing set. The training set used to create tméngimodel. Results confirm the existence of strong relatiotwieen

The testing set used to check model accuracy. hgdisita branch count and complexity. C5.0 algorithm geresratet

represents40% of total data/records. Results stedlin the of classification rules learned from training datafollows:

following section. - If branch count between land 20 then complexity
class is low.

WWW.ijaer s.com Page | 122

International Journal of Advanced Engineering Resezh and Science (IJAERS)

https://dx.doi.org/10.22161/ijaers/3.11.21

[VoJ43sue-11, Nov- 2016]
ISSN: 2349-6495(P) | 2456-1908(0)

- If branch count is greater than 20 then complexity

will be high.
- Special cases if branch count in [27 32 33 34 41 43
49 59 63 71] also complexity class Low
So, branch count can work as a good predictor tovace
complexity. Predication accuracy, prediction prieeis and
recall rate are commonly used metrics to evalusebinary
prediction models [14]. Classification accuracye@imated
by used mining algorithmequal to 100%. Table “2'4mnets
the results after applying C5.0 to data.

Table.2: Prediction Results Details

High Low
Predicted high 24 0
Predicted Low 0 474

Accuracy =acc =100%

Probability of false alarm = pf =0%
Probability of detection = pd =recall = 474/474=
Precision = prec=474/474=1

For validation purpose six programs are selectatitasted
according to the above rules. The selected prograres
stack,Gzip, print tokens, and arraysorting, binsggrch and
replace programs. Branch count ismeasured for the f
programs and also complexity estimated by using &beC
metric then rules are checked for validation.Acaaydto
Validation
complexity correct 100%. Table 3 shows validatiesults.

Table.3: Validation Results

Program| Branch| Complexity Class| Check
name | count v(G)

Stack 2 18 Low| correqt
Gzip 100 1260 high| corre¢t
A”‘?‘y 2 6 Low | correct]
sorting

replace 28 92 high corregt
Print 61 79 high [correc
tokens

Binary 2 4 low | correct
search

V. CONCLUSIONS

In this paper, a simple data mining based compfexit

prediction model were presented. Model dependsaones
attributes measured using traditional metrics fraode
structure.The most important aspect of the moded tea
figure out which attribute could be used as predidb
software complexity. Results find strong relatioatieen
complexity and branch count feature.

WWW.ijaer s.com

results we can say branch count predict

REFERENCES
Application Analytics Software,What is Software
Complexity:http://www.castsoftware.com/glossarytsof
ware-complexity.
Chhillar, Usha, and SuchetaBhasin. "Establishing
Relationship between Complexity and Faults for
Object-Oriented Software Systems." 1JCSI
International Journal of Computer Science Issués 8.
(2011).
Dattathreya, Macam S., and Harpreet Singh."Army
Vehicle Software Complexity Prediction Metric-Five
Factors."
Bhatnagar, Anurag, NikharTak, and Shweta Shukl. "A

[1]

(2]

(3]

[4]

LITRERATURE SURVEY ON VARIOUS
SOFTWARE COMPLEXITY MEASURES."
International Journal of Advanced Studies in

Computers, Science and Engineering 1.1 (2012): 1.
McCabe, T.J. A Complexity Measure, IEEE Trans. On
Software Engg., SE-2, 4, 1976, pp. 308-320

Halstead, M.H. Elements of Software Science, New

York: Elsevier North Holland, 1977.

Jamali, Seyyed Mohsen. "Object oriented metrics." A

survey approach Technical report, Department of

Computer Engineering, Sharif University of

Technology, Tehran, Iran (2006).

Chhillar, Usha, and SuchetaBhasin. "Establishing

Relationship between Complexity and Faults for

Object-Oriented Software Systems." 1JCSI

International Journal of Computer Science Issués 8.

(2011).

International Journal of Software Engineering &

Applications (IJSEA), Vol.3, No.6, November 2012

doi 10.5121/ijsea.2012.360 8 101 prediction of

software requirements stability based on complexity
point measurement u sing m ulti — c riteria fuzzy
approach d. francisxavierchristopher 1 and e.cltaandr

[10]N. J. Pizzi, "A Computational Intelligence Stratefgy
Software Complexity Prediction,” Neural Networks,
2006.1JCNN '06. International Joint Conference on,
Vancouver, BC, 2006, pp. 4727-4733.
doi: 10.1109/IJCNN.2006.247127

[11]S. Sabharwal, R. Sibal and P. Kaur, "Software
complexity: A fuzzy logic approach,” Communication,
Information & Computing Technology (ICCICT), 2012
International Conference on, Mumbai, 2012, pp. 1-6.

[12]Harrison, Warren. "An entropy-based measure of
software complexity." Software Engineering, IEEE
Transactions on 18.11 (1992): 1025-1029.

[13]S.W. QIingWANG, L.I. Mingshu, Software defect
prediction, J SoftwMaintEvol: Res Practice, 19 (7)
(2008), pp. 1565-1580

[14]S. J. Sayyad and T. J. Menzies, The PROMISE
Repository of Software Engineering Databases, 9choo

[5]
[6]
[7]

[8]

[9]

Page | 123

International Journal of Advanced Engineering Resezh and Science (IJAERS)
https://dx.doi.org/10.22161/ijaers/3.11.21

of Information Technology
University of

[VoJ43sue-11, Nov- 2016]
ISSN: 2349-6495(P) | 2456-1908(0)

and Engineering,

Ottawa, Can-ada,
http://promise.site.uottawa.ca/SERepository.

[15]Graylin, J. A. Y., et al. "Cyclomatic complexity é@n
lines of code: empirical evidence of a stable linea

relationship.” Journal of Software Engineering and
Applications 2.03 (2009): 137.

[16]Yousef, Ahmed H. "Extracting software static defect

models using data mining." Ain Shams Engineering
Journal 6.1 (2015): 133-144.

WWW.ijaer s.com

Page | 124

