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Abstract— Based on energy conservation considerations 
we study the nonlinear dynamic behavior of a quantum 
mesoscopic circuit, which is characterized through 
parameters of inductance and capacitance.  Nonlinearity is 
given by the initial conditions of magnetic flux and 

discreteness charge which oscillate in the interval [- 0α
,  +

0α
], being 0α

the magnetic flux normalized by e 0/ q = φh

.   This LC circuit with quantized electric charge is excited  
by energy battery that can produce an electrical 
discreteness charge on the capacitor. The dynamics of the 
mesoscopic circuit is highly nonlinear. Our results show for 
the magnetic flux a nearly square wave with an elongated 
period when compared with the linear case and a train of 
narrow pulses for the discrete charge. 
Keywords— LC circuit, mesoscopic, discreteness charge. 
 

I. INTRODUCTION 
In a series of articles Li and Chen [1, 2] and Flores et al  [3, 
4, 5, 6, 7], have developed a theory of quantum electrical 
systems, based on a treating such systems as quantum LC 
circuits; that is, electrical systems described by two 
parameters: an inductance L, and a capacitance C. Such 
quantum theory of circuits is expected to apply when the 
transport dimension becomes comparable with the charge 
carrier coherence length, taking into account both the 
quantum mechanical properties of the electron system, and 
also the discrete nature of electric charge. Now, we propose 
a semiclassical theory of quantum electrical circuits, to 
obtain useful predictions of the theory from very simple 
calculations of energy consideration , and to push the circuit 
analogy one step further, generalizing the Heisenberg 
equations of motion .  
The semiclassical theory of quantum LC circuits [1] starts 
from the quantum Hamiltonian of the LC circuit [1-7, 8, 9]. 
The resulting equations become 
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which we can put as 
  

2
0 sin( ) 0α+ ω α =



    (3') 

where 2
0 1/ LCω =  , 0/α = φ φ . The equations above are 

considered, mathematically, as classical equations, but they 
include quantum effects, the quantized nature of electric 

charge through the parameter e 0/ q = φh . These equations 

are highly nonlinear, but they reduce to the usual equations 

of the LC circuit, in the discrete charge limit, eq 0→ . in 

this paper we are interested in the highly nonlinear behavior 
of the LC circuit excited by a battery source with initial 

conditions 0 0φ ≠ and 0d( / ) / dt 0φ φ ≠ , and 

0/φ φ ≈ π . 

We will resolve the nonlinear equation through energy 
considerations because our starting point is the Hamiltonian 
equation (1) 
 

II. DIFFERENTIAL EQUATION FROM 
ENERGY CONSIDERATIONS 

At the initial instance, the energy of the mesoscopic circuit  
is the sum of the kinetic and potential energy, from (4) we 
obtain : 

2
2

00 p 0E E sin ( / 2)= α + α


    (4) 
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with 0 B 0 BE E E== + ,  2
p 0E 4 4 / LC= ω =  which has 

been normalized and 0/α = φ φ 0d( / ) / dtα = φ φ


,  

e 0/ q = φh . Because of the assumed  lossless system , the 

initial energy is preserved for all instances: 

2 2
0 pE (t) E sin ( (t) / 2)= α + α



   

   (5) 

Here, 2
p 0E / 2 2= ω  is the maximum possible (normalized) 

potential energy of the quantum circuit, being attained when

0α =


.  
Equation (5) refers to the conservation of the total 
mechanical energy, to integrate and apply the initial 

conditions given 0α , 0α


 , we obtain 

[ ]2 2
00 0

d
( ) 2 cos( (t)) cos( (t))
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α = ω α − α + α


 (6) 

The analogy between a quantum LC circuit with discrete 
load and nonlinear pendulum is straightforward because 
both systems are modeled by the same equations  (3'), (6).   
These equations are similar to that obtained for nonlinear 
pendulum, The simple gravity pendulum is a famous case 
study in classical mechanics that leads to a nonlinear 
differential equation of second order like, equation (3'). A 
solution of the differential equation (6) is based on Jacobi 
elliptic integrals has been well known. There exists a great 
number of papers and textbooks dealing with pendulums, 
the reader is referred to [10], 
So following [10-13] and after several steps algebraic we 
can obtain the normalized magnetic flux, in equation (6) 
(see also appendix A of [14]), where we have incorporated 

the initial condition of
t 0

d / dt
=

α . 

1 1 2 2
o 0 0 0

0 0

1
(t) 2sin u ksn(F(sin ( ),u k) t,u k

u
− − φα = = ± ω φ  

  (7) 
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In particular, if the angular velocity is zero, 0α


= 0, then 
2
0u 1=  therefore equation (22) reproduces the known 

formula for the nonlinear pendulum, [12, 13]. 
1 1

0(t) 2sin ksn(F(sin (1), k) t,k− − α = ± ω   

   (9) 

However F( ,k) (k)
2

π = Κ  is the first class elliptical 

integral so 

1
0(t) 2sin ksn( (k) t, k)−  α = Κ ± ω    

   (10) 
Generally the first equation of (8) cannot have any value, it 
must be limited because for a LC circuit the amplitude 
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which also effk must be effk 1≤ . If we put effk 1≈ , then 
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 or 0 0 0 02 1 k 2α < ω − → α ω
 

 .

   (12) 
The period T is the time required to complete a cycle, in this 
case, the oscillation period T is four times the time taken 

from 0, (v 0)α = = ,    0, (v 1)α = α = so  

0 / 4 (k)ω ω = Κ     

   (13) 

the parameter k is related to 0α


 and 0ω as 

0
0

1
k

2
= α

ω



     

   (14) 
 

III. NUMERICAL RESULTS 
Here we show the result of calculation of ω  as a function 

of 0α


. For simplicity, we assume that 0 1ω = . For small 

values of 0/α = φ φ , the nonlinear equation (10) becomes 

equal to a resonant circuit where the waveform is 
completely sinusoidal. 
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In figure 1, we show 0/α = φ φ  versus t / T  for 

0 / 2α = π . having as parameter

0 0( ) / (t 0) 0.5,α = φ φ = = −
 

dashed point-line, 0, solid 

line and 0,5 dashed line respectively. The magnetic  flux is 

normalized by 0 e/ qφ = h , that is 0/α = φ φ . 

 

 
Fig.1: Plot of 0/α = φ φ  versus t / T  for 0 / 2α = π . 

having as parameter 0 0( ) / (t 0) 0.5,α = φ φ = = −
 

dashed 

point-line, 0, solid line and 0,5 dashed line respectively. 
 

At small oscillations, the energy0E , equation (4)  of the 

circuit is small compared  to the maximum possible 

potential energy 2
p 0E 4= ω . This leads to a modulus close 

to zero, for which the Jacobi elliptic functions can be 
replaced by trigonometric functions 
The period of oscillation of the mesoscopic circuit is 
constant and  independent of the initial angular 

displacement for values of 0 / 2α π= , and 

0( / ) 0d dtα =  as shown in Figure 1, solid line. As the 

initial magnetic flux  increases (and its initial  time 
derivative ), the oscillation period increases considerably 

when 0α π≈ . That is, the oscillation becomes 

disharmonious. For this reason, once the movement 
becomes dissonant or anharmonic significantly, the period 
(frequency) no longer remains constant but lengthens 

increasingly (shortens) with increasing amplitude of 0α


as 

is shown in figures 2 and 3. Figure 3 is an enlarged version 

of Figure 2 near the value 0 2α =


 corresponding to 

equation (23) with 1k = . 

 

 

Fig.2: Plot of ωvs 0α


 for 0 1ω = . The angular frequency 

reduces to zero at 0 2α =


. 

 

Fig.3: Plot of ωvs 0α


 for 0 1ω = , 01.99 2≤ α ≤


 . The 

angular frequency reduces to zero at 0 2α =


. 

 

Fig.4: The amplitude α   and the angular velocity α


 are 

also periodic functions for 0 0.995α = π , : BE 0.5= . At 

microwave frequency  8
0t / T t 2 10−= ω × π× , 

0(t) /α = φ φ is nearly a square waveform. 
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Figure 4, shows  the amplitudeα  and the angular velocity

α


. They  are also periodic functions for 0 0.995α = π , 

with BE 0.5= , but α  is almost a square wave andα


 is a 

train of narrow pulses. Here, the dynamics of the 

mesoscopic circuit is highly nonlinear. Here, α


is 

proportional to the discreteness chargeQ  of the quantum 

circuit 

 
0

Q Q

C C
= − φ → = − α

φ

 

   

    (24) 

 Waveforms ofd / dtα  are appropriate for design  of  bits 
sequence for digital systems at high frequency. 
 

IV. CONCLUSIONS 
Based on energy conservation considerations we study the 
nonlinear dynamic behavior of a quantum mesoscopic 
circuit, which is characterized through parameters of 
inductance and capacitance.  Nonlinearity is given by the 
initial conditions of magnetic flux and discreteness charge 

which oscillate in the interval [- 0α ,  + 0α ], being 0α the 

magnetic flux normalized by e 0/ q = φh and it is close to

±π .   This LC circuit with quantized electric charge is 
excited  by energy battery that can produce an electrical  
discreteness charge in LC  in the form of narrow pulses. The 
results presented also intend to bring the student of physics 
and engineering, the introduction of elliptic integrals and 
motivate the search for new alternatives in the design of 
electronic circuits besides to solve physical and applied 
mathematical problems. 
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