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Abstract— In this work, an Adaptative Neuro-Fuzzy 
Inference System (ANFIS) is applied to predict the 
velocity dispersion curves of the antisymmetric (A1) 
circumferential waves propagating around an elastic 
cooper cylindrical shell of various radius ratio b/a (a: 
outer radius and b: inner radius) for an infinite length 
cylindrical shell excited perpendicularly to its axis. The 
group and phase velocities, are determined from the 
values calculated using the eigenmode theory of 
resonances. These data are used to train and to test the 
performances of these models. This technique is able to 
model and to predict the group and phase velocities, of 
the anti-symmetric circumferential waves, with a high 
precision, based on different estimation errors such as 
mean relative error (MRE), mean absolute error (MAE) 
and standard error (SE). A good agreement is obtained 
between the output values predicted using ANFIS model 
and those computed by the eigenmode theory. It is found 
that the ANFIS networks are good tools for simulation 
and prediction of some parameters that carry most of the 
information available from the response of the shell. Such 
parameters may be found from the velocity dispersion of 
the circumferential waves, since it is directly related to 
the geometry and to the physical properties of the target. 
Keywords—Adaptative Neuro-Fuzzy Inference System 
(ANFIS), Acoustic response, Submerged elastic shell, 
Scattering waves, Circumferential waves, Phase velocity, 
Group velocity. 

 
I.  INTRODUCTION 

Several theoretical and experimental studies show that 
there is a generation of circumferential waves in the shell 
and in the water/shell interface when an air-filled tube 
immersed in water is excited by a plane acoustic wave 
perpendicularly to its axis. These circumferential waves 
are two types that are equivalent to the Lamb waves on a 

plate: the antisymmetric (Ai) and symmetric (Si) 
circumferential waves (i = 0, 1, 2, . . . : index of wave) 
[1]. For some frequencies, these circumferential waves 
form standing waves on the circumference of the tube 
constituting resonances. These resonances are observed 
on the spectrum of the acoustic pressure backscattered by 
the tube [2-5]. For a tube made in a given material, the 
resonance dimensionless frequencies of these waves 
essentially depend on the radius ratio b/a (a, outer radius; 
b, inner radius of tube). One of the most precious points 
for the characterization of an elastic, air-filled tube 
immersed in water can be made from some parameters 
that carry most of the information available from the 
response of the shell. Such parameters may be found from 
the velocity dispersion of the anti-symmetric 
circumferential waves A1 propagating around the cooper 
cylindrical shell of different radius ratio b/a, since many 
studies, experimental and theoretical showed that acoustic 
resonances of a cylindrical shell are related to its physical 
and geometrical properties[1-18]. In the phase to train and 
test, the group velocity obtained from the values 
calculated using the eigenmode theory of resonances is 
used as parameters in ANFIS networks. It is possible to 
recognize an unknown cylindrical target detected 
experimentally with an Adaptative neuro-fuzzy Inference 
System network technique, This model use neuro-
adaptive learning techniques, which are similar to those of 
neural networks  [6]. An understanding of the acoustic 
scattering is used to study wave dispersion. These studies 
allow us to redraw the phase velocity and group velocity 
of circumferential waves propagating around a tube which 
is still a complicated task experimentally.  During this 
work that focus on the prediction of group velocity that 
characterize submerged tubes, the ANFIS approach has 
shown good range characterization and computational 
efficiency. Its robustness, speed and accuracy of its 
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outputs enable it to give correct decisions and avoid cases 
of indecision, ANFIS with their ability to adapt to 
unknown situations through learning to model imprecise 
knowledge and uncertainty management. But it depends 
strongly on the data used to train the ANFIS network [7, 
19]. In this study, and without seeking to establish a 
mathematical equation which sometimes remains a 
difficult task for this purpose, ANFIS model is developed 
to predict the phase and group velocity of antisymmetric 
wave A1. Several models of ANFIS have been tested, and 
to evaluate the performance of these models, a 
comparative study between the proposed model and the 
theoretical method was performed. It shows a good 
agreement between the values predicted by ANFIS model 
and those calculated by the theoretical method. 
 

II.  THEORETICAL STUDY 
A. Acoustic backscattering from a cylindrical shell 

The scattering of an infinite plane wave by an air-filled 
cylindrical shell of radius ratio b/a is investigated through 
the solution of the wave equation and the associated 
boundary conditions. Fig.1 shows the cylindrical 
coordinate orientation and the direction of a plane wave 
incident on an infinitely long cylindrical shell in a fluid 
medium. The fluid (1) outside the shell has a density of 

ρ1 and the acoustic propagation velocity C1. In general, 
the inner fluid (2) will be different and is described by the 

parameters ρ3 and C3. The parameters for the two fluids 
outside and inside the shell are given in Table 1.  
The axis of the cylindrical shell is taken to be the z-axis 

of the cylindrical coordinate system (r, θ, z). Let a plane 
wave incident on an infinite cylindrical shell with air-
filled cavity (fluid 2), be submerged in water (fluid 1), see 
figure 1.  
The backscattered complex pressure Pdiff from a 
cylindrical shell in a far field (r >> a is the summation of 
the incident wave, the reflective wave �, surface waves 
shell waves �  the symmetric waves S0, S1, S2 …, and 
the antisymmetric waves  A0, A1, A2…) and interface 
Scholte waves (A)  �. The waves � and � are the 
circumferential waves connected to the geometry of the 
object (Fig. 2).  

 
Fig. 1: Geometry used for formulating the sound 

backscattering from a cylindrical shell 
The module of the normalized backscattered complex 
pressure in a far field is called form function. This 
function is obtained by the relation [2-18]: 
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where is the Neumann factor (εn = 1, if n= 0; εn = 2, if n> 
0). 

 
Fig. 2 Mechanisms of the formation of echoes showing 

the specular reflection � and shell waves � and Scholte 
wave (A) �. 

The physical parameters used in the calculation of the 
backscattered complex pressure are illustrated in table I. 

Table I: Physical parameters 

 Density ρ 
(kg/m3) 

Longitudinal 
velocity cL 
(m/s) 

Transverse 
Velocity 
cT (m/s) 

Cooper 8930 4760 
 

2325 
 

Water 
(fluid1) 

1000 1470 
 

----------- 

Air 
(fluid 2) 

1.29 334 ----------- 
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Figure 3 shows the module of the normalized 
backscattered complex pressure as function of the reduced 
frequency ka (without unit) given by: 
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                           (3) 

where d=a-b is the thickness of a cylindrical shell and f is 
the frequency of the incidence wave in Hz. 
The time signal P(t) of a cylindrical shell is computed 
from the Inverse of Fourier Transform of the 
backscattered complex pressure: 
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where h(ω) is a smoothing window. 

 
Fig.3: Backscattering spectrum of a copper tube with a 

radius ratio b/a=0.90. 
The sharp transitions of shell (corresponding to 
frequencies of resonances) in the spectrum of Fig 3 are 
connected with the propagation of acoustic 
circumferential waves: Scholte wave (A) and shell waves 
(S0, A1, S1, S2, A2 …). The time signal backscattered by a 
cooper cylindrical shell is from the module of the Inverse 
Fourier Transform of the backscattered complex pressure 
using the equation (4).  Figure 4 presents this time signal. 
It is constituted by the specular reflection � (large 
amplitude and short duration) and several wave packets 
�and � associated with different circumferential waves 
(A, S0, A1, S1, S2, A2…).  
The observation of this signal shows a succession of 
components more or less distinct that one seeks then to 
identify. The different echoes finish by overlapping and in 
these conditions, the identifications and the measures of 
arrival times of echoes (this time depends on the radii of 
the tube a and b) become difficult, perhaps impossible. 
This constitutes a major disadvantage of the temporal 
approach. An important feature of the acoustic 
circumferential waves is the velocity dispersions that lead 
to determine the scattering time of wave packets. 

 
Fig.4: Signal backscattered by a cooper cylindrical shell 
with air-filled cavity, b/a=0.90 (Specular reflection echo 
�, shell waves echoes � and Scholte wave echo (A) �). 

B. Determining the phase and the group velocities 
by the proper modes theory of resonances 

 To determine the phase velocity of a circumferential 
wave, the resonance spectrum for each mode n is 
calculated. The frequencies of resonances is measured 
and the equation (5) allows us to know this phase 
velocity: 

aF
x

CC
n

waterph π2== ,
  

(5) 

with x=ka the reduced frequency  of  a resonance, a outer 
radius F(Hz) is the frequency of resonance . 
To determine the group velocity, the equation (6) is used: 

),(2)( 11 nnnnwatergr FFaxxCC −=−= ++ π     (6) 

with xn+1 and xn are respectively the reduced frequencies 
of resonances n and n+1; Fn+1 and Fn are the absolute 
frequencies of the resonances n and n+1. 
 

III.  MATERIALS AND METHOD 
A. Fuzzy Inference System 
Fuzzy logic is an extension of Boolean logic that allows 
intermediate values between “True” and “False”. In this 
approach the classical theory of binary membership in a 
set, is modified to incorporate the memberships between 
"0" and "1". The fuzzy models are means of capturing 
human’s expert knowledge about the process, in terms of 
fuzzy (if–then) rules. The fuzzy inference system (FIS) 
can initialize and learn linguistic and semi-linguistic 
rules; hence it can be considered as direct transfer 
knowledge, which is the main advantage of fuzzy 
inference systems over classical learning systems and 
Neural Networks [19-21]. Often the rules of the fuzzy 
system are designated a priori and the parameters of the 
membership functions are adapted in the learning process 
from input–output data sets. 
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Fig.5: Dispersion of the phase velocity of the different 
circumferential waves of a cooper cylindrical shell of 

radii radio b/a=0.90, a=1m 

 
 Fig.6: Dispersion  of the group velocity of the different 
circumferential waves of a cooper cylindrical shell of 

radii radio b/a=0.90 
Basically, a fuzzy inference system is composed of five 
functional blocks, shown in Fig.10, as follows [19-21]:  
(i) A rule base containing a number of fuzzy if–then rules. 
All the uncertainties, non linear relationships, or model 
complications are included in the descriptive fuzzy 
inference procedure in the form of if–then statements. In 
general, a fuzzy if–then rule has two constitutes; first the 
if part and the second the then part; which are called 
premise and consequent, respectively. The general form 
of a fuzzy if–then rule is as follows; Rule: if Z is A then f 
is B. 
(ii) A database, which defines the membership functions 
of the fuzzy sets used in the fuzzy rules. 
(iii) A decision-making unit, which performs the 
inference operations on the rules. 
(iv) A fuzzification inference, which transforms the crisp 
inputs into degree of match with linguistic values. 
(v) A defuzzification inference, which transforms the 
fuzzy results of the inference into a crisp output.  

 
Fig.7: Block diagram for a fuzzy Inference System 

Several types of FIS have been proposed in the literature 
[22], which, vary due to differences between the 
specification of the consequent part and the 
defuzzification schemes. This paper incorporates one of 
these types, the so-called Takagi and Sugeno FIS [23], to 
propose a systematic scheme for the development of 
fuzzy rules using the input/output data sets. 
A typical fuzzy rule in a sugeno fuzzy model has the 
format:          
If x is A and y is B then z = f(x, y) 
where A and B are fuzzy sets in the antecedent; z =f(x, y) 
is a crisp function in the consequent. Usually f(x, y) is a 
polynomial in the input variable x and y, but it can be any 
other functions that can appropriately describe the output 
of the system within the fuzzy region specified by the 
antecedent of the rule. When f(x, y) is a first order 
polynomial, we have the first-order sugeno fuzzy model. 
When f is a constant, we then have the zero-order Sugeno 
fuzzy model. Consider first-order Sugeno fuzzy inference 
systems which contain two rules: 

Rule 1:  if x is A1 and y is  B1 then  1 1 1 1f p x q y r= + +      

Rule 2:  if x is A2 and y is B2 then  2 2 2 2f p x q y r= + +    

Weighted averages are used in order to avoid complexity 
in deffuzification processes. Fig.8 illustrates graphically 
the fuzzy reasoning mechanism to derive an output f from 

a given input vector (x, y). The firing strengths 1ω and 

2ω are usually obtained as the product of the membership 

grades in the premise part, and the output f is the 
weighted average of each rule’s output. To facility the 
learning of the sugeno fuzzy model, into the framework 
of adaptative networks we can compute gradient vectors 
systemically. The resultant network architecture is called 
Adaptative Neuro Fuzzy Inference system (ANFIS). 
B.  Adaptive neuro-fuzzy inference system architecture 
The Adaptive Network-based Fuzzy Inference System 
(ANFIS) is developed by Jang in 1993 [19]. This model 
use neuro-adaptive learning techniques, which are similar 
to those of neural networks. Given an input/output data 
set, the ANFIS can construct a Fuzzy Inference System 
whose membership function parameters were adjusted 

Phase velocities of guided waves in a copper tube, b/a=0,9, a=1m 
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using a hybrid algorithm learning that is a combination of 
Last Square estimate and the gradient descent back-
propagation algorithm or other similar optimisation 
technique. This allows Fuzzy system to learn from the 
data they are modelled. 
For simplicity, we assume the fuzzy inference system 
with two input, x and y with one response f. From the 
first-order Sugeno fuzzy model, a typical rule set with 
two fuzzy if-then rules can expressed as below. The 
corresponding equivalent ANFIS architecture is as shown 
in fig.9. The system architecture consists of five layers, 
namely; fuzzy layer, product layer, normalized layer, 
fuzzy layer and total output layer. The following section 
in depth the relationship between the input and output of 
each layer in ANFIS. 
Layer 0: It consists of plain input variable set. 
Layer 1: It is the fuzzy layer. Each node in this layer 
generates a membership grade of a linguistic label. For 
instance, the node function of the ith node may be 
generalized bell membership function: 

ii b

i

i

A

a

cx







 −+

=

1

1µ              (10) 

where x is the input to node i; Ai is the linguistic label 
(small, large, etc.) associated with this node; and {ai, bi, 
ci} is the parameter set that changes the shapes of the 
membership function. Parameters in this layer are referred 
to as the premise parameters. 
Layer 2: The function is T-norm operator that performs 
the firing strength of the rule, e.g., fuzzy conjective AND 
and OR. The simplest implementation just calculates the 
product of all incoming signals. 

 (y))( iii BxA µµω = , i=1, 2           (11) 

Layer 3: Every node in this layer is fixed and determines 
a normalized firing strength. It calculates the ratio of the 
ratio of the jth rule’s firing strength to the sum of all rules 
firing strength. 
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Layer 4: The nodes in this layer are adaptive are 
connected with the input nodes and the preceding node of 
layer 3. The result is the weighted output of the rule j. 

)( iiiiii ryqxpf ++= ωϖ    (13) 

where iϖ  is the output of layer 3 and {pi, qi, ri} is the 

parameter set. Parameters in this layer are referred to as 
the consequent parameters. 
Layer 5: This layer consists of one single node which 
computes the overall output as the summation of all 
incoming signals. 
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The constructed adaptive network in figure 9 is 
functionally equivalent to a fuzzy inference system in 
figure 7. The basic learning rule of ANFIS is a 
combination of last square error and the back-propagation 
gradient descent, which calculates error signals (the 
derivative of the squared error with respect to each node’s 
output) recursively from the output layer backward to the 
input nodes. This learning rule is exactly the same as the 
back-propagation learning rule used in the common feed-
forward neural networks. 

 
Fig.8:  First-order Sugeno fuzzy model 

 
Fig.9: ANFIS architecture 

 
IV.   COLLECTION OF DATA 

The conception of the ANFIS model requires the 
determination of the relevant entries that have a 
significant influence on the required model. In this work, 
a data base is collected to involve and test the 
performance of these models starting from the results 
obtained by the proper modes theory of the 
circumferential waves. The density of material, the radius 
ratio, the index of the anti-symmetric circumferential 
waves, and longitudinal and transverse velocities, of the 
material constituting the cylindrical shell, are retained like 
relevant entries of the model because these parameters 
characterize the cylindrical shell and the types of 
circumferential waves propagating around this one. The 
phase and the group velocity, of the anti-symmetric 
circumferential waves (Ai, i=1, 2) for a cooper cylindrical 
shell with different radius ratios b/a, constitutes the output 
of ANFIS. The collected data for the training and 
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validation phases of these models are represented in 
tables II and III. For example, for cooper cylindrical shell, 
the density is 8930 kg/m3, the transverse velocity is 2325 
m/s and the longitudinal velocity is 4760 m/s. For the 
anti-symmetric circumferential wave A1 the group 
velocity predicted by ANFIS is 2645.8 for a frequency 
equal 24.87 and a radius ratio b/a equal to 0.9. 
ANFIS networks method requires for its training a dataset 
of phase and group velocities calculated by the analytical 
method or obtained by experiments. This dataset is 
divided into two sets. The first 2/3 training data set was 
used for training the ANFIS while the remaining 1/3 
checking data set were used for validating the identified 
model, the number of membership function is fixed to 16 
MF, so the rule number is 16. The ANFIS used here 
contains a total number of parameters: 64, of which 
number of linear parameters: 32 and number of nonlinear 
parameters: 32. The desired and predicted values for both 
training data and checking data are essentially the same in 
fig 13-16.  
 

V. RESULTS AND DISCUSSION 
The performance of ANFIS model for a set of data in both 
training and testing phases were evaluated according to 
statistical criteria such as the correlation coefficient R, 
MAE, MRE, SE, and the root error root mean square 
(RMSE). The selection of different models is performed 
based comparison of different error MAE, MRE, SE and 
RMSE between the values of velocities predicted by 
ANFIS and those desired. The correlation coefficient R 
and R2 of the linear regression of the determination are 
used as measures of the performance of the model 
between the predicted values and the desired values. The 
various measures of error and the correlation coefficient 
are given by the following relationships: 
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where n is the number of data, Pi and Di is the predicted 
and desired of phase and group velocities respectively and 
Pm is the mean of predicted values.  

The correlation coefficient is a statistical criterion 
commonly used and which provides information about 
the strength of the linear relationship between the 
observed and the calculated values. The performance of 
ANFIS models of the training and test data are 
represented in Fig. 13-16.  
The analysis is repeated several times. Indeed, the error 
values are measured for each ANFIS architecture based 
on the number of rules and the type of the membership 
function used. 

 
Fig.10: Errors for the prediction of the group velocity 

with different ANFIS configuration. 
In this work, we tried to change the number of rules and 
the number of epoch; we found that the error of our 
models values decrease more than the number of rules, 
and the number of times is increased. The results of the 
measured errors shown in Figures 10, 11 and 12 for the 
circumferential wave A1. Tables II and III show that the 
results obtained by ANFIS method is good agreement 
with those determined from the results calculated using 
the theory of natural modes of resonance. 
 

Table II: phase velocity of Antisymmetric Waves for the 
cooper tube (b/a=0.9) 

 values of the phase velocity Vph(m/s) 

Frequency 
(kHz) 

calculated by the 
TM 

Predicted by 
ANFIS 

12 931.29 927.12 
14.427 2470.6 2470.8 
18.47 2798.7 2798.7 
20.08 2794.1 2794 
24.13 2664 2664 
28.17 2234.1 2234.1 
32.22 1794.3 1794.3 
37.88 1745.3 1745.3 
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Table III: group velocity of Antisymmetric Waves for the 
cooper tube (b/a=0.9) 

 values of the group velocity Vg(m/s) 
Frequency 

(kHz) 
calculated by the 

TM 
Predicted by 

ANFIS 
11.73 411.55 411.56 
13.57 2175.9 2174.3 
20.57 2763.4 2763.3 
24.87 2645.9 2645.8 
28.31 2234.3 2234 
30.89 1822.8 1823 
35.37 1705.3 1705.2 
38.42 1763.7 1772.1 

The results of individual measurements of the error and 
the correlation coefficient (MRE, MAE, SE and R) are 
given in Table IV. And also are illustrated in Fig. 13-16. 
Thus, it is advantageous to use the ANFIS approach. The 
best configuration is found for a network with 16 rules. 

The predicted values are plotted against the desired values 
in Figures 12. The results show good agreement between 
the predicted values and the desired values of the group 
velocity and group. The coefficient of determination R2 of 
this optimal configuration is 1 Fig. 13-16 shows that the 
phase velocity decreases as the frequencies increase, 
against by the group velocity increases with the frequency 
up to a maximum point then decrease from the value of 
the frequency approximately 20kHz .The evolution of the 
mean square error (RMSE) of the training during the 
training and testing phase as a function of the number of 
epoch is shown in figure 11. 

 

 Fig.11: Evolution of errors of training and testing as a 
function of the number of epoch for an ANFIS with 16 

rules. 

 
Fig.12: correlation between the group velocity calculated 

by the theoretical method and that predicted by ANFIS 
Table IV: results of the different error measures and the 
coefficient of correlation (MRE, MAE, SE and R) with 16 

rules  
 

 
Fig.13: training dataset (wave A1) represents the 

evolution of the phase velocity as a function of frequency 
calculated by the theoretical method and that predicted 

by ANFIS  
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Fig.14: test dataset (wave A1) represents the evolution of 
the phase velocity as a function of frequency calculated 
by the theoretical method and that predicted by ANFIS. 

  
VI.  CONCLUSION 

In this work, we presented a strategy of hybridization 
between two techniques: neural networks and fuzzy logic 
to develop a system for modeling some parameters 
characterizing the signals backscattered by a cylindrical 
shell as phase and group velocities of antisymmetric 
circumferential waves. This techniques can be considered 

 
Fig.15: training dataset (wave A1) represents the 

evolution of the group velocity as a function of frequency 
calculated by the theoretical method and that predicted 

by ANFIS  

 
Fig.16: test dataset (wave A1) represents the evolution of 
the group velocity as a function of frequency calculated 
by the theoretical method and that predicted by ANFIS  

as simple and flexible tools that adapt to data modeling 
rather than seeking to establish mathematical equations 
that require more time or may be sometimes difficult to 
establish. During this work that focus on the modelling 
and prediction of group and phase velocity that 
characterize submerged tubes, the ANFIS approach has 

shown its effectiveness. The use of neuro-fuzzy approach 
(ANFIS) allowed automatic generation of fuzzy rules. 
According to the results, we can conclude that the neuro- 
fuzzy system shows a good range characterization and 
computational efficiency. Its robustness, speed and 
accuracy of its outputs enable it to give correct decisions 
and avoid cases of indecision. The use of the ANFIS does 
not present any approximation as in the case of the natural 
modes method which assimilates the tubes to the plates 
with the same thickness and that is not sullied with errors 
as in the case of the time-frequency representations of 
Wigner-Ville that determines the group velocity manually 
starting from the time-frequency image [9]. This article 
can be used as a new tool for characterization of an elastic 
tube. This method allows one to determine automatically 
and with good precision the group velocity of an 
antisymmetric wave propagating around the tube. The R2 

value in fig is about 1, which can be considered as very 
satisfactory. 
The results obtained in our work encourage further 
research in this direction, we can also consider improving. 
This work does not seek to condemn conventional 
methods! The approach presented is primarily enriched 
the family of methods for modeling and prediction of 
physical processes. 
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