Difference Cordial of Operational Graph Related to Cycle

S. M. Vaghasiya¹, G. V. Ghodasara² ${}^{1}R$. K. University, Rajkot, Gujarat - INDIA e-mail: sarla.spkm@gmail.com ²H. & H. B. Kotak Institute of Science, Rajkot, Gujarat - INDIA e-mail: gaurang_enjoy@yahoo.co.in

Abstract —*Let* G *be a* (p, q) *graph. A bijective vertex labeling function* $f : V(G) \rightarrow \{1, 2, \ldots p\}$ *is called a difference cordial labeling if for each edge* uv*, assign the label* $|f(u) - f(v)|$ *then* $|e_f(0) - e_f(1)| \leq 1$ *, where* $e_f(1)$ *and* $e_f(0)$ *denote the number of edges labeled with 1 and not labeled with 1 respectively. A graph with a difference cordial labeling is called a difference cordial graph. In this paper, we prove that cycle with one chord, cycle with twin chords and cycle with triangle admit difference cordial labeling.*

Keywords -*Difference cordial, Cycle with one chord, Cycle with twin chord, cycle with triangle, Swastik graph.*

AMS Subject classification number: 05C78.

I. INTRODUCTION

Here we consider finite, undirected and simple graph. Let $G = (V, E)$ be a (p, q) graph. For graph theoretical terminology and notations we follow Harary^[3].

Ponraj et al.[5] introduced difference cordial labeling and proved that path, cycle, complete graph, complete bipartite graph, star, helm are difference cordial graphs. In [6] the same authors have discussed difference cordial labeling behaviour of triangular snake, quadrilateral snake, double triangular snake, double quadrilateral snake and alternate snakes.

II. MAIN RESULTS

Definition II.1. A chord of a cycle C_n is an edge *joining two non-adjacent vertices of cycle* C_n .

Theorem II.1. *Cycle* C_n *with one chord is difference cordial graph, where chord forms a triangle with two edges of* Cn*.*

Proof. Let G be the cycle C_n with one chord. Let $V(G) = \{v_1, v_2, \ldots, v_n\}$ and $E(G) = \{v_i v_{i+1}/1 \leq$ $i \leq n-1$ \cup $\{v_n v_1\} \cup \{v_2 v_n\}$. Here $|V(G)| = n$ and $|E(G)| = n + 1$. To define vertex labeling function $f: V(G) \to \{1, 2, \ldots, n\}$, we consider the following cases.

Case 1: n is odd. $f(v_i) = i; 1 \leq i \leq 2.$

Subcase 1:
$$
n \equiv 1 \pmod{4}
$$

$$
f(v_{2i+1}) = \begin{cases} 4i; & 1 \le i \le \frac{n-1}{4}. \\ (2n+1) - 4i; & \frac{n+3}{4} \le i \le \frac{n-1}{2}. \end{cases}
$$

$$
f(v_{2i+2}) = \begin{cases} 4i+1; & 1 \le i \le \frac{n-1}{4}. \\ 2n-4i; & \frac{n+3}{4} \le i \le \frac{n-3}{2}. \end{cases}
$$

Subcase 2: $n \equiv 3 \pmod{4}$

$$
f(v_{2i+1}) = \begin{cases} 4i; & 1 \le i \le \frac{n-3}{4}. \\ (2n+1) - 4i; & \frac{n+1}{4} \le i \le \frac{n-1}{2}. \end{cases}
$$

$$
f(v_{2i+2}) = \begin{cases} 4i+1; & 1 \le i \le \frac{n-3}{4}. \\ 2n-4i; & \frac{n+1}{4} \le i \le \frac{n-3}{2}. \end{cases}
$$

Case 2: n is even. $f(v_i) = i; 1 \leq i \leq 2.$

Subcase 1: $n \equiv 0 \pmod{4}$

$$
f(v_{2i+1}) = \begin{cases} 4i; & 1 \le i \le \frac{n}{4}. \\ (2n+2) - 4i; & \frac{n+4}{4} \le i \le \frac{n-2}{2}. \end{cases}
$$

$$
f(v_{2i+2}) = \begin{cases} 4i+1; & 1 \le i \le \frac{n-4}{4}. \\ 2n-4i; & \frac{n}{4} \le i \le \frac{n-2}{2}. \end{cases}
$$

Subcase 2: $n \equiv 2 \pmod{4}$

$$
f(v_{2i+1}) = \begin{cases} 4i; & 1 \le i \le \frac{n-2}{4}. \\ (2n+1) - 4i; & \frac{n+2}{4} \le i \le \frac{n-2}{2}. \end{cases}
$$

.

.

.

$$
f(v_{2i+2}) = \begin{cases} 4i+1; & 1 \le i \le \frac{n-2}{4}.\\ 2n-4i; & \frac{n+2}{4} \le i \le \frac{n-2}{2} \end{cases}
$$

In each case cycle C_n with one chord satisfies condition for difference cordial labeling.

Illustration II.1. Difference cordial labeling of C_{11} *with one chord is shown in Figure 1.*

Definition II.2. *Two chords of a cycle* C_n *are said to be twin chords if they form a triangle with an edge of the cycle* C_n *.*

For positive integer n and p with $3 \le p \le n - 2$, $C_{n,p}$ *is the graph consisting of a cycle* C_n *with a pair of twin chords with which the edges of* C_n *form cycles* C_p, C_3 *and* C_{n+1-p} *without chords.*

Theorem II.2. *Cycle with twin chords* $C_{n,3}$ *is difference cordial.*

Proof. Let $|V(C_{n,3})|$ = $\{v_1, v_2, \ldots, v_n\}$ and $|E(C_{n,3})|$ = {v_iv_{i+1}/1 ≤ *i* ≤ *n* − 1} ∪ ${v_n v_1} \cup {v_2 v_n} \cup {v_3 v_n}.$ $|V(C_{n,3})| = n$, $|E(C_{n,3})| = n + 2$. To define vertex labeling function $f: V(C_{n,3}) \rightarrow \{1, 2, ..., n\}$, we consider the following cases.

Case 1: n is odd.

Subcase 1: $n \equiv 1 \pmod{4}$

$$
f(v_{2i-1}) = \begin{cases} 4i - 3; & 1 \leq i \leq \frac{n+3}{4}. \\ (2n+5) - 4i; & \frac{n+7}{4} \leq i \leq \frac{n+1}{2}. \end{cases}
$$

\n
$$
f(v_{2i}) = \begin{cases} 4i - 2; & 1 \leq i \leq \frac{n-1}{4}. \\ (2n+2) - 4i; & \frac{n+3}{4} \leq i \leq \frac{n-1}{2}. \end{cases}
$$

\nSubcase 2: $n \equiv 3 \pmod{4}$
\n
$$
f(v_{2i-1}) = \begin{cases} 4i - 3; & 1 \leq i \leq \frac{n+1}{4}. \\ (2n+5) - 4i; & \frac{n+5}{4} \leq i \leq \frac{n+1}{2}. \end{cases}
$$

\n
$$
f(v_{2i}) = \begin{cases} 4i - 2; & 1 \leq i \leq \frac{n+1}{4}. \\ (2n+2) - 4i; & \frac{n+5}{4} \leq i \leq \frac{n-1}{2}. \end{cases}
$$

\nCase 2: n is even.
\nSubcase 1: $n \equiv 0 \pmod{4}$
\n
$$
f(v_{2i-1}) = \begin{cases} 4i - 3; & 1 \leq i \leq \frac{n}{4}. \\ (2n+4) - 4i; & \frac{n+4}{4} \leq i \leq \frac{n}{2}. \end{cases}
$$

\nSubcase 2: $n \equiv 2 \pmod{4}$
\n
$$
f(v_{2i-1}) = \begin{cases} 4i - 3; & 1 \leq i \leq \frac{n-2}{2}. \\ (2n+4) - 4i; & \frac{n+6}{4} \leq i \leq \frac{n+2}{2}. \end{cases}
$$

\nSubcase 2: $n \equiv 2 \pmod{4}$
\n
$$
f(v_{2i-1}) = \begin{cases} 4i - 3; & 1 \leq i \leq \frac{n+2}{4}. \\ (2n+4) - 4i; & \frac{n+6}{4} \leq i \leq \frac{n}{2}. \end{cases}
$$

\n
$$
f(v_{2i}) = \begin{cases} 4i - 2; & 1 \le
$$

 $\begin{cases} (2n+3)-4i; & \frac{n+6}{4} \leq i \leq \frac{n}{2}. \end{cases}$
In each case cycle with twin chords $C_{n,3}$ satisfies condition for difference cordial labeling. \Box

Illustration II.2. *Difference cordial labeling of cycle* C¹⁶ *with twin chords is shown in Figure 2.*

Definition II.3. *A cycle with triangle is a cycle with three chords which by themselves form a triangle.*

For positive integers p, q, r and $n \geq 6$ *with* $p+q+r+$ $3 = n, C_n(p, q, r)$ *denotes a cycle with triangle whose edges form the edges of cycles* C_{p+2} , C_{q+2} , C_{r+2} *without chords.*

Theorem II.3. *Cycle with triangle* $C_n(1, 1, n-5)$ *is difference cordial.*

Proof. Let $|V(C_n(1, 1, n-5))| = \{v_1, v_2, \ldots, v_n\}$ and $|E(C_n(1, 1, n-5))| = \{v_i v_{i+1}/1 \leq i \leq$ $n-1\} \cup \{v_n v_1\} \cup \{v_1 v_3\} \cup \sqrt[n]{v_3 v_{n-1}} \} \cup \{v_{n-1} v_1\}.$ $|V(C_n(1, 1, n-5))| = n, |E(C_n(1, 1, n-5))| =$ $n + 3$. To define vertex labeling function $f : V(C_n(1, 1, n-5)) \rightarrow \{1, 2, ..., n\},$ we consider the following cases.

Case 1: *n* is odd.
\n
$$
f(v_1) = 1.
$$
\nSubcase 1: $n \equiv 1 \pmod{4}$
\n
$$
f(v_{2i+1}) = \begin{cases} 4i; & 1 \le i \le \frac{n-1}{4}. \\ 2n - 4i; & \frac{n+3}{4} \le i \le \frac{n-1}{2} \end{cases}
$$
\n
$$
f(v_{2i}) = \begin{cases} 4i - 1; & 1 \le i \le \frac{n-1}{4}. \\ (2n + 3) - 4i; & \frac{n+3}{4} \le i \le \frac{n-1}{2}. \end{cases}
$$
\nSubcase 2: $n \equiv 3 \pmod{4}$
\n
$$
f(v_{2i+1}) = \begin{cases} 4i; & 1 \le i \le \frac{n-3}{4}. \\ 2n - 4i; & \frac{n+1}{4} \le i \le \frac{n-3}{2}. \end{cases}
$$
\n
$$
f(v_{2i}) = \begin{cases} 4i - 1; & 1 \le i \le \frac{n+1}{4}. \\ (2n + 3) - 4i; & \frac{n+5}{4} \le i \le \frac{n-1}{2}. \end{cases}
$$
\nCase 2: *n* is even.
\n
$$
f(v_1) = 1.
$$
\nSubcase 1: $n \equiv 0 \pmod{4}$
\n
$$
f(v_{2i+1}) = \begin{cases} 4i; & 1 \le i \le \frac{n}{4}. \\ (2n + 1) - 4i; & \frac{n+4}{4} \le i \le \frac{n-2}{2}. \\ (2n + 2) - 4i; & \frac{n+4}{4} \le i \le \frac{n}{2}. \end{cases}
$$

Subcase 2:
$$
n \equiv 2(mod4
$$

\n
$$
f(v_{2i+1}) = \begin{cases} 4i; & 1 \le i \le \frac{n-2}{4}. \\ (2n+1) - 4i; & \frac{n+2}{4} \le i \le \frac{n-2}{2}. \end{cases}
$$
\n
$$
f(v_{2i}) = \begin{cases} 4i - 1; & 1 \le i \le \frac{n-2}{4}. \\ (2n+2) - 4i; & \frac{n+2}{4} \le i \le \frac{n}{2}. \end{cases}
$$
\nIn each case the rule with triangle G (1, 1, 1).

In each case the cycle with triangle $C_n(1, 1, n-5)$ satisfies the condition for difference cordial labeling. \Box

Illustration II.3. *Difference cordial labeling of cycle* C_{11} *with triangle* $(C_{11}(1, 1, 6))$ *is shown in Figure 3.*

Definition II.4. *[4] Swastik graph is a union of four copies of* C_{4n} ($n \in \mathbb{N} - 1$). Consider $v_{k,i}$ ($1 \leq k \leq$ $4, 1 \leq i \leq 4n$) *to be the vertices of* k^{th} *copy of* C_{4n} *, where* $v_{k,4n} = v_{k+1,1}$, $1 \leq k \leq 3$ *and* $v_{4,4n} = v_{1,1}$ *. It is denoted as* Sw_n , $n \in \mathbb{N} - 1$.

www.ijaers.com Page | 237

Theorem II.4. *Swastik* Swⁿ *is difference cordial graph,* $n \in \mathbb{N} - 1$ *.*

Proof. Let $v_{k,i}$ $(1 \leq k \leq 4, 1 \leq i \leq 4n)$ be the vertices of k^{th} copy of C_{4n} in swastik graph Sw_n , where $v_{k,4n} = v_{k+1,1}$, $1 \le k \le 3$ and $v_{4,4n} = v_{1,1}$. Here $|V(Sw_n)| = 16n - 4$ and $|E(Sw_n)| = 16n$. We define vertex labeling function $f : V(G) \rightarrow$ $\{1, 2, ..., |V(Sw_n)|\}$ as follows.

$$
f(v_{1,(2i-1)}) = \begin{cases} 4i-3; & 1 \le i \le n. \\ (8n+3)-4i; & n+1 \le i \le 2n. \end{cases}
$$

\n
$$
f(v_{1,(2i)}) = \begin{cases} 4i-2; & 1 \le i \le n. \\ 8n-4i; & n+1 \le i \le 2n-1. \end{cases}
$$

\n
$$
f(v_{2,(2i-1)}) = \begin{cases} 4(n+i-1); & 1 \le i \le n. \\ 2(6n-2j+1); & n+1 \le i \le 2n. \end{cases}
$$

\n
$$
f(v_{2,(2i)}) = \begin{cases} 4(n+i)-3; & 1 \le i \le n. \\ 4(3n-i)-1; & n+1 \le i \le 2n-1. \end{cases}
$$

\n
$$
f(v_{3,(2i-1)}) = \begin{cases} 4(2n+i)-5; & 1 \le i \le n. \\ 4(4n-i)+1; & n+1 \le i \le 2n. \end{cases}
$$

\n
$$
f(v_{3,(2i)}) = \begin{cases} 4(2n+i-1); & 1 \le i \le n. \\ 2(8n-2j-1); & n+1 \le i \le 2n-1. \\ 2(8n-2j-1); & n+1 \le i \le 2n-1. \end{cases}
$$

\n
$$
f(v_{4,(2i-1)}) = \begin{cases} 11n+4i-2; & 1 \le i \le n. \\ (19n-4)-4i; & n+1 \le i \le 2n. \\ (19n+1)-4i; & n+1 \le i \le 2n-1. \end{cases}
$$

\n
$$
f(v_{4,(2i)}) = \begin{cases} 4(3n+i)-5; & 1 \le i \le n. \\ (19n+1)-4i; & n+1 \le i \le 2n-1. \end{cases}
$$

2 $\overline{1}$ 3 $\widetilde{\mathcal{A}}$ $7)$ (6 \bullet 8) (9 $\overrightarrow{11}$ $\overrightarrow{10}$ 12 15 $\sqrt{14}$ 13

Illustration II.4. *Difference cordial labeling of* Sw⁴ *is shown in Figure 4.*

IV. CONCLUSION

Difference cordial labeling for different cycle graphs have been discussed. As all cycle graphs are difference cordial by adding one or more chords in cycle C_n . We proved that the resultant graphs are also difference cordial.

REFERENCES

- [1] I. Cahit, Cordial Graphs: "A weaker version of graceful and Harmonic Graphs, Ars Combinatoria ", 23 (1987), 201-207.
- [2] J. A. Gallian, A dynamic survey of graph labeling, "The Electronics Journal of Combinatorics", 19 (2012), $\sharp DS6 1 260$. [3] F. Harary, "Graph theory", Addision-wesley, Reading, MA
- (1969). [4] V. J. Kaneria and H. M. Makadia, Graceful Labeling for
- swastik Graph, "International Journal of Mathematics and its applications ", 3 (2015), 25-29.
- [5] R. Ponraj, S. Sathish Narayanan and R. Kala, Difference cordial labeling of graphs, "Global Journal of Mathematical Sicences: Theory and Practical", 5 (2013), 185-196.
- [6] R. Ponraj, S. Sathish Narayanan and R. Kala, Difference Cordial Labeling of Subdivision of Snake Graphs, "Universal Journal of Applied Mathematics", 2 (2014), 40-45.