Difference Cordial of Operational Graph Related to Cycle

S. M. Vaghasiya¹, G. V. Ghodasara² ¹R. K. University, Rajkot, Gujarat - INDIA

e-mail: sarla.spkm@gmail.com

²H. & H. B. Kotak Institute of Science, Rajkot,

Gujarat - INDIA

e-mail: gaurang enjoy@vahoo.co.in

Abstract —Let G be a (p,q) graph. A bijective vertex labeling function $f:V(G) \rightarrow \{1,2,\ldots p\}$ is called a difference cordial labeling if for each edge uv, assign the label |f(u) - f(v)| then $|e_f(0) - e_f(1)| \le 1$, where $e_f(1)$ and $e_f(0)$ denote the number of edges labeled with 1 and not labeled with 1 respectively. A graph with a difference cordial labeling is called a difference cordial graph. In this paper, we prove that cycle with one chord, cycle with twin chords and cycle with triangle admit difference cordial

Keywords -Difference cordial, Cycle with one chord, Cycle with twin chord, cycle with triangle, Swastik graph.

AMS Subject classification number: 05C78.

I. INTRODUCTION

Here we consider finite, undirected and simple graph. Let G = (V, E) be a (p, q) graph. For graph theoretical terminology and notations we follow Harary[3].

Ponraj et al.[5] introduced difference cordial labeling and proved that path, cycle, complete graph, complete bipartite graph, star, helm are difference cordial graphs. In [6] the same authors have discussed difference cordial labeling behaviour of triangular snake, quadrilateral snake, double triangular snake, double quadrilateral snake and alternate snakes.

II. MAIN RESULTS

Definition II.1. A chord of a cycle C_n is an edge joining two non-adjacent vertices of cycle C_n .

Theorem II.1. Cycle C_n with one chord is difference cordial graph, where chord forms a triangle with two edges of C_n .

Proof. Let G be the cycle C_n with one chord. Let $V(G) = \{v_1, v_2, \dots, v_n\}$ and $E(G) = \{v_i v_{i+1}/1 \le i \le n\}$ $i \le n-1 \cup \{v_n v_1\} \cup \{v_2 v_n\}$. Here |V(G)| = n and |E(G)| = n + 1. To define vertex labeling function $f:V(G)\to\{1,2,\ldots,n\}$, we consider the following

Case 1: n is odd. $f(v_i) = i; 1 \le i \le 2.$

Subcase 1: $n \equiv 1 \pmod{4}$

$$f(v_{2i+1}) = \begin{cases} 4i; & 1 \le i \le \frac{n-1}{4}. \\ (2n+1) - 4i; & \frac{n+3}{4} \le i \le \frac{n-1}{2}. \end{cases}$$

$$f(v_{2i+2}) = \begin{cases} 4i+1; & 1 \le i \le \frac{n-1}{4}. \\ 2n-4i; & \frac{n+3}{4} \le i \le \frac{n-3}{2}. \end{cases}$$

Subcase 2: $n \equiv 3 \pmod{4}$

Subcase 2:
$$n \equiv 3 \pmod{4}$$

$$f(v_{2i+1}) = \begin{cases} 4i; & 1 \le i \le \frac{n-3}{4}. \\ (2n+1) - 4i; & \frac{n+1}{4} \le i \le \frac{n-1}{2}. \end{cases}$$

$$f(v_{2i+2}) = \begin{cases} 4i+1; & 1 \le i \le \frac{n-3}{4}. \\ 2n-4i; & \frac{n+1}{4} \le i \le \frac{n-3}{2}. \end{cases}$$

Case 2: n is even.

$$f(v_i) = i; 1 \le i \le 2.$$

Subcase 1:
$$n \equiv 0 \pmod{4}$$

$$f(v_{2i+1}) = \begin{cases} 4i; & 1 \le i \le \frac{n}{4}. \\ (2n+2) - 4i; & \frac{n+4}{4} \le i \le \frac{n-2}{2}. \end{cases}$$

$$f(v_{2i+2}) = \begin{cases} 4i+1; & 1 \le i \le \frac{n-4}{4}. \\ 2n-4i; & \frac{n}{4} \le i \le \frac{n-2}{2}. \end{cases}$$

Subcase 2: $n \equiv 2 \pmod{4}$

$$f(v_{2i+1}) = \begin{cases} 4i; & 1 \le i \le \frac{n-2}{4}.\\ (2n+1) - 4i; & \frac{n+2}{4} \le i \le \frac{n-2}{2}. \end{cases}$$

www.ijaers.com Page | 236

$$f(v_{2i+2}) = \begin{cases} 4i+1; & 1 \le i \le \frac{n-2}{4}.\\ 2n-4i; & \frac{n+2}{4} \le i \le \frac{n-2}{2}. \end{cases}$$

In each case cycle C_n with one chord satisfies condition for difference cordial labeling.

Illustration II.1. Difference cordial labeling of C_{11} with one chord is shown in Figure 1.

Definition II.2. Two chords of a cycle C_n are said to be twin chords if they form a triangle with an edge of the cycle C_n .

For positive integer n and p with $3 \le p \le n-2$, $C_{n,p}$ is the graph consisting of a cycle C_n with a pair of twin chords with which the edges of C_n form cycles C_p, C_3 and C_{n+1-p} without chords.

Theorem II.2. Cycle with twin chords $C_{n,3}$ is difference cordial.

 $\begin{array}{lll} \textit{Proof.} \ \ \text{Let} & |V(C_{n,3})| &= \{v_1,v_2,\dots,v_n\} \ \ \text{and} \\ |E(C_{n,3})| &= \{v_iv_{i+1}/1 &\leq i \leq n-1\} \ \cup \\ \{v_nv_1\} &\cup \{v_2v_n\} \ \cup \ \{v_3v_n\}. \ \ |V(C_{n,3})| &= n, \end{array}$ $|E(C_{n,3})| = n + 2$. To define vertex labeling function $f: V(C_{n,3}) \to \{1,2,\ldots,n\}$, we consider the following cases.

Case 1: n is odd.

Subcase 1: $n \equiv 1 \pmod{4}$

Subcase 1:
$$n \equiv 1 \pmod{4}$$

$$f(v_{2i-1}) = \begin{cases} 4i - 3; & 1 \le i \le \frac{n+3}{4}. \\ (2n+5) - 4i; & \frac{n+7}{4} \le i \le \frac{n+1}{2}. \end{cases}$$

$$f(v_{2i}) = \begin{cases} 4i - 2; & 1 \le i \le \frac{n-1}{4}. \\ (2n+2) - 4i; & \frac{n+3}{4} \le i \le \frac{n-1}{2}. \end{cases}$$
Subcase 2: $n \equiv 3 \pmod{4}$

$$f(v_{2i-1}) = \begin{cases} 4i - 3; & 1 \le i \le \frac{n+1}{4}. \\ (2n+5) - 4i; & \frac{n+5}{4} \le i \le \frac{n+1}{2}. \end{cases}$$

$$f(v_{2i}) = \begin{cases} 4i - 2; & 1 \le i \le \frac{n+1}{4}. \\ (2n+2) - 4i; & \frac{n+5}{4} \le i \le \frac{n-1}{2}. \end{cases}$$

Subcase 1: $n \equiv 0 \pmod{4}$

$$f(v_{2i-1}) = \begin{cases} 4i - 3; & 1 \le i \le \frac{n}{4}. \\ (2n+4) - 4i; & \frac{n+4}{4} \le i \le \frac{n}{2}. \end{cases}$$

$$f(v_{2i}) = \begin{cases} 4i - 2; & 1 \le i \le \frac{n}{4}. \\ 2n - 4i; & \frac{n}{4} \le i \le \frac{n-2}{2}. \end{cases}$$
Subcase 2: $n \equiv 2 \pmod{4}$

Subcase 2:
$$h = 2(moa4)$$

$$f(v_{2i-1}) = \begin{cases} 4i - 3; & 1 \le i \le \frac{n+2}{4}. \\ (2n+4) - 4i; & \frac{n+6}{4} \le i \le \frac{n}{2}. \end{cases}$$

$$f(v_{2i}) = \begin{cases} 4i - 2; & 1 \le i \le \frac{n+2}{4}. \\ (2n+3) - 4i; & \frac{n+6}{4} \le i \le \frac{n}{2}. \end{cases}$$
In each case cycle with twin cherds C a set is

In each case cycle with twin chords $\bar{C}_{n,3}$ satisfies condition for difference cordial labeling.

Illustration II.2. Difference cordial labeling of cycle C_{16} with twin chords is shown in Figure 2.

Definition II.3. A cycle with triangle is a cycle with three chords which by themselves form a triangle. For positive integers p, q, r and $n \ge 6$ with p+q+r+ $3 = n, C_n(p, q, r)$ denotes a cycle with triangle whose edges form the edges of cycles $C_{p+2}, C_{q+2}, C_{r+2}$ without chords.

Theorem II.3. Cycle with triangle $C_n(1, 1, n-5)$ is difference cordial.

Proof. Let $|V(C_n(1,1,n-5))| = \{v_1,v_2,\ldots,v_n\}$ n-1} $\cup \{v_n v_1\} \cup \{v_1 v_3\} \cup \sqrt[n]{\{v_3 v_{n-1}\}} \cup \{v_{n-1} v_1\}.$ $|V(C_n(1,1,n-5))| = n, |E(C_n(1,1,n-5))| =$ n + 3. To define vertex labeling function : $V(C_n(1,1,n-5)) \rightarrow \{1,2,\ldots,n\},$ we consider the following cases.

Case 1: n is odd.

 $f(v_1) = 1.$

Subcase 1:
$$n \equiv 1 \pmod{4}$$

$$f(v_{2i+1}) = \begin{cases} 4i; & 1 \le i \le \frac{n-1}{4}. \\ 2n-4i; & \frac{n+3}{4} \le i \le \frac{n-1}{2}. \end{cases}$$

$$f(v_{2i}) = \begin{cases} 4i-1; & 1 \le i \le \frac{n-1}{4}. \\ (2n+3)-4i; & \frac{n+3}{4} \le i \le \frac{n-1}{2}. \end{cases}$$
Subcase 2: $n \equiv 3 \pmod{4}$

Subcase 2:
$$n \equiv 3 \pmod{4}$$

$$f(v_{2i+1}) = \begin{cases} 4i; & 1 \le i \le \frac{n-3}{4}. \\ 2n-4i; & \frac{n+1}{4} \le i \le \frac{n-1}{2}. \end{cases}$$

$$f(v_{2i}) = \begin{cases} 4i-1; & 1 \le i \le \frac{n+1}{4}. \\ (2n+3)-4i; & \frac{n+5}{4} \le i \le \frac{n-1}{2}. \end{cases}$$
Case 2: n is even

 $f(v_1) = 1.$

Subcase 1:
$$n \equiv 0 \pmod{4}$$

$$f(v_{2i+1}) = \begin{cases} 4i; & 1 \le i \le \frac{n}{4}. \\ (2n+1) - 4i; & \frac{n+4}{4} \le i \le \frac{n-2}{2}. \end{cases}$$

$$f(v_{2i}) = \begin{cases} 4i - 1; & 1 \le i \le \frac{n}{4}. \\ (2n+2) - 4i; & \frac{n+4}{4} \le i \le \frac{n}{2}. \end{cases}$$

Subcase 2:
$$n \equiv 2 \pmod{4}$$

$$f(v_{2i+1}) = \begin{cases} 4i; & 1 \le i \le \frac{n-2}{4}. \\ (2n+1)-4i; & \frac{n+2}{4} \le i \le \frac{n-2}{2}. \end{cases}$$

$$f(v_{2i}) = \begin{cases} 4i-1; & 1 \le i \le \frac{n-2}{4}. \\ (2n+2)-4i; & \frac{n+2}{4} \le i \le \frac{n}{2}. \end{cases}$$
In each case the cycle with triangle $C_n(1,1,n-5)$

satisfies the condition for difference cordial labeling.

Illustration II.3. Difference cordial labeling of cycle C_{11} with triangle $(C_{11}(1,1,6))$ is shown in Figure 3.

Definition II.4. [4] Swastik graph is a union of four copies of C_{4n} $(n \in \mathbb{N} - 1)$. Consider $v_{k,i}$ $(1 \le k \le 1)$ $4, 1 \le i \le 4n$) to be the vertices of k^{th} copy of C_{4n} , where $v_{k,4n} = v_{k+1,1}, 1 \le k \le 3$ and $v_{4,4n} = v_{1,1}$. It is denoted as Sw_n , $n \in \mathbb{N} - 1$.

Page | 237 www.ijaers.com

Theorem II.4. Swastik Sw_n is difference cordial graph, $n \in \mathbb{N} - 1$.

Proof. Let $v_{k,i}$ $(1 \leq k \leq 4, 1 \leq i \leq 4n)$ be the vertices of k^{th} copy of C_{4n} in swastik graph Sw_n , where $v_{k,4n} = v_{k+1,1}, 1 \leq k \leq 3$ and $v_{4,4n} = v_{1,1}$. Here $|V(Sw_n)| = 16n - 4$ and $|E(Sw_n)| = 16n$. We define vertex labeling function $f:V(G) \rightarrow \{1,2,\ldots,|V(Sw_n)|\}$ as follows.

$$\{1,2,\ldots,|V(Sw_n)|\} \text{ as follows.}$$

$$f(v_{1,(2i-1)}) = \begin{cases} 4i-3; & 1 \leq i \leq n. \\ (8n+3)-4i; & n+1 \leq i \leq 2n. \end{cases}$$

$$f(v_{1,(2i)}) = \begin{cases} 4i-2; & 1 \leq i \leq n. \\ 8n-4i; & n+1 \leq i \leq 2n-1. \end{cases}$$

$$f(v_{2,(2i-1)}) = \begin{cases} 4(n+i-1); & 1 \leq i \leq n. \\ 2(6n-2j+1); & n+1 \leq i \leq 2n. \end{cases}$$

$$f(v_{2,(2i)}) = \begin{cases} 4(n+i)-3; & 1 \leq i \leq n. \\ 4(3n-i)-1; & n+1 \leq i \leq 2n-1. \end{cases}$$

$$f(v_{3,(2i-1)}) = \begin{cases} 4(2n+i)-5; & 1 \leq i \leq n. \\ 4(4n-i)+1; & n+1 \leq i \leq 2n. \end{cases}$$

$$f(v_{3,(2i)}) = \begin{cases} 4(2n+i-1); & 1 \leq i \leq n. \\ 2(8n-2j-1); & n+1 \leq i \leq 2n-1. \end{cases}$$

$$f(v_{4,(2i-1)}) = \begin{cases} 11n+4i-2; & 1 \leq i \leq n. \\ (19n-4)-4i; & n+1 \leq i \leq 2n-1. \end{cases}$$

$$f(v_{4,(2i)}) = \begin{cases} 4(3n+i)-5; & 1 \leq i \leq n. \\ (19n+1)-4i; & n+1 \leq i \leq 2n-1. \end{cases}$$

Illustration II.4. Difference cordial labeling of Sw_4 is shown in Figure 4.

III. FIGURES

Fig. 2

6 9 10 11 14 41 5 4 7 8 13 40 2 3 14 37 36 1 12 13 16 17 15 20 14 15 20 25 24 18 21 30 29 28 27 19 22

Fig. 4

www.ijaers.com Page | 238

IV. CONCLUSION

Difference cordial labeling for different cycle graphs have been discussed. As all cycle graphs are difference cordial by adding one or more chords in cycle C_n . We proved that the resultant graphs are also difference cordial.

REFERENCES

- [1] I. Cahit, Cordial Graphs: "A weaker version of graceful and Harmonic Graphs, Ars Combinatoria", 23 (1987), 201-207.
- [2] J. A. Gallian, A dynamic survey of graph labeling, "The Electronics Journal of Combinatorics", 19 (2012), $\sharp DS6\ 1-260$.
- [3] F. Harary, "Graph theory", Addision-wesley, Reading, MA (1969).
- [4] V. J. Kaneria and H. M. Makadia, Graceful Labeling for swastik Graph, "International Journal of Mathematics and its applications", 3 (2015), 25-29.
- [5] R. Ponraj, S. Sathish Narayanan and R. Kala, Difference cordial labeling of graphs, "Global Journal of Mathematical Sicences: Theory and Practical", 5 (2013), 185-196.
- [6] R. Ponraj, S. Sathish Narayanan and R. Kala, Difference Cordial Labeling of Subdivision of Snake Graphs, "Universal Journal of Applied Mathematics", 2 (2014), 40-45.

www.ijaers.com