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Abstract— In the applications like medical radiography
enhancing movie features and observing the planets it is
necessary to enhance the contrast and sharpness of an image.
The model proposes a generalized unsharp masking
algorithm using the exploratory data model as a unified
framework. The proposed algorithm is designed as to solve
simultaneously enhancing contrast and sharpness by means
of individual treatment of the model component and the
residual, reducing the halo effect by means of an
edge-preserving filter, solving the out of range problem by
means of log ratio and tangent operations. Here is a new
system called the tangent system which is based upon a
specific bargeman divergence. Experimental results show
that the proposed algorithm is able to significantly improve
the contrast and sharpness of an image. Using this algorithm
user can adjust the two parameters the contrast and
sharpness to have desired output.

Keywords— About four key words or
alphabetical order, separated by commas.
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I. INTRODUCTION
A digital gray image is a simple two dimensionaltrixaof
numbers ranging from O to 255. These numbers reptes
different shades of gray. The number ‘0O’ represgnise
black color and number ‘255’ represents pure wiitier.
1.1 Image Enhancement
The aim of image enhancement is to
interpretability or perception of information in ages for
human viewers, or to provide ‘“better' input for esth
automated image processing techniques.
1.1.1 Brightness Control
If the digital image is of poor brightness, the ealtg in the
image will not be visible clearly. It should be tb&se when
the image is captured under low light conditions.réctify
this problem, we can further increase the brigtgrafsthe
captured digital image and make the image moradite. If
we study the histogram of a low-brightness image,will
find that the most of the pixels lie in the lefifhaf the gray
value range. The brightness of a dark image caitydas
increased by adding a constant to gray value afyquigel.
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1.1.2 Contrast Stretching

This operation is much better for the image quality
enhancement in comparison to brightness controlowf
contrast image is resulted due to low light cowodisi, lack of
dynamic range of the camera sensor, contrast Isingtc
operation results in the good quality image. Dutimg
contrast stretching operation, we basically inczedke
dynamic range of the gray values. We can use marstibns
for contrast stretching, the piecewise transforamafunction

is discussed here.

1.2 Digital Image Enhancement Techniques

Now-a-days digital images have enveloped the comple
world. The digital cameras which are main sourcdigital
images are widely available in the market in chempes.
Sometimes the image taken from a digital camenrzotsof
quality and it required some enhancement. Thergt exany
techniques that can enhance a digital image withpailing

it. First of all, let me tell you that the enhan@ahmethods
can broadly be divided in to the following two aees:

1. Spatial Domain Methods 2. Frequency Domain Mésho

II. CLASSICAL UNSHARP MASKING
2.1 Proper sharpening is a bit like black malfie can't
really sharpen an image any more than it alreadyf ig
wasn't sharp when captured, there's nowhere tbeniattion
needed can come from later on. What we can doeiater

improve thiheillusion of sharpness by exaggerating contrast along

edges in the image. This added contrast makes dbese
stand out more, making them appear sharper.
Sharpening filters emphasize the edges in the imagthe
differences between adjacent light and dark saipgpiets in
an image. The generic Sharpen or Sharpen Moresfitiee
often for graphics, and are less suitable for color
photographic images. But the Unsharp Mask is taadstrd
tool where the action is for photographs.

Unsharp masking (UM) is an image manipulation témpie,
often available in digital image processing sofevafhe
"unsharp" of the name derives from the fact thattéfthnique
uses a blurred, or "unsharp," positive to credtaask" of the
original image. The unsharped mask is then combinéu
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the negative, creating the illusion that the résglimage is image. Adaptive histogram equalization is freqlyeosed

sharper than the original. From a standpoint, afharp mask for contrast enhancement.

is generally a linear or nonlinear filter that aifipb A. 2.3.1 Halo effect

high-frequency components. The UnSharp Mask is wonderful magic, but still, essive
2.2 Unsharp masking process and improper use of its parameters can producé&cktti

The sharpening process works by utilizing a sligbturred images with bizarre problems. Such problems cafudec
version of the original image. This is then subizdcaway overly contrasty images, edges that look like haosund
from the original to detect the presence of edgessting the objects, jagged edges, and specked or mottled ,alikas
unsharp mask(effectively a high-pass filter).Costtia then faces with bad complexions. So if this might be ryou
selectively increased along these edges using rtfask, problem, back off, and practice moderation.

leaving behind a sharper final image. This tiny image is a simple three tone graphic ieag
The "mask overlay" is when image information frohet containing two contrast edges, shown unsharpenethen
layer above the unsharp mask passes through aladespghe left, and sharpened with the Unsharp Mask on tietrit is
layer below in a way which is proportional to brighss in also shown greatly enlarged about 10X so the picatsbe
that region of the mask. The upper image doesamtribute seen well. Remember about anti-aliadiending the edges
to the final for regions where the mask is blackilevit with intermediate tones (usually only on angledjagged
completely replaces the layer below in regions whitre edges). Unsharp Mask is the opposite, it involvaking the
unsharp mask is white. pixels on the light side of the edge even lighéerd making
2.3 Unsharp masking algorithm the pixels on the dark side of the edge even daaseshown,
to increase edge contrast. This then shows the kdter,
therefore we perceive the edge to be sharper. Gisa little
thought, because the same effect happens tothkk @dges in
your photograph with the Unsharp Mask. This imat® a
demonstrates the halo effect due to too much sharpe

2.4 Photographic unsharp masking

The technique was first used in Germany in the $980a
way of increasing the acutance, or apparent shasprof
photographic images. In the photographic process, a
large-format glass plate negative is contact-copigd a low
contrast film or plate to create a positive. Howewhe
positive copy is made with the copy material integh with
theback of the original, rather than emulsion-to-emulsisa,

it is blurred. After processing this blurred positis replaced
in contact with the back of the original negatiVhen light

is passed through negative and in-register posfifrean
enlarger for example), the positive partially cdas®me of
the information in the negative. Because the pashias been
intentionally blurred, only the low frequency (bied)
information is cancelled. In addition, the maskeefively
reduces the dynamic range of the original negaiivels, if
the resulting enlarged image is recorded on captras
photographic paper, the partial cancellation emigbasthe
high frequency (fine detail) information in the gnal,
without loss of highlight or shadow detail. Theultisg print
appears sharper than one made without the unshesk: iits
acutance is increased.

In the photographic procedure, the amount of bigrdan be
controlled by changing the softness or hardnessn(fpoint
source to fully diffuse) of the light source used the initial
unsharp mask exposure, while the strength of tlectefan
be controlled by changing the contrast and dengigy,
exposure and development) of the unsharp mask.

In traditional photography, unsharp masking is lgussed
on monochrome materials; special panchromatic

T | Lowpass
Filtenng

Fig.2.2: Block diagram of classical unsharp masking
algorithm

The classical unsharp masking algorithm can beritbestby
the equation
V =y +y(x—y): wherex is the input image y, is the
result of a linear low-pass filter, and the ggaify > 0) is a
real scaling factor. The signdl= x — y is usually amplified
(y > 1) to increase the sharpness.

However, the signal contains 1) details of the image, 2)
noise, and 3) over-shoots and under-shoots in afestsarp
edges due to the smoothing of edges. While therexamaent
of noise is clearly undesirable, the enhancementhef
undershoot and overshoot creates the visually asphg halo
effect. Ideally, the algorithm should only enhatice image
details.

This requires that the filter is not sensitive tise and does
not smooth sharp edges. These issues have beéedshyd
many researchers. For example, the cubic filter Hrel
edge-preserving filters have been used to replaedinear
low-pass filter. The former is less sensitive téseaand the
latter does not smooth sharp edges. Adaptive gaitra has
also been studied .Contrast is a basic perceptuddude of
an image. It is difficult to see the details incavlcontrast
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soft-working black and white films have been aualgafor . GENERALIZED LINEAR SYSTEM
masking photographic color transparencies. This been 3.1 Introduction
especially useful to control the density range of &larr has pointed out that to develop and effectiomputer
transparency intended for photomechanical reprastuct vision technique one must consider: 1) why the iQaler

B. 2.5 Digital unsharp masking operations are used, 2) how the signal can begsepted, 3)
The same differencing principle is wused in thevhat implementation structure can be used. Myesséahso
unsharp-masking tool in many digital-imaging softeva pointed out that there is no reason to persist péhicular
packages, such as Adobe Photoshop and GIMP. Ttveasef operations such as the usual addition and multifiio, if via
applies a Gaussian blur to a copy of the origin@ge and abstract analysis, more easily implemented and more
then compares it to the original. If the differerisegreater generalized or abstract versions of mathematicataijons
than a user-specified threshold setting, the images(in can be created for digital signal processing. Coueastly,
effect) subtracted. The threshold control consfraimabstract analysis may show new ways of creatingesys
sharpening to image elements that differ from eattter with desirable properties. Following these ideabge t
above a certain size threshold, so that sharpesfirgmall generalized linear system, shown in Fig. 3.1, iet#ed.
image details, such as photographic grain, camuppressed.
Digital unsharp masking is a flexible and powenfidy to
increase sharpness, especially in scanned imagese\r, it o Q()
is easy to create unwanted and conspicuous edgetefbr
increase image noise. On the other hand, theseteffan be
used creatively, especially if a single channeaofRGB or Fig.3.1: Block diagram of a generalized linear system, where
Lab image is sharpened. Undesired effects cancheee by @() isusually a nonlinear function.
using a mask particularly one created by edgectieteto The generalized addition and scalar multiplicatiperations
only apply sharpening to desired regions, sometit@esed denoted byp and® are defined as follows:
"smart sharpen”. X@y=0'[8(x) +2(Y)] ......... B1)&

1) 2.5.1 Local contrast enhancement 0@ X=G 08 ()].creennnn. (3.2)

Unsharp masking may also be used_wnh a Iz_zlrge sahd a Where x and y are signal sampleds usually a real scalar,
small amouht (s.uch qs 30-100 pixel radius anq 5—20%d 2 is a nonlinear function.
amount) which yields increased local contrast, chngue
termed local contrast enhancemda#§M can increase either
sharpness or (local) contrast because these anddrats of
increasing differences between values, increasioges—
sharpness referring to very small-scale (high fesqy)

differences, and contrast referring to larger sciw that the gray scale set is closed under the nevatipes.

frequency) differences. More powerful techniquesr foDeng used the log-ratio in a generalized lineatesysontext
improving tonality are referred to as tone mapping. for image enhancement. In their review papers, ICahd
C. 2.5.2 Comparison with deconvolution Deng and Pinoli compared the log-ratio with other

In 'mage  processing, deconvolution is the_ procets aeneralized linear system-based image processihgitpies
approximately inverting the process that causeiirage to such as the multiplicative homomorphic filters atite

be blurred. Specifically, unsharp masking is a $nlmear logarithmic image processing (LIP) model.

image qperation a co.nvolution by a kernel thah-ﬂf’ Dirac Comparative study of the multiplicative homomaorpinage
delta minus g Gaussian blur kgrnel. Decohvolutmm,the processing (MHIP), the log-ratio image processibRIP)
other hand, !S generally conS|der(?d an |II—posevbr_ﬂ>E and the logarithmic image processing (LIP). Thdased
problem that is best solved by nonlinear approact4sle image processing approaches are based on abstreat |
_unsharp masklng increases the aPpare_”t sharpneasn Ofmathematics and provide specific operations anattstres
|mag_e in ignorance (_)f the manner in which the image that have opened up new pathways to the developofent
acquired, deconvolution increases the apparenpsias of image processing techniques. The MHIP approach was
an image, but based on information describing sofrihe designed for the processing of multiplied imagés, LtRIP

likely f)rigins _Of the. .distortions in the Iight patised in approach was introduced to overcome the out-ofgang
capturing the image; it may therefore sometimegrbéerred, problem associated with many image processing tqubs,

vyhere the costin prep.aration tir.ne. and per imagmmation while the LIP approach was developed for the prsiogsof

time are offset by the increase in image clarity. images valued in a bounded intensity range. Fitsis
claimed that an image processing framework must be
physically relevant, mathematically consistent,

Linear oY) —

b 4

h

System

The log-ratio approach was proposed to systembtitzadkle
the out of range problem in image restoration. [Hgeratio
can be understood from a generalized linear sygtint of
view, since its operations are implicitly defineg bsing
equations. A remarkable property of the log-rafipr@ach is
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computationally tractable and practically fruitful.is also Using (3.1), the addition of two gray scalgsand x, is
pointed out that the classical linear image praogs€CLIP) defined as
is not adapted to non-linear and/or bounded ramgagés or
imaging systems, such as transmitted light imagesgtical
digital images or the human brightness perceptigstesn.
Then, the importance and usefulness of severalenattical
fields, such as abstract linear algebra and alistrzadysis, 1
for image representation and processing within sowdge ¢ ®x= 14X (3:8)
settings are discussed. Third, the MHIP, LRIP arl@® L This operation is called scalar multiplication whiés a

1 1
@ x = e Tt )

Where X; = y(x;) and X, = ¥(x;)
The multiplication of a gray scale x by a real ac# defined
by a(—w < a < «) using (3.2) as follows:

approaches are presented, focusing on their distnicleas,
structures and properties for image representatod
processing, rather than an in-depth review.

3.2 Image Model and Generalized Unsharp Masking

terminology derived from a vector space point afwi We
can define a new zero gray scale, denoted, asiv®ilo
e@Px=x (3.9

It is easy to show that e=1/2 . This definitionc@nsistent

A well known idea in exploratory data analysis i twith the definition of scalar multiplication in tha® x =
decompose a signal into two parts. One part fggricular 1/ . As a result, we can regard the intenv@s(;)) and

model, while the other part is the residual. !nl@y’s own ((1/2).1) as the new definitions of negative andsigi
words the data model isData=fit PLUS residuals”. From . I

) i _ o numbers, respectively. The absolute value, denbyex, ,
this point of view, the output of the filtering pess,

_ can be defined in a similar way as the absolutaevaf the
denotegr = f(x), can be regarded as the part of the image

) L eal number as follows:
that fits the model. Thus, we can represent an énasgng the
generalized operations (not limited to the logerati
operations) as follows:

x=y dd B3 2. Negative Image and Subtraction Operation:
Where d is called the detail signal. The detaihalgs defined A natural extension is to define the negative efghay scale.

asd=xO©y where @ is the generalized subtractionAlthough this can be defined in a similar way assth
n described in (3.7) and (3.8), we take another aggrdo gain

X, %Sx<1
Xog = 1
1—x, 0<x<5

(3.10)

operation. Although this model is simple, it prosédus wit

a unified framework to study unsharp masking athans. A
general form of the unsharp masking algorithm aawbtten
as

v=h(y)B g(d) (34)

Where is output of the algorithm and batfy) andg(d)
could be linear or nonlinear functions. This moehplicitly
states that the part of the image being sharpentieimodel
residual. This will force the algorithm developercarefully
select an appropriate model and avoid models ssidimear
filters. In addition, this model permits the incorption of

deeper insights into the operation. The negativéhefgray
scale , denoted by , is obtained by solving

x@®x' =1/, (311)
The resultisc’ = 1 — x which is consistent with the classical
definition of the negative image. Indeed, this digifon is also
consistent with the scalar multiplication in thet®x = 1 —
x . Following the notation of the classical definiticof
negative numbers, we can define the negative grale |as
We can now define the subtraction operation using t
addition operation defined in (8) as follo@x = (-1) ®

contrast enhancement by means of a suitable piagess¥

functionh(y) such as adaptive histogram equalization. A% © X; = x; @ (O x2)
such, the generalized algorithm can enhance thealbve =

contrast and sharpness of the image.

2.3 Definitions and Properties of Log-Ratio Operatins

2.3.1 Nonlinear Function

We consider the pixel gray scale of an image (0,1), . For

anN-bit image we can first add a very small positieastant

to the pixel gray value then scale it By" such that it is in

the range (0,1). The nonlinear function is defiasdollows:
B(x) =log—=  (3.5)

To simplify notation, we define the ratio of thegagive

image to the original image as follows:
X=y@)="" (36)

1.Addition and Scalar Multiplication:

WWw.ijaers.com

(3.12)

1
P(x)P(Ox2)+1
_ 1
T oxx7te
Where we can easily see thatl© x,) = 1/¢(x,) = X; 1.
Using the definition of the negative gray scale alg® have a
clear understanding of the scalar multiplicationcfec 0.

y=a@x

=(-1)® (la| ® x)

=1 —|a| @ x (3.13)

Here we have usedl= (—1)x|«| and the distributive law for

two real scalarsc andp.
@xp)@x=a@ B Rx)

3.2.2 Properties

What would be the result if we add a constarf) <«< 1)

to an image x such th#t= x @ « since the zero is 1/2, we

(3.14)
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only consider two case8:<x< 1/2 and 1/:<x< 1. The
order reations for the addition operation are shown
Table.3.1.

Table.3.1:Order relations of the log-ratio addition

0 <x< 1/2 1/2 <x< 1
0<x<1/2 |0<x@x<mn(x,x) | x<xeow<
o
1/2<x<1 x<XPm<x | mn(x,x)<
XPx<1

When is fixed, the result y is a function of x. In thaptrow
of Fig.3.2, we show several cases in order to lizedhe

effects. We can see that wher %the dynamic range of tt
higher gray scale values are expanded at the cb
compressing that of loweyray scale values. Wh <> % the

effect is just the reverse of that of the previasse
Therefore, the operatiory = x@® o has a similar effect ¢
that of the gamma correction operation definex¥. For
example, to enhance the dark areas of the raman image

(8-bit/pixel), we could usex=gfor the loc¢ratio and

y = 0.65 for gamma correction. The results are showi
Fig.3.3.

For the subtraction operation, we can derive siméaults a:
those of the addition operation by considex; © x, =
x; @ (1 —x,) . For scalar multiplicatioy =x ®x , we
already know three special cases w«= —1,0,1. In
Table.3.2, we list the order relations "«> 0. The
corresponding relationships for the casex< 0 can be
easily derived by using (3.13). In the bottcow of Fig.3.2,
we show several cases which help us to understha
characteristics of the scalar multiplication. We cae fron
the figure that when 0x< 1, the dynamic ranges of the gr
scale values close to 0 or 1 are expanded anchézatthe
middle (1/2) is compressed. When- 1, the dynamic rang
of the gray scale values near 1/2 is expandedrarsttnear !
or 1 are compressed. In fact, wheis set a large numbe
say 10, the effect is just like a thresholding pss; i.ey —

0, forx < %andy — 1 for x>1/2.
Table.3.2: Order relations of the log-ratio addition

0<a<1 a>1
0<x<1¥ a®@®x>X | a®Qx<x
1/2<x<1 a®@®x<x a®Qx>x

3.2.3 Computations

Computations can be directly performed using thev
operations. For example, for any real numle, ande,, the
weighted summation is given by

(a1®x1)®(az®xz)zx !

a1 ,,az
1 X+l

(3.15
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The subtraction operation can be regarded as ahteei
summation withe; = 1 andec,— 1. In image processing the
classical weighted average of a block of pix{x,} ,=1.x IS
given by
Uy = 2N_; apXy... (3.16)
Where YV_, «,= 1. similarly, the generalized weight
averaging operation is definec
y=(a; ®x) D (a; @ x3) .. ... D (ay R xpy) (3.17)

G

G+G
WhereG = ([] x,‘f")l/N andG = ([I(1 - xn)“n)l/N are the
weighted geometric means of the original and thgatiee
images, respectivelyAn indirect computational method
through the nonlinear function (3.5). For examplee
generalized weighted average can be calculatedllasé:
y=0"Ho[(a; @ x1) ® (a; @ x3) ... . B (ay Q@ x)]1}
(3.18)
=0~ {XN=1 anB(xn)}
Although this computational methamay be more efficient
than the direct method in certain applications, thect
method provides us more insights into the operatfeor
example clearly shows the connection between
generalized weighted average and the geometric.
3.3 Bregman Divergence
TheBregman divergenceor Bregman distanceis similar to
a metric, but does not satisfy the triangle inedyabr
symmetry. There are two ways in which Bregr
divergences are important. Firstly, they generasigaarec
Euclidean distance to a ctasf distances that all share simi
properties. Secondly, they bear a strong connectm
exponential families of distributions; as has bshown by
(Banerjee et al. 2005), there is a bijection betwesgular
exponential families and regular Bregmévergences.
3.3.1 Definition
Let F:A TR be a continuous-differentiable
realvalued and strictly convex function defined on aseld
convex setA .The Bregman distance associated vF for
points P-4 € A js:
Br(pllg) = F(p) — F(q) — (VF(q),(p — q))
(3.19)
Intuitively this can be thought of as the differenzetweet
the value of at pointp and the value of the fil-order Taylor
expansion of around point] evaluated at poirp.
A. 3.3.2 Properties

* Non-negativity: Br(pllg) = Oforall p,g. Thisis a

consequence of thmnvexity of F

« Convexity: Br(pll9) is convex in its first
argument, but not necessarily in the sec
argument.

» Linearity : If we think of the Bregman distance as
operator on the functioF, then it is linear with
respect to nomegative coefficients. In othwords,
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for F,,F5 strictly convex and differentiable, ai >
01
Br+ar(plla) = Br(pll9) + ABr,(pllg)
(3.20)

« Duality: The function F has a convex conjugF .
The Bregman distance defined with respecF

has an interesting relationship Br(pllg)
Be+(p'lla") = Brlalp) .21
Here, p*'=VF(p) is the
corresponding to p

* A key result about Bregman divergences is t
given a random vector, the mean vector minim

the expected Bregman divergence from the ran
vector.

dual poin

IV. PROPOSEDALGORITHM

In the proposed algorithm, the user can adjust tthe

parametes controlling the contrast and sharpness to pro

the desired results. This makes the proposed #igo

practically useful. These related works include unsh

masking and its variants, histogram equalizatietinex anc

dehazing algorithms, and genigrad linear systems. It hi

been recently studied by many researchers for mbatipg

contrast, sharpness, and dynamic range of digiagjes. Thi

retinex algorithm is based upon the imaging modet/fich

the observed image is formed by the productscene
reflectance and illuminance. The task is to estmtite

reflectance from the observation. Many algorithnss the

assumption that the illuminance is spatially smo

Enhancement of contrast and sharpness of an ima

required in many applicationgnsharp masking is a classi

tool for sharpness enhancement. We propose a dieed

unsharp masking algorithm using the exploratorga datdde!

as a unified framework. The proposed algorithmesighec

to address three issues: 1) Simultaneously ¢cing contrast
and sharpness by means of individual treatmerteofitode

component and the residual. 2) Reducing the hd&rteby

means of an edgereserving filter. 3) Solving th

out-of-range problem by means of logtio and tangent
operations. Blocldiagram of Generalized unsharp mask

algorithmshown in Fig.4.1, is based upon the previous in

model and generalizes the classical unsharp ma

algorithm by addressing issues stated in that algol

_K_M_ﬁ_.' ot r=_,| ) 'g;mradl

&

4=x0y s]

¥

Adaptive
Gair Comned

Fig.4.1: Block diagram of the proposed generalized unsharp
masking algorithm
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This algorithm address the issue of the halo effgatsing ar
edgepreserving filter the IMF to generate the signahe’
choice of the IMF is due to its relative simpliciaypd well
studied properties such as the rootnals. Other more
advanced edge preserving filters such as the nahnfoean:
filter and wavelebhased denoising filters can also be u
This address the issue of the need for a carefidatimg
process by using new operations defined accordinthe
log-ratio and new generalized linear system. Sincegthg

scale set is closed under these new operationstitadts

and scalar multiplication® formally defined), the

out-ofrange problem is systematically solved and
rescaling is needed. This algorit address the issue of
contrast enhancement and sharpening by using tiferetit
processes. The image y is processed by adaptitegtas
equalization and the output is called h(y). Thadé&nage is
processed by(d) = y(d) ® d wherey(d) is the adaptive
gain and is a function of the amplitude of the detignal.
The final output of the algorithm is then giver

v=h(y) P [y(d) ®d] (3.5)

We can see that the proposed algorithm is a geratiah of
the clasical unsharp masking algorithm in several w
which are summarized in Table 4.1. In the followinge
present details of the new operations and enhanteshéhe
two images y and d.

Table.4.1: Comparison of classical unsharp masking with
generalized unsharp masking

y d g(d) | Output| Re-scale
hy) va |V
UM LPFxy |Y {d@d | Ygy +| Yes
g(d)
GUM | EPF ACE h(y) No
xQy 9(d)

we first define the new operations using the gdizexdlinear
system approach. We use (3.1) and (3.2) to sim
presentation. Note that these operations can beediefrom
the vector space point of view which is similarthat of the
development of the LIP model . We then study progsiof
these new operations from an image processing @eisp.
We show the cenection between the I-ratio, generalized
linear systems and the Bregman divergence. Asudtrege
not only show novel interpretations of two exist
generalized linear systems, but also develop asystem
4.1 Dealing with Color Image:

We first comvert a color image from the RGB color spact
the HSI or the LAB color space. The chromina
components such as the H and S components ar
processed. After the luminance component is preckshe
inverse conversion is performed. An enhanced dmage in
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its RGB color space is obtained. The rationale daty
processing the luminance component is to avoidtarnpial
problem of altering the white balance of the imagen the
RGB components are processed individually.

4.1.1 RGB color model

The RGB color model is an additive color model ihiat
red, green, and blue light are added together rilows ways
to reproduce a broad array of colors. The naméehtodel
comes from the initials of the three additive pniynaolors,
red, green, and blue. The main purpose of the RGBrc
model is for the sensing, representation, and alspuif

images in electronic systems, such as televisiond a -«

computers, though it has also been used in cororeiti
photography. Before the electronic age, the RGBraolodel

already had a solid theory behind it, based in huma -

perception of colors.

4.1.2 HSI color model

The HSI color space is very important and attractelor

model for image processing applications becauspiesents
color s similarly how the human eye senses colbns. HSI

color model represents every color with three comepds:

hue(H), saturation(S), intensity(l). "Hue" is what artist
refers to as "pigment”; it is what we think of amlor" --

yellow, orange, cyan and magenta are examplesfiefefit

hues. An artist usually starts with a highly sateda(i.e.,

pure), and intense (i.e., bright) pigment, and théds some
white to reduce its saturation and some black tuce its
intensity. Red and Pink are two different "satuasi’ of the

models.

4.2.1 Image Noise

Image noise is the random variation of brightnessator
information in images produced by the sensor anclitiy
of a scanner or digital camera. Image noise canaiginate
in film grain and in the unavoidable shot s®iof an
ideal photon detector. Image noise is generatijarged as
an undesirable by-product of image capture. Alttotigpse
unwanted fluctuations became known as &ioisy
analogy with unwanted sound they are inaudibtesarch as
dithering. The types of Noise are following:-

Amplifier noise (Gaussian noise)

. Salt-and-pepper noise

*  Shot noise(Poisson noise)

Speckle noise

4.2.1.a Amplifier noise

The standard model of amplifier noise is addit@aussian,
independent at each pixel and independent of theaki
intensity. In color cameras where more amplificati® used
in the blue color channel than in the green or akdnnel,
there can be more noise in the blue channel .Amplifoise
is a major part of the "read noise" of arag®m sensor, that
is, of the constant noise level in dark areafhefimage.
4.2.1.b Salt-and-pepper noise

An image containing salt-and-pepper noise will haaek
pixels in bright regions and bright pixels in dagkions. This
type of noise can be caused by dead
analog-to-digital converter  errors, bit  errorsin

same hue, Red. The HSI model is useful when proggsstransmission, etc. This can be eliminated igdapart by

images to compare two colors, or for changing arcsbm
one to another. For example, changing a value foyam to
Magenta is more easily accomplished in an HSI mautdy
the H value needs to be changed (from 180 to 3@aking
the same change in an RGB view is less intuitirgesyou

using dark frame subtraction and by interpolatimguad
dark/bright pixels.
4.2.1.c Shot noise
Poisson noise or shot noise is a type of electronaise that
occurs when the finite number of particles thatycanergy,

must know the correct amounts of Red, Green ana Blsuch as electrons in an electronic circuit or phstm an
needed to create Magenta. The HSI model is alsmm@e m optical device, is small enough to give rise toed&tble

useful model for evaluating or measuring an olgectlor
characteristics, such as the "redness" of a berrythe
"yellowness" of an autumn leaf.

4.2 Edge preserving filter

Image de-noising is an vital image processing faskas a
process itself as well as a component in other gages.
There are many ways to de-noise an imagea @et of

statistical fluctuations in a measurement.

4.2.1.d Speckle noise

Speckle noise is a granular noise that inherentist®in and
degrades the quality of the active radar and sticthperture
radar (SAR) images. Speckle noise in conventioadar
results from random fluctuations in the return aiginom an
object that is no bigger than a single image-prsiogs

pixels,

data and methods exists. The important property gbod element. It increases the mean grey level of al lacea.
image de- noising model is that it should completeimove Speckle noise in SAR is generally more serioussioau
noise as far as possible as well as preserve edgdifficulties for image interpretation. It is causby coherent
Traditionally, there are two types of models. linear processing of backscattered signals from multigéiduted
model and non-liner model. Generally, linardels are targets. In SAR oceanography, for example, speokiise is
used. The benefits of linear noise removing modkelthe caused by signals from elementary scatters,
speed and the limitations of the linear modelshe, models gravity-capillary ripples, and manifests as a paldmage,
are not able to preserve edges of the images fficeert beneath the image of the sea waves.

manner i.e the edges, which are recognized asrdincities 4.2.2 Median filter

the

in the image, are smeared out. On the other haad;liNear
models can handle edges in a much better way ihaarl

WWw.ijaers.com

The Median filter is a nonlinear digital filteringchnique,
often used to remove noise. Such noise reductiartypical
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pre- processing step to improve the resoftlater processing
(for example, edge detection on an imadedian filtering is
very widely used in digital image procasy because under
certain conditions, it preserves edgeslsthiemoving noise.
The main idea of the median filter is tarirough the signal
entry by entry, replacing each entnjithv the median of
neighboring entries. Note that if theindow has an odd
number of entries, then the median isyde to define: it is
just the middle value after all the entriesthe window are
sorted numerically.

4.2.3 The Root Signal and the Detail Sig!

Let us denote the median filteringeration as a function y
f(x) which maps the input to the output. An IMF ogigon
can be represented gs;, = f(yx) where k=0,1,2,... is th
iteration indexy, = x and The signay,, is usually called th:
root signal of the filtering process y, 1=y, . It is
convenient to define a root signalyasfollows

n = min Kk, subject to H( Y Vi) <0
(4.8)

WhereH (y,, yi+1) IS a suitable measure of the differel
between the two images and is a user defined tbickskor
natural images, it is usually the case that themsepiarec

difference, defined a (vy, Vi41) = (1/N) I Yie = Yiear Il
(N is the number of pixels), is a moonic decreasing
function of k. It can be easily seen that the dgéin of the
root signal depends upon the threshold. For exaniiple
possible to set a large valude such that ; is the root signal.
Indeed, after about five iterations>5 the difference
H( vy, yr+1) Changes only very slightly. As such, we «
regard yor ys as the root signal. Of course, the numbe
iterations, the size and the shape of the filtesknteas certail
impacts on the root signal. The properties of that signal
have been extensively studied. Here we use an dgatm
illustrate the advantagef the proposed algorithm over t
classical unsharp masking algorithm.

ORIl BE BRIl X Qrigsial dgnsl x
8 1.}
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14 [ L]
12 r 02
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Fig.4.2:1llustration of the difference between the proposed
generalized unsharp masking
algorithm (left panel) and the classical unsharp masking
algorithm (right panel).

4.3 Adaptive Gain Control
We know that to enhance the detail signal the gaiist be
greater than one. Using a universal gain for thelevimage
does not lead to good results, because to enhhecgmall
details a redtively large gain is required. However, a la
gain can lead to the saturation of the detailedadigvhose
values are larger than a certain threshold. Séabarats
undesirable because different amplitudes of thaildgignal
are mapped to the same dityale of either 1 or 0.This lear
to loss of information. Therefore, the gain musadaptively
controlled. In the following, we only describe t&@n control
algorithm for using with the Ic-ratio operations. Similar
algorithm can be easily developeor using with the tangent
operations. To Control the gain; we first performireear
mapping of the detail signal d to a new sigr
c=2d-1 (4.9)
Such that the dynamic range of c-1, 1). A simple idea is to
set the gain as a function of the signal ¢ andraayglly
decrease the gain from its maximum vey,,x whenicl < T
to its minimumy,,;y value whenicl—1. More specifically,
we promse the following adaptive gain control func!
y(c) = a+ Bexp(=lc|") (4.10)
Wheren is a parameter that controls the rate of decrea
The two parameters and § are obtained by solving tt
equations:y (0) =yyax andy (1) =y, - For a fixedy, we
can easily determine the two parameters as fol
B = Ymax —Yumn)/(1—e™)
(4.11)
And

a =VYmax — B
(4.12)
Although bothy,,4x andy,,y could be chosen based ug
each individual image processing task, in genetrais
reasonable to s¢},;y = 1. This setting follows the intuitio
that when the amplitude of the detailed signadige enougl
it does not need further amplification. For example,can
see that
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. Y 1 _
limg) -1y ® d=limq) 1 o= 1

(4.13)

As such, the scalar multiplication has little effed/e now
study the effect ofy, andy,.. by settingy,, =1. In
Fig.4.3, we show the nonlinear mapping functy®d by
using adaptive gain control witly = y(c) for the four
combinations ofy ,and y,,,., - We also compare the
functions to that using a fixed gain= y,,,.. We can see that
while the fixed gain leads to saturation when the ampgitoik
the detail signal is large, the adaptive gain doassuffer
from this problem.

For the adaptive gain control (dasHaw), a larger value c
Ymax l€2ds to a larger amplification of the anude of the
detail signal around 1/2. This is evident when wapare the
gradients of those dash lines around 1/2. Recatl|1f? is the
zero (smallest amplitude, i.e. d=1/2, is equivatel|d|, = 0
) of the detailed signal. Therefore, large vey,,, Of helps
enhance the minute details of the image. The rbl¢he
parameter) is to control the amplification behavior of t
nonlinear mapping function whdd|, is relatively large
Comparing the two plots at the bottom row of Fig,4ve car
see that when = 1, the nonlinear mapping function is clc
to saturation wheid|, is large. As such, the setting of ¢
(bottom left) is better tham,,,, =5 and n =1 (bottom

right).We also observe that whep,, is relatively small

such ay,,., = 3 the effect of the adaptive gain control is

significant.
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Fig.4.3:1llustrations of adaptive gain control for four
combinations of n,and ¥,,,4x

This is also observed in our experiment with imagessuch
adaptive gain control is useful wherredatively largi v, .
must be used to enhance the minute details andoid &he
saturation effect.
4.4 Contrast Enhancement of the Root Sign
Adaptive histogram equalization (AHE) is a complteage
processing technique used to improve contraimages. It
differs from ordinary histogram equalization in thespec
that the adaptive method computes several histagraact
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corresponding to a distinct section of the image] ases
them to redistribute the lightness values of thage It is
therdore suitable for improving the local contrast ofimage
and bringing out more detail.

Ordinary  histogram equalization uses the s
transformation derived from the image histogram
transform all pixels. This works well when the distition of
pixel values is similar throughout the image. However, m
the image contains regions that are significaritippter or
darker than most of the image, the contrast inghiegions
will not be sufficiently enhance

V. RESULTSAND DISCUSSIONS

All test images aredownloaded from the Interne
www.cs.huji.ac.il/~danix/epd/. | use the canyongmaalled.
Hunt's Mesa (shown in Fig.5.1) to study the projk
algorithms. | first show the effects of the two trdvuting
parts: contrast enhancement and detail enhanc. contrast
enhancement by adaptive histogram equalization
remove the hazlke effect of the original image and contr
of the cloud is also greatly enhanc

Fig.5.1: Comparison of individual effects of contrast
enhancement and detail enhancement. Images from left to
right: original, only with detail enhancement, only with
contrast enhancement, and with both enhancements.

However, the minute details on the rocks are natpmed
On the other hand, only using detail enhancemermts
sharperthe image but does not improve the overall cont
When | combine both operations both contrast analldeare
improved.

5.1 RESULTS FOR GRAYSCALE IMAGE

5.1.1 RESULTS OF CUM

Fig.5.2: Original gray scale image
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|
Fig.5.3: Result of CUM

Fig 5.2 is the original image, and Fig 5.3 is tlesult of
classical unsharp masking algorithm, it exhibiidaffect at
the edges of the image, it is marked by the régsel] and it i

a drawback of classical unsharp masking algori
1.5

q

05

=]

-U.Sﬂ 50 100 150 200 50

Fig.5.4: 100" row gray level profile of CUM resultant image

Fig 5.4 is the 100row gray level profile of resultant image
classical unsharp masking algorithm. It exhibit ofitange
problem, that is the range of image taken for pssitey is [0
1], but tre resultant image exceeds this ra

The size of the image is 256 X 256, means 256 eowis25¢€
columns among these one of the column or row geagl
profile can choose to exhibit the out of range feol) here
all the pixels are not suffer with out range problem, so
there is no guaranty to exhibit out of range probfer all
rows and columns, so choose appropriate colummowrto
exhibit out of range problem. In this case " row is chosen
to show the out of range problem.

5.1.2 RESULTS OF GUM

Fig.5.5: Result of GUM
1

0B
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0.4

0z

00 5

100 150 A0 250

Fig.5.6: 100" row gray level profile of GUM resultant image
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Fig.5.5 is the result of generalized unsharp mag
algorithm, it exhibit the reduced hallo_effect agtness an
contrast are enhanced simultaneot

Fig.5.6 shows the 180row gray level profile(it is same ro
for classical unsharp masking to compare out ofge:
problem) of generalized unsharp masking resultauaige, it
exhibit the solved out of range problem, the ramgen
between [0 ,1]

5.2 RESULTS FOR COLORIMAGES

5.2.1 RESULTS OF CUM

Fig.5.7:Original color image Fig.5.8: Result of CUM
Fig.5.7 is the original image and Fig.5.8 is thsuit of
classical unsharp masking algorithm, it exhibitdaffect at
the edges of the image, it is marked by theellipse, and itis
a drawback of classical unsharp masking algor

LI L

Fig.5.9:100" row gray level profile of original image
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Fig.5.10:100" row gray level profile of CUM resultant image

Fig.5.9 and 5.10 are the 1" row gray level profile of
original and resultant image of classical unsharp mas
algorithm. It exhibit out of range problem, thathe range o
image taken for processing is [0, 1], but the rasulimage
exceeds this range.

5.2.3 RESULTS OF GUM

Fig.5.11: Result of GUM
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Fig.5.11 is the result of generalized unsharp mas}
algorithm, it exhibit the reduced hallo effect aghness an
contrast are enhanced simultaneously.
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Fig 5.12: 100" row gray level profile of GUM resultant
image
Fig.5.12 shows the 18Gow gray level profil(it is same row
for classical unsharp masking to compare out ofge:
problem) of generalized unsharp masking resultaaigie, it
exhibit the solved out of range problem, the ramgen
between [0 ,1].

VI. CONCLUSION

In this paper, | use an exploratory datadel as a unifie
framework for developing generalized unsharp mag
algorithms. Using this framework, | propose a négoathm
to address three issues associated with classitsthanc
masking algorithms: 1) simultaneously enhancingtrest
and sharpess by means of individual treatment of the mi
component and the residual, 2) reducing the-effect by
means of an edgereserving filter, and 3) eliminating tl
rescaling process by means of lagio and tanger
operations.

| present a study of the lagtio operations and the
properties. In particular, we reveal a new conoedtietweer
the Bregman divergence and the generalized lingstiems
(including the logratio, MHS and the LIP model). Tr
connection not only provides us with a noveight into the
geometrical property of generalized linear systenus,alsc
opens a new pathway to develop such systems. émire
new system called the tangent system which is baged &
specific Bregman divergence. Experimental resudtew
that theproposed algorithm is able to significantly impr¢
the contrast and sharpness of an image.

In the proposed algorithm, the user can adjust tthe
parameters controlling the contrast and sharprepsoduce
the desired results. This makes the proposeorithm
practically useful. Extensions of this work candagried ow
in a number of directions. In this work, | onlytése IMF as
a computationally inexpensive edge preservingrfilte is
expected that other more advanced edge preseriliacs
such as bilateral filter/nolocal means filter, the least squa
filters and wavelet based denoising can producélasirar
even better results. The proposed algorithm caredsily
extended into multiresolution processinghis will allow
the user to havebetter control of the detail sign
enhancement. For contrast enhancement, | only desgtiae
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histogram equalization. It is expected that usidgaacec
algorithms such as recently published retinex agldading
algorithm can improve the quality of enhement. | do not
consider the problem of avoiding enhancement cfendihis
problem can be tackled by designing an edge priesgfilter
which is not sensitive to noise. The idea of thieicfilter can
be useful. It can also be tackled by designing art adaptive
gain control process such that the gain for noiselpis se
to a small value. | have shown that the propogstém is foi
systematically solving the owf-range problem.
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