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Abstract— In this work, an Adaptative Neuro-Fuzzy
Inference System (ANFIS) is applied to predict the
velocity dispersion curves of the antisymmetric (A
circumferential waves propagating around an elastic
cooper cylindrical shell of various radius ratio b/a (a:
outer radius and b: inner radius) for an infinite length
cylindrical shell excited perpendicularly to its axis. The
group and phase velocities, are determined from the
values calculated using the eigenmode theory of
resonances. These data are used to train and to test the
performances of these models. This technique is able to
model and to predict the group and phase velocities, of
the anti-symmetric circumferential waves, with a high
precision, based on different estimation errors such as
mean relative error (MRE), mean absolute error (MAE)
and standard error (SE). A good agreement is obtained
between the output values predicted using ANFIS model
and those computed by the eigenmode theory. It is found
that the ANFIS networks are good tools for simulation
and prediction of some parameters that carry most of the
information available from the response of the shell. Such
parameters may be found from the velocity dispersion of
the circumferential waves, since it is directly related to
the geometry and to the physical properties of the target.
Keywords—Adaptative Neuro-Fuzzy Inference System
(ANFIS), Acoustic response, Submerged elastic shell,
Scattering waves, Circumferential waves, Phase velocity,
Group velocity.

I.  INTRODUCTION

Several theoretical and experimental studies shuat t

there is a generation of circumferential waveshim ghell
and in the water/shell interface when an air-filledbe

immersed in water is excited by a plane acoustivewa

perpendicularly to its axis. These circumferentigves
are two types that are equivalent to the Lamb wavea
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plate: the antisymmetric (A and symmetric ($
circumferential waves (i = 0, 1, 2, . . . : indelxveave)

[1]. For some frequencies, these circumferentialasa
form standing waves on the circumference of theetub
constituting resonances. These resonances arevetser
on the spectrum of the acoustic pressure backsedttsy

the tube [2-5]. For a tube made in a given matetrad
resonance dimensionless frequencies of these waves
essentially depend on the radius ratio b/a (a,raatius;

b, inner radius of tube). One of the most precipomts

for the characterization of an elastic, air-fillddbe
immersed in water can be made from some parameters
that carry most of the information available frofmet
response of the shell. Such parameters may be fioond

the velocity dispersion of the anti-symmetric
circumferential waves Apropagating around the cooper
cylindrical shell of different radius ratio b/anse many
studies, experimental and theoretical showed thalstic
resonances of a cylindrical shell are relateddgitysical
and geometrical properties[1-18]. In the phasedimtand
test, the group velocity obtained from the values
calculated using the eigenmode theory of resonaises
used as parameters in ANFIS networks. It is possibl
recognize an unknown cylindrical target detected
experimentally with an Adaptative neuro-fuzzy Iefiece
System network technique, This model use neuro-
adaptive learning techniques, which are similahtse of
neural networks [6]. An understanding of the atious
scattering is used to study wave dispersion. Thasdies
allow us to redraw the phase velocity and groupaig}

of circumferential waves propagating around a twhéesh

is still a complicated task experimentally. Duritlgs
work that focus on the prediction of group veloditat
characterize submerged tubes, the ANFIS approash ha
shown good range characterization and computational
efficiency. Its robustness, speed and accuracy t®f i
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outputs enable it to give correct decisions andcawases

of indecision, ANFIS with their ability to adapt to
unknown situations through learning to model impec
knowledge and uncertainty management. But it depend
strongly on the data used to train the ANFIS nekwar

19]. In this study, and without seeking to estdblas
mathematical equation which sometimes remains a
difficult task for this purpose, ANFIS model is ddoped

to predict the phase and group velocity of antisytrin
wave A. Several models of ANFIS have been tested, and
to evaluate the performance of these models, a
comparative study between the proposed model amd th
theoretical method was performed. It shows a good
agreement between the values predicted by ANFISemod
and those calculated by the theoretical method.

. THEORETICAL STUDY

A. Acoustic backscattering from a cylindrical shell
The scattering of an infinite plane wave by anfilize
cylindrical shell of radius ratio b/a is investigdtthrough
the solution of the wave equation and the assatiate
boundary conditions. Fig.1 shows the cylindrical
coordinate orientation and the direction of a plarsve
incident on an infinitely long cylindrical shell ia fluid
medium. The fluid (1) outside the shell has a dgnsf
pl and the acoustic propagation velocity C1. In gane
the inner fluid (2) will be different and is dedmed by the
parameterp; and G. The parameters for the two fluids
outside and inside the shell are given in Table 1.
The axis of the cylindrical shell is taken to be thaxis
of the cylindrical coordinate system @, z). Let a plane
wave incident on an infinite cylindrical shell witdir-
filled cavity (fluid 2), be submerged in water (fiul), see
figure 1.
The backscattered complex pressuRyy from a
cylindrical shell in a far field (r >> a is the somation of
the incident wave, the reflective wa@, surface waves
shell waves? the symmetric waves SO, S1, S2 ..., and
the antisymmetric waves A0, Al, A2...) and interface
Scholte waves (A) ®@. The waves®@ and @ are the
circumferential waves connected to the geometryhef
object (Fig. 2).
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Fig. 1: Geometry used for formulating the sound
backscattering froma cylindrical shell
The module of the normalized backscattered complex
pressure in a far field is called form function.igh
function is obtained by the relation [2-18]:

2 DY (w)
Par ()| = == 2 &, (-D)" ——— @)

‘ o ‘ A TTKT g D, (w)
where is the Neumann factan(= 1, if n= 0;en = 2, if n>

0).

Incident plane wave R
==

Cylindrical shell
Fig. 2 Mechanisms of the formation of echoes showing
the specular reflection @ and shell waves @ and Scholte
wave (A) O.
The physical parameters used in the calculatiorthef
backscattered complex pressure are illustrateahile tl.
Table |: Physical parameters

Densityp | Longitudinal Transverse
(kg/m3) | velocity cL | Velocity
(m/s) cT (m/s)
Cooper | 8930 4760 2325
Water 1000 1470 | e
(fluid1)
Air 1.29 33| e
(fluid 2)
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Figure 3 shows the module of the normalized
backscattered complex pressure as function ofetieced
frequency ka (without unit) given by:

ka=ﬂ=ibfd 3)
¢ ce-o)
a

where d=a-b is the thickness of a cylindrical shelil f is
the frequency of the incidence wave in Hz.

The time signal P(t) of a cylindrical shell is comgd
from the Inverse of Fourier Transform of the
backscattered complex pressure:

P(t) = %1 [ h(@)Py (@)™ *'dw

(4)
where hv) is a smoothing window.
Form function of a copper tube, b/a=0.9, a=1m
2.0
g 15
2
£
£
L]
o 1.0
R
=
£
2 05
0.0 T T T
0.0 12.5 25.0 37.5 50.0

Frequency (kHz)
Fig.3: Backscattering spectrum of a copper tube with a
radius ratio b/a=0.90.
The sharp transitions of shell (corresponding to
frequencies of resonances) in the spectrum of Fage3
connected with the propagation of acoustic
circumferential waves: Scholte wave (A) and shelves
(S0, AL, S S, A, -..). The time signal backscattered by a
cooper cylindrical shell is from the module of tineerse
Fourier Transform of the backscattered complexgunes
using the equation (4). Figure 4 presents thig taignal.
It is constituted by the specular reflectidgh (large
amplitude and short duration) and several wave gtack
@and @ associated with different circumferential waves
(A So, A, S, S, Az,
The observation of this signal shows a succession o
components more or less distinct that one seeks tihe
identify. The different echoes finish by overlappend in
these conditions, the identifications and the messof
arrival times of echoes (this time depends on #uhi 1of
the tube a and b) become difficult, perhaps imfbssi
This constitutes a major disadvantage of the tealpor
approach. An important feature of the acoustic
circumferential waves is the velocity dispersiomatiead
to determine the scattering time of wave packets.
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Backscattering time signal from a cooper tube, b/a=0.9
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Fig.4: Signal backscattered by a cooper cylindrical shell
with air-filled cavity, b/a=0.90 (Specular reflection echo

@, shell waves echoes @ and Scholte wave echo (A) @).

B. Determining the phase and the group velocities

by the proper modes theory of resonances

To determine the phase velocity of a circumfeenti
wave, the resonance spectrum for each mode n is
calculated. The frequencies of resonances is megsur
and the equation (5) allows us to know this phase
velocity:

X

n
with x=ka the reduced frequency of a resonaaamjter
radius F(Hz) is the frequency of resonance .
To determine the group velocity, the equation §8)sed:

Cyr =Cuwater(Xn+1 —Xn) =278(Frg —Fy),  (6)
with x,.; and xn are respectively the reduced frequencies

of resonances n and n+1;.Fand F are the absolute
frequencies of the resonances n and n+1.

. MATERIALS AND METHOD
A. Fuzzy Inference System
Fuzzy logic is an extension of Boolean logic thikves
intermediate values between “True” and “False” this
approach the classical theory of binary memberghia
set, is modified to incorporate the membershipsveenh
"0" and "1". The fuzzy models are means of captyrin
human’s expert knowledge about the process, ingerin
fuzzy (if-then) rules. The fuzzy inference systefS)
can initialize and learn linguistic and semi-lingtic
rules; hence it can be considered as direct transfe
knowledge, which is the main advantage of fuzzy
inference systems over classical learning systents a
Neural Networks [19-21]. Often the rules of the Zyz
system are designated a priori and the parameteteo
membership functions are adapted in the learninggss
from input—output data sets.
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Resonance spectrum of a copper tube, b/a=0.9, a=1m
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Fig.5: Dispersion of the phase vel ocity of the different
circumferential waves of a cooper cylindrical shell of
radii radio b/a=0.90, a=1m
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Fig.6: Dispersion of the group velocity of the different
circumferential waves of a cooper cylindrical shell of
radii radio b/a=0.90
Basically, a fuzzy inference system is composedivaf
functional blocks, shown in Fig.10, as follows [28}:
(i) A rule base containing a number of fuzzy if+heles.
All the uncertainties, non linear relationships, model
complications are included in the descriptive fuzzy
inference procedure in the form of if—-then statetsieim
general, a fuzzy if-then rule has two constitufist the
if part and the second the then part; which ardedal
premise and consequent, respectively. The general f
of a fuzzy if-then rule is as follows; Rule: if Z A then f
is B.
(i) A database, which defines the membership flonst
of the fuzzy sets used in the fuzzy rules.
(i) A decision-making unit, which performs the
inference operations on the rules.
(iv) A fuzzification inference, which transformseticrisp
inputs into degree of match with linguistic values.
(v) A defuzzification inference, which transformbet
fuzzy results of the inference into a crisp output.
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Fig.7: Block diagram for a fuzzy Inference System
Several types of FIS have been proposed in thetitee
[22], which, vary due to differences between the
specification of the consequent part and the
defuzzification schemes. This paper incorporates o
these types, the so-called Takagi and Sugeno B @
propose a systematic scheme for the development of
fuzzy rules using the input/output data sets.

A typical fuzzy rule in a sugeno fuzzy model has th
format:

If xis Aandyis B then z = f(X, y)

where A and B are fuzzy sets in the antecedent{xz y)
is a crisp function in the consequent. Usually f(xis a
polynomial in the input variable x and y, but indae any
other functions that can appropriately describeahigput
of the system within the fuzzy region specified tine
antecedent of the rule. When f(x, y) is a first erd
polynomial, we have the first-order sugeno fuzzydeio
When f is a constant, we then have the zero-ordgeiso
fuzzy model. Consider first-order Sugeno fuzzy iefee
systems which contain two rules:

Rule 1: ifxis A andyis Bjthen f, = pXx+q,y+r,
Rule 2: ifxis A, andyis B, then f, = p,X+Q,y+r,

Weighted averages are used in order to avoid cotityle
in deffuzification processes. Fig.8 illustrates mmaally
the fuzzy reasoning mechanism to derive an outfrom

a given input vector (x, y). The firing strengtlég and

@), are usually obtained as the product of the memigersh

grades in the premise part, and the outpus the
weighted average of each rule’s output. To facitig
learning of the sugeno fuzzy model, into the framew

of adaptative networks we can compute gradientovect
systemically. The resultant network architectureaied
Adaptative Neuro Fuzzy Inference system (ANFIS).

B. Adaptive neuro-fuzzy inference system architecture

The Adaptive Network-based Fuzzy Inference System
(ANFIS) is developed by Jang in 1993 [19]. This mlod
use neuro-adaptive learning techniques, which iangas

to those of neural networks. Given an input/outpata
set, the ANFIS can construct a Fuzzy Inference eByst
whose membership function parameters were adjusted
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using a hybrid algorithm learning that is a combioraof

Last Square estimate and the gradient descent back-

propagation algorithm or other similar optimisation
technique. This allows Fuzzy system to learn frdma t
data they are modelled.

For simplicity, we assume the fuzzy inference gyste
with two input, x and y with one responteFrom the
first-order Sugeno fuzzy model, a typical rule séth

two fuzzy if-then rules can expressed as below. The
corresponding equivalent ANFIS architecture islass

in fig.9. The system architecture consists of fiagers,
namely; fuzzy layer, product layer, normalized laye
fuzzy layer and total output layer. The followingction

in depth the relationship between the input angwatudf
each layer in ANFIS.

Layer O: It consists of plain input variable set.

Layer 1: It is the fuzzy layer. Each node in this layer
generates a membership grade of a linguistic ldbe.
instance, the node function of the ith node may be
generalized bell membership function:

1+|:X_Ci :|bi
g

where x is the input to node i;; As the linguistic label
(small, large, etc.) associated with this node; fmdh,
¢} is the parameter set that changes the shapekeof t
membership function. Parameters in this layer eferred
to as the premise parameters.
Layer 2: The function is T-norm operator that performs
the firing strength of the rule, e.g., fuzzy cotijgg AND
and OR. The simplest implementation just calculdhes
product of all incoming signals.

@ = uA (LB () ,i=1,2 (11)
Layer 3: Every node in this layer is fixed and determines
a normalized firing strength. It calculates thaaraif the
ratio of the , rule’s firing strength to the sum of all rules
firing strength.

(10)

@, = “ =12
W+ w,
Layer 4: The nodes in this layer are adaptive are
connected with the input nodes and the precedinig 0d
layer 3. The result is the weighted output of thie J.

@ fi = (px+gy+n)

(12)

13)
where &7, is the output of layer 3 and {pg, r} is the

parameter set. Parameters in this layer are refféoes
the consequent parameters.

Layer 5: This layer consists of one single node which
computes the overall output as the summation of all
incoming signals.
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The constructed adaptive network in figure 9 s
functionally equivalent to a fuzzy inference systém
figure 7. The basic learning rule of ANFIS is a
combination of last square error and the back-pyafien
gradient descent, which calculates error signale (t
derivative of the squared error with respect tchaamde’s
output) recursively from the output layer backwardhe
input nodes. This learning rule is exactly the samehe
back-propagation learning rule used in the comneau
forward neural networks.

(14)
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X v Y]
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BZ
u A
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X Y
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Fig.8: First-order Sugeno fuzzy model
layer 0 layer 1 layer 2 layer 3 layer 4 Layer5

Fig.9: ANFISarchitecture

IV.  COLLECTION OF DATA
The conception of the ANFIS model requires the
determination of the relevant entries that have a
significant influence on the required model. Instinork,
a data base is collected to involve and test the
performance of these models starting from the tesul
obtained by the proper modes theory of the
circumferential waves. The density of material, thdius
ratio, the index of the anti-symmetric circumfeiaht
waves, and longitudinal and transverse velocitiéshe
material constituting the cylindrical shell, ar¢aiaed like
relevant entries of the model because these pagasnet
characterize the cylindrical shell and the types of
circumferential waves propagating around this oFtee
phase and the group velocity, of the anti-symmetric
circumferential waves (Ai=1, 2) for a cooper cylindrical
shell with different radius ratios b/a, constitutkes output
of ANFIS. The collected data for the training and
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validation phases of these models are represemted i
tables Il and Ill. For example, for cooper cyliraii shell,

the density is 8930 kg/m3, the transverse veldsi3325
m/s and the longitudinal velocity is 4760 m/s. Ebe
anti-symmetric circumferential wave ;Athe group
velocity predicted by ANFIS is 2645.8 for a freqagn
equal 24.87 and a radius ratio b/a equal to 0.9.

ANFIS networks method requires for its trainingadaset

of phase and group velocities calculated by thdytioal
method or obtained by experiments. This dataset is
divided into two sets. The first 2/3 training datet was
used for training the ANFIS while the remaining 1/3
checking data set were used for validating thetitied
model, the number of membership function is fixed 6
MF, so the rule number is 16. The ANFIS used here
contains a total number of parameters: 64, of which
number of linear parameters: 32 and number of neali
parameters: 32. The desired and predicted valudsoth
training data and checking data are essentiall\dmee in

fig 13-16.

V. RESULTS AND DISCUSSION
The performance of ANFIS model for a set of dathadth
training and testing phases were evaluated acapridin
statistical criteria such as the correlation ceéffit R,
MAE, MRE, SE, and the root error root mean square
(RMSE). The selection of different models is penied
based comparison of different error MAE, MRE, SH an
RMSE between the values of velocities predicted by
ANFIS and those desired. The correlation coefficiBn
and R of the linear regression of the determination are
used as measures of the performance of the model
between the predicted values and the desired valines
various measures of error and the correlation amefit
are given by the following relationships:

1 n
MAE ==>"|D; - R |
ni:l

(16)
_1x |D -R|
MRE = nZ; ) (17)
i(Di -R)?
R=1-12L
i(Di _Pm)2 (19)
i=1
‘/ 3 (D; - R)?

where n is the number of data,dd D is the predicted
and desired of phase and group velocities respygtand
P, is the mean of predicted values.
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The correlation coefficient is a statistical criber
commonly used and which provides information about
the strength of the linear relationship between the
observed and the calculated values. The performahce
ANFIS models of the training and test data are
represented in Fig. 13-16.

The analysis is repeated several times. Indeedetttos
values are measured for each ANFIS architecturedbas
on the number of rules and the type of the memigersh
function used.

0,10
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0,061 .
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0,031
0,02-
0,01-
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4567829
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Better model with
MAE=0.0075 and R=1

RMSE

.-
gy

lIO lll l|2 1|3 1|4 1|5 l|6 l|7 l|8 l|9 20
Number of rules

Fig.10: Errorsfor the prediction of the group velocity

with different ANFIS configuration.

In this work, we tried to change the number of subad
the number of epoch; we found that the error of our
models values decrease more than the number of, rule
and the number of times is increased. The restilthen
measured errors shown in Figures 10, 11 and 12héor
circumferential wave A Tables Il and Il show that the
results obtained by ANFIS method is good agreement
with those determined from the results calculateohgi
the theory of natural modes of resonance.

Table I1: phase velocity of Antisymmetric Waves for the
cooper tube (b/a=0.9)

values of the phase velocity Vph(m/s)
Frequency | calculated by the Predicted by
(kHz) ™ ANFIS
12 931.29 927.12
14.427 2470.6 2470.8
18.47 2798.7 2798.7
20.08 2794.1 2794
24.13 2664 2664
28.17 2234.1 2234.1
32.22 1794.3 1794.3
37.88 1745.3 1745.3
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Table I11: group velocity of Antisymmetric Waves for the
cooper tube (b/a=0.9)

values of the group velocity Vg(m/s)
Frequency calculated by the Predicted by
(kHz) ™ ANFIS
11.73 411.55 411.56
13.57 2175.9 2174.3
20.57 2763.4 2763.3
24.87 2645.9 2645.8
28.31 2234.3 2234
30.89 1822.8 1823
35.37 1705.3 1705.2
38.42 1763.7 1772.1

The results of individual measurements of the ead
the correlation coefficient (MRE, MAE, SE and Rear
given in Table IV. And also are illustrated in Fi3-16.
Thus, it is advantageous to use the ANFIS approEicé.
best configuration is found for a network with lfles.

Phase velocity Vph| Group velocity Vg
Error ANFIS ANFIS
measures
MAE 3.6 0,0075
MRE 5.9.10° 3.4.10°
SE 0.3 0.01
R 0.99 1

The predicted values are plotted against the dksafies
in Figures 12. The results show good agreementdsatw
the predicted values and the desired values ofjtbhap
velocity and group. The coefficient of determinatie’ of
this optimal configuration is 1 Fig. 13-16 showsttithe
phase velocity decreases as the frequencies imegreas
against by the group velocity increases with tlegdiency
up to a maximum point then decrease from the vafue
the frequency approximately 20kHz .The evolutiortref
mean square error (RMSE) of the training during the
training and testing phase as a function of the bemof
epoch is shown in figure 11.

10

—e—Training errof
—&—Testing error

RMSE

0 0.5 1 15 2 25 3
number of epoch % 10

£
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Fig.11: Evolution of errors of training and testing as a
function of the number of epoch for an ANFISwith 16
rules.
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Fig.12: correlation between the group vel ocity calculated
by the theoretical method and that predicted by ANFIS
Table IV: results of the different error measures and the
coefficient of correlation (MRE, MAE, SE and R) with 16

rules
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Fig.13: training dataset (wave A;) represents the
evolution of the phase velocity as a function of frequency
calculated by the theoretical method and that predicted

by ANFIS
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Fig.14: test dataset (wave Al) represents the evolution of
the phase velocity as a function of frequency calculated
by the theoretical method and that predicted by ANFIS.

VI.  CONCLUSION
In this work, we presented a strategy of hybridorat
between two techniques: neural networks and fuagicl
to develop a system for modeling some parameters
characterizing the signals backscattered by a dwéal
shell as phase and group velocities of antisymmetri
circumferential waves. This techniques can be demsid
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Fig.15: training dataset (wave A;) representsthe
evolution of the group velocity as a function of frequency
calculated by the theoretical method and that predicted

by ANFIS
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Fig.16: test dataset (wave Al) represents the evolution of

the group velocity as a function of frequency calculated

by the theoretical method and that predicted by ANFIS
as simple and flexible tools that adapt to data eling
rather than seeking to establish mathematical emsat
that require more time or may be sometimes diffi¢al
establish. During this work that focus on the mbagl
and prediction of group and phase velocity that
characterize submerged tubes, the ANFIS approash ha

www.ijaers.com

shown its effectiveness. The use of neuro-fuzzyegugh
(ANFIS) allowed automatic generation of fuzzy rules
According to the results, we can conclude thatrtbero-
fuzzy system shows a good range characterizatiah an
computational efficiency. Its robustness, speed and
accuracy of its outputs enable it to give corremtisions
and avoid cases of indecision. The use of the ANII&s
not present any approximation as in the case ofidheral
modes method which assimilates the tubes to thepla
with the same thickness and that is not sulliedh witrors

as in the case of the time-frequency representatafn
Wigner-Ville that determines the group velocity mally
starting from the time-frequency image [9]. Thisicde

can be used as a new tool for characterizatiom @fastic
tube. This method allows one to determine autoratiyic
and with good precision the group velocity of an
antisymmetric wave propagating around the tube. Fthe
value in fig is about 1, which can be considered/exy
satisfactory.

The results obtained in our work encourage further
research in this direction, we can also consid@rawving.
This work does not seek to condemn conventional
methods! The approach presented is primarily eadch
the family of methods for modeling and predictioh o
physical processes.
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